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Abstract: In recent years, there has been renewed interest in the maintenance of food quality and
food safety on the basis of metabolomic fingerprinting using vibrational spectroscopy combined with
multivariate chemometrics. Nontargeted spectroscopy techniques such as FTIR, NIR and Raman
can provide fingerprint information for metabolomic constituents in agricultural products, natural
products and foods in a high-throughput, cost-effective and rapid way. In the current review, we
tried to explain the capabilities of FTIR, NIR and Raman spectroscopy techniques combined with
multivariate analysis for metabolic fingerprinting and profiling. Previous contributions highlighted
the considerable potential of these analytical techniques for the detection and quantification of
key constituents, such as aromatic amino acids, peptides, aromatic acids, carotenoids, alcohols,
terpenoids and flavonoids in the food matrices. Additionally, promising results were obtained for the
identification and characterization of different microorganism species such as fungus, bacterial strains
and yeasts using these techniques combined with supervised and unsupervised pattern recognition
techniques. In conclusion, this review summarized the cutting-edge applications of FTIR, NIR and
Raman spectroscopy techniques equipped with multivariate statistics for food analysis and foodomics
in the context of metabolomic fingerprinting and profiling.

Keywords: FTIR; NIR; Raman; metabolomics; food quality; pattern recognition

1. Introduction

The recent term “omic” is used in a wide variety of fields, for example, genomic,
proteomic, metabolomic, amongst others. The term metabolomics can be described as the
cooperation of multiple disciplines such as analytical chemistry, technology, analysis proto-
cols and data analysis [1]. Metabolomics has the capability to obtain key information about
endogenous and exogenous small molecule metabolites (<1500 Da) and metabolomics
can be used to evaluate a wide variety of subjects, such as toxicology, drug discovery,
cancer, genetic manipulation, natural products and more [2]. These small molecules can
be listed as peptides, amino acids, nucleic acids, carbohydrates, vitamins, phenolic com-
pounds and small-molecule biomarkers [2]. Previous reports defined metabolomics as
the measurement of intra- and extra-cellular metabolites in a biological system (microbial,
plant and mammalian systems) [3]. A number of researchers have reported the mass
spectrometry, gas chromatography–mass spectrometry (GC-MS), high-performance liquid
chromatography–mass spectrometry (HPLC-MS), capillary electrophoresis–mass spec-
trometry (CE-MS), nuclear magnetic resonance spectroscopy and vibrational spectroscopy
(infrared and Raman spectroscopy) as potential analytical techniques with various advan-
tages and disadvantages for the measurement of the metabolome in various matrices [3].
In general, the application of a single methodology may not provide adequate information
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about the investigated metabolome; hence, confirmatory or additional analytical method-
ologies will improve the reliability and precision of the obtained results. Metabolomics can
be mentioned as the most functional section among omic sciences since it has the capability
to evaluate biochemical processes. Metabolomics has three cornerstones: biochemical
knowledge, analytical methods and data mining chemometrics [4]. The mentioned chro-
matography and spectroscopy techniques may provide comprehensive metabolomics data.
However, there is need for the extraction of specific metabolome-related information from
big datasets using chemometrics in the untargeted analysis. In other words, there is a need
for well-built multivariate statistical methods to analyze complex metabolomics data and
to cope with the difficulties arising from the inherent features of datasets.

The current article was proposed to show the capability of vibrational spectroscopy
techniques for metabolic fingerprinting by exploring previous contributions. This review
article aims to explain the metabolic measurement properties of the vibrational spectroscopy
techniques such as IR spectroscopy (MIR, NIR) and Raman spectroscopy. The classifications
of infrared spectroscopy techniques and Raman spectroscopy were previously discussed in
earlier contributions [3]. In the current review, we illustrate IR (MIR and NIR) and Raman
spectroscopy applications for metabolomics analyses in food matrices.

2. Multivariate Data Analysis—Chemometrics

Chemometrics can be defined as the statistical and mathematical methodologies em-
ployed to build experimental methodologies and reveal important knowledge from big data
and deep data [5]. The data obtained from laboratory equipment are generally complex
and require elaborated processing to obtain meaningful and critical information about the
analyte. Chemometrics could be efficiently used to evaluate experimental data obtained
by the laboratory equipment such as chromatography and spectroscopy systems. Chemo-
metrics can be used to extract desired (specific) information for the classification of specific
sample sets; this can be introduced as “pattern recognition” [6]. Multivariate statistics eval-
uates the effect of two or more independent variables on one or more dependent variables.
Multivariate statistical methods may include various regression models and classification
models to reveal hidden relationships between variables. From a general point of view, it is
possible to state that unsupervised and supervised multivariate statistical methods have
key importance for the processing of multivariate datasets. Foodomics, a novel concept,
can be defined as a new discipline investigating food and nutritional issues using high-tech
analytical systems and multivariate statistical approaches. Foodomics is related to lots
of multidisciplinary scientific branches, such as food control and food authenticity, food
processing and food functionality with the involvement of multivariate statistical analysis
(chemometrics) [7]. Untargeted and targeted instrumental methods can be used to evaluate
food quality and food safety issues in the food supply chain. Vibrational spectroscopy has
strong capabilities for the rapid, high-throughput and nondestructive analysis of a wide
variety of agricultural and natural products with powerful fingerprinting properties. Thus,
vibrational spectroscopy as a fingerprinting technique can be employed for the determina-
tion of compounds in food matrices, the detection of additives and contaminants and the
identification of metabolites [8]. Other advantages of vibrational spectroscopy techniques
can be listed as follows: high reproducibility, in situ measurement, confirmed and validated
methodologies, excellent metabolite coverage, minimum sample preparation and the direct
measurement of samples in the liquid or solid state. In the chemometrics, selection of
the appropriate statistical technique provides the opportunity to obtain key information
about the targeted or nontargeted constituents. From a general point of view, multivariate
chemometric methods can be employed with three objectives in food-related applications:
(a) exploratory data analysis; (b) discrimination and classification; (c) regression and pre-
diction. Statistical methods can be divided into two sections: unsupervised and supervised
methods. Most foodomics studies include applications of pattern recognition techniques
capable of determining the origin, authenticity and adulteration problems in natural and
agricultural products on the basis of chemical information obtained from analytical mea-
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surements. Unsupervised pattern recognition and supervised pattern recognition are the
most well-known and frequently applied techniques to cope with the challenging authentic-
ity and fraud problems in foods, food additives, natural products and agricultural products.
An overview of multivariate data analysis techniques is presented in Figure 1.
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vibrational spectroscopy techniques.

2.1. Unsupervised Pattern Recognition

Unsupervised pattern recognition models can be used to evaluate the connatural
tendency of data without any confinements. Unsupervised methods can also be described
as exploratory methods, for example, principal component analysis and hierarchical cluster
analysis. These types of methodologies are usually employed to display the similarities
and heterogeneities of the dataset. The most well-known and applied unsupervised chemo-
metrics models are reported to be principal component analysis (PCA), hierarchical cluster
analysis (HCA), cluster analysis (CA) and multiple correspondence analysis (MCA) [9].

2.2. Supervised Pattern Recognition

Supervised pattern recognition models have reported to require a definite training
set, which is further used to predict the identity of unknown samples [9]. In other words,
in supervised methods, spectral information is assigned to a definite class and statistical
treatment is performed to display the relationship between the data and the class [10].
Supervised models can be used for classification, discrimination or prediction on the basis
of analytical data produced in the laboratory. While classification models search for the
similarities in the sample group on the basis of experimental information, discrimination
models evaluate the divergence between the regressions of each class [9]. Both of these
techniques can be used in the classification of agricultural products on the basis of their
origin, growing conditions and maturity. In other words, supervised models can be used
to monitor the characteristic properties of food and agricultural products in terms of
process control and quality control. There are various supervised tools for the treatment
of experimental data obtained from targeted or nontargeted analyses. The most well-
known supervised tools are LDA (linear discriminant analysis), PLS-DA (partial least
squares discriminant analysis), SIMCA (soft independent modeling of class analogy), SVM
(support vector machine), RF (random forests) and ANN (artificial neural networks) [11].
Additionally, K-NN (K-nearest neighbor), LLM (linear learning machine) and Bayes linear
discriminant analysis are other examples of supervised learning models [12].
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2.3. Multivariate Calibration

The calibration section is composed of a series of subheadings, such as univariate
calibration, multiple linear regression, principal component regression, partial least squares
and model validation (cross-validation and independent test sets) [13]. Multivariate cali-
bration is divided into two main components: linear and nonlinear calibration. The most
well-known linear calibration methods are MLR (multiple linear regression), PLS (partial
least squares regression) and PCR (principal component regression). Also, in recent years,
the new linear calibration models of least angle regression (LARS) and elastic net have
been introduced. Previous contributions reported the most popular nonlinear calibration
models to be ANN (artificial neural network), SVM (support vector machine), RVM (rel-
evance vector machines), ELM (extreme learning machine) and GPR (Gaussian process
regression) [12]. Calibration models correlate the response and independent variables to
build a statistical model that is capable of the prediction of unknown sample varieties.
The fitness and validity of the models can be evaluated using some specific values such
as R2 (regression coefficient), PRESS (prediction residual sum of squares), RPD (residual
predictive deviation), SEP (standard error of prediction) and SECV (standard error of
cross-validation).

2.4. Advantages of Pattern Recognition Techniques in Food Analysis

Food recognition, classification and discrimination are highly important tasks for food
integrity and food safety from farm to fork in the food supply chain. Pattern recognition
techniques can be employed for a wide variety of purposes in food-related issues. These
issues include food calorie estimation, quality detection of vegetables, fruits, meat and
aquatic products, the determination of food contamination and sensory evaluations [14].
Today, there is need for the application of modern statistical techniques for the quality as-
surance of food products in terms of the global economy. Food scientists deal with massive
amounts of data produced by highly technical instrumental analysis equipment, analytical
devices, sensory evaluations, and experiments, etc. [15]. The application of chemometrics
as an adjunct discipline has emerged as an effective problem-solving approach in both
industrial and scientific issues. Through the application of classification and calibration
chemometrics models, the intrinsic relationship between variables can be revealed and,
in this way, scientists can gather more knowledge and understanding in relation to the
applied reference methods, the chemical composition of the samples, the applied processes
and the nature of the product. Briefly, the application of pattern recognition techniques to
big data gathered by different measurement systems brings advantages for the effective
day-to-day analysis of foods and natural products in terms of food safety and food quality.

3. IR Spectroscopy Applications
3.1. MIR (Mid-Infrared Spectroscopy) Applications

Mid-infrared spectroscopy provides detailed information about the composition and
chemical structure of the evaluated materials. An infrared spectrum of the molecule is
very distinctive and presents a chemical fingerprint of the materials with characteristic
functional groups [16]. FTIR (Fourier transform infrared) spectroscopy was reported to
be a reliable metabolic fingerprinting technique, which is capable of high-throughput,
cost-effective, easy, green analyses with minimum or no sample preparation [17]. In other
words, it is possible to obtain metabolomic fingerprints for a wide variety of biofluids
without any reagent or preprocessing. FTIR spectroscopy has the spectacular advantages
of rapid, effective and robust detection in herbal products when compared to traditional
analytical methodologies [18]. In general, the advantages of FTIR spectroscopy make the
technique a good alternative for metabolic profiling and metabolic fingerprinting when
compared to traditional methodologies. Metabolic profiling requires the identification
and quantification of related metabolites, while metabolic fingerprinting includes the
classification and screening of the analytes. An overview of reported studies using Fourier
transform infrared Fourier transform infrared (FTIR), Raman and NIR spectroscopy in
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determination of authenticity, quality, safety and the other essential parameters in foods
is presented in Table 1. In a previous contribution, Borges et al. (2014) used ATR-FTIR
spectroscopy combined with PCA (principal component analysis) for the identification of
distinct metabolic profiles, especially in the fingerprint regions of carbohydrates, proteins
and lipids in banana accessions. According to their results, ATR-FTIR spectroscopy revealed
the spectral diversity of the starchy components of banana pulp flours. In particular, the
starch composition of banana accessions was favorable to distinguish accessions on the basis
of their physical, chemical and functional properties [19]. Easmin et al. (2017) employed
FTIR spectroscopy for the evaluation of the α-glucosidase inhibitory activity of P. macrocarpa
extracts and an effective regression model was developed using the functional groups
of -CH, -NH, -COOH and -OH for the fast and reliable determination of the inhibitory
activity [20]. Their results showed that chemical groups of -CHO, -COOH, -NO2, -NH and
-OH increased the inhibitory activity, while -SH, -PH and -PO decreased the bioactivity.
Medicinal plants are important natural sources of curative and alternative treatments
with health-beneficial phytochemical ingredients such as phenolics and flavonoids. FTIR
spectroscopy has considerable potential for the evaluation of primary and secondary
metabolites with favorable fingerprinting capabilities. Sahoo et al. (2023) successfully
determined the metabolites of gallic acid, arabinogalactan protein, gingerols, shogaols,
paradol, phenylalkanoids, piperine and curcumine in different herbal species, such as
Terminalia chebula, Zingiber officinale, Piper longum and Curcuma longa, using metabolite-
related FTIR frequencies. According to their results, FTIR analysis was successful in
detecting secondary metabolites using the spectral information related to functional groups
such as -CHO, -COOH, -NO2, -NH and -OH [21]. In a previous study, Kwon et al. (2014)
evaluated the capability of FTIR spectroscopy combined with multivariate analysis for
the discrimination of ginseng leaf extracts on the basis of the ages and cultivars. The
results showed that the discrimination power was determined as 94.8% for cultivars
and cultivation ages and the results indicated that FTIR spectroscopy combined with
multivariate statistics was successful for the metabolic discrimination of cultivation ages.
Significant FTIR spectral changes were correlated with variations in major metabolites
(sugars and amino acids) and secondary metabolites of the ginseng leaves. Additionally,
according to their results, the cultivation period was related to the metabolic variation in
ginseng leaves [22]. Osman et al. (2022) evaluated the metabolome responses among wheat
genotypes to heat stress using Fourier transform infrared spectroscopy. They reported
that FTIR spectroscopy combined with chemometrics is a powerful technique for the
characterization of the metabolic behavior of wheat genotypes under heat stress [23].
Abramovic et al. (2007) successfully employed FTIR spectroscopy for determination of
deoxynivalenol in wheat [24]. In another study, Kurniawan et al. (2017) evaluated the
effect of phenolic compounds and melanoidin on the antioxidant activity of Indonesia
robusta and Arabica coffee extracts using FTIR spectroscopy combined with principal
component analysis and regression models. They reported that the phenolic compound
composition had a higher impact on the antioxidant activity when compared to melanoidin
contents on the basis of principal component analysis. Additionally, partial least regression
models revealed that, while hydroxyl group (O–H) contents were positively related to
the antioxidant properties of the carbonyl (C=O) and amine (N–H) groups, they were
negatively related to the antioxidant activity of coffee extracts [25]. Nurrulhidayah et al.
(2015) used FTIR metabolite fingerprinting for the determination of lard adulteration
in butter. The regression models yielded a high correlation coefficient of 0.99 and the
models were successful for the determination of the lard content of adulterated samples
on the basis of selected functional groups (ester/lactone, aldehyde, ketone, aromatic acids
and aliphatic groups) [26]. Mycotoxins are known as toxic secondary metabolites of
fungi species and a lot of food species, such as cereals, can be contaminated with them.
Fu et al. (2014) used FTIR spectroscopy combined with the chemometrics of the principal
component analysis for the detection of 15-acetyldeoxynivalenol (15-AcDON) in corn
oil. They observed 15-AcDON-related spectral bands around the 1000 cm−1 wavelength;
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however, the detection was poor below a 1 ppm contamination level [27]. In another
study, Bove et al. (2009) compared PCR and FTIR methodologies for the evaluation of
biodiversity in D. hansenii strains isolated from pecorino cheese samples from 10 different
regions of Italy. Their findings showed that the FTIR method provided more reliable
results, with a 78% discrimination power for the PCoA (principal coordinate analysis
algorithm), when compared to the random amplification of polymorphic DNA. The authors
reported that FTIR metabolomic fingerprint clustering was weakly correlated with the
observations of RAPD [28]. Skotti et al. (2014) evaluated the variations in the cellular
biochemical composition of the phytopathogenic fungus Alternaria alternate via the effect of
some selected Greek medicinal and aromatic plants using FTIR spectroscopy. The authors
reported that fatty acids, amides and polysaccharides contributed to the changes in the
spectral data. Additionally, it was possible to correlate fungal growth with FTIR band
ratio values using spectral information. Also, the results from this study highlighted the
capability of FTIR spectroscopy for the determination of variations in the main cellular
components [29].

Table 1. Overview of reported studies using Fourier transform infrared (FTIR), Raman and NIR
spectroscopy to determine authenticity, quality, safety and the other essential parameters in foods.

Detection
Technology Commodity Type of Food Product Parameters Measured Data Acquisition Data

Treatment References

FTIR

Fruit Banana Carbohydrates, proteins, and lipids 4000–500 cm−1 PCA [19]

Herbal Phaleria macrocarpa (Mahkota
Dewa)

Functional groups (CHO, -COOH, -NO2,
-NH, and -OH) 4000–400 cm−1 SIMCA [20]

Herbal

Some Medicinal Plants
(Glycyrrhiza glabra root aqueous,

Terminalia chebula aqueous,
Zingiber officinale, Ocimum

sanctum leaf aqueous, Piper
longum, Curcuma longa

Functional groups (such as phenolics
(-OH), carbonyl (C=O), aldehyde

(CH=O), ether (C-O-C), aromatic (C=C),
and alkyl groups –CH)

4000 to 500 cm−1 - [21]

Herbal Ginseng leaves

Active ingredients (ginsenosides,
polysaccharides, triterpenoids,

flavonoids, volatile oils, polyacetylenic
alcohols, peptides, amino acids, and fatty

acids)

4000 to 400 cm−1
PCA,
HCA,

PLS-DA
[22]

Cereal
Wheat Genotypes FTIR-based biomarkers (Fm482, Fm576,

Fm1251, Fm1465, Fm1502, and Fm1729) 4000 to 400 cm−1 PCA, LDA [23]

Wheat Mycotoxin deoxynivalenol (DON) 650 and 4000 cm PLS1,
MLR [24]

Coffee Indonesia robusta and arabica
coffee

Functional groups (ester/lactone,
aldehyde, ketone, aromatic acids, and

aliphatic)
4000–400 cm−1 PCA, PLS [25]

Dairy Butter
Functional groups (fatty acids,

methylene groups, aliphatic groups, CH3
groups)

4000–650 cm−1 PLS [26]

Oil Corn oil Aflatoxins 15-acetyldeoxynivalenol 4000–600 cm−1 PCA, MSC [27]

Bacteria Debaryomyces hanseni (cheese) Origin of isolation 4000 and 400 cm−1 RAPD [28]

Fungus
Phytopathogenic fungus A.

alternata (Greek medicinal and
aromatic plants)

Biochemical composition (lipids, proteins
and a ratios of lipids/amide II, amide

I/total amides and amide II/total
amides)

4000–400 cm−1 PCA [29]

Meat Minced meat Temperature of storage, the initial
contamination, pH 4000 to 400 cm−1 PCA [30]

Oil Pomegranate kernel oil

Quality parameters according to their
respective cultivars (refractive index,

peroxide value, total phenolic content,
refractive index, total carotenoid content)

4000–400 cm−1 PCA and
OPLS-DA [31]

Peanut oil Aflatoxin B1 (AFB1) and aflatoxin (AFT) 4000 to 650 cm−1 MDT [32]

Peanut Aflatoxin B1 4000 to 575 cm−1 PCA [33]

Beverage Fermented alcoholic beverages Ethanol 1200–850 cm−1 PLS [34]

FT-RAMAN Vegetables Carrot Carbohydrates, carotenoids, and
polyacetylenes 4000 to 100 cm−1 PCA, PLS [35]
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Table 1. Cont.

Detection
Technology Commodity Type of Food Product Parameters Measured Data Acquisition Data

Treatment References

RAMAN

Meat Porcine meat pH 2105 to 323 cm−1 MSC [36]

Meat Chicken carcass Escherichia coli cells 500–3500 cm−1 PCA, LDA [37]

Beverage Wine Ethanol 1000–0 cm−1,
3600–0 cm−1 SLDA [38]

Drug Antibiotics (Campylobacter
jejuni) AMR (antimicrobial resistance) profile 400 to 1800 cm−1 HCA,

PCA [39]

Bacteria
strains

foodborne microorganisms (E.
coli ATCC 25922, B. cereus

ATCC 11778, S. aureus ATCC
13565 and Salmonella

typhimurium ATCC 13311)

Acids and proteins 500–1600 cm−1 PCA [40]

Essential oils
Lavender (Lavandula

angustifolia) and lavandin
essential oils

Major terpenoid composition, eucalyptol,
camphor, β-Caryophyllene, eucalyptol,
linalyl acetate, inalool, β-caryophyllene

90–4000 cm−1 PCA,
PLS-DA [41]

NIR

Beverage
Beer

Fermentation parameters (ethanol
concentration, specific gravity (SG),
optical density, and dry cell weight

10,000 to 4000 cm−1 PLS-R [42]

Distilled Alcoholic Beverages Methanol and ethanol 1720–1660 nm [43]

Yeast Saccharomyces cerevisiae

O–H second overtone of water and
ethanol; C–H3 stretch first overtone or

with compounds containing C–H
aromatic groups

400–2500 nm LDA, PCA [44]

Essential oils
Lavender (Lavandula

angustifolia) and lavandin
essential oils

Linalool and eucalyptol content 4500–9000 cm−1 PCA, PLS-
DA [45]

Cereal

Maize Aflatoxigenic Aspergillus spp.
contamination 800–2600 nm PCA [46]

Maize Ergosterol and fumonisins content 400–2498 nm PCA [47]

Maize Aspergillus flavus fungi 900–2500 nm PLS-DA [48]

Barley Deoxynivalenol (DON) 10,000 to 4000 cm−1 PLS-DA,
PLS-R [49]

Hulled barley Fusarium 1175 to 2170 nm PLS-DA [50]

Hulled Barley, Naked Barley,
and Wheat Fusarium 360–2500 nm PLS-DA [51]

Wheat Deoxynivalenol (DON) 570–1100 nm PLS [52]

Rice Aflatoxigenicfungal contamination 950–1650 nm PLSR [53]

FT-NIR

Fruit Citrus species peels Bioflavonoids (diosmin and hesperidin) 12,000–4000 cm−1
HCA,
PCA,
PLSR

[54]

Coffee Green coffee beans Ochratoxin A (OTA) 800–2500 nm PLS-DA [55]

Cereal

Malt Lautering 800–2500 nm PLS-DA,
PCA [56]

Wheat Deoxynivalenol (DON) 10,000–4000 cm−1 PLS, DA [57]

Durum wheat Deoxynivalenol (DON) 10,000 to 4000 cm−1 LDA, PLS [58]

Bulk wheat Deoxynivalenol (DON), moisture content
(MC) 10,000 to 4000 cm−1 PLS [59]

Vis/NIR

Beverage Chinese liquor Alcohol degree, age, flavor 570–1848 nm PCA, LDA,
SIMCA [60]

Beverage Tea soft drink Soluble solids content 425–1000 nm PLS, MLR [61]

Fruit Gannan navel
oranges Soluble solids content and vitamin C 350–1800 nm PLSR [62]

Cereal
Wheat Toxigenic fungal infection 600 to 1600 nm PCA, LDA,

PLSR [63]

Corn Aflatoxigenic fungus and aflatoxin 400–2500 nm PLS-DA [64]

Nut Peanut Aflatoxin B1 (AFB1) 400–2500 nm PLS-DA [65]

MicroNIR Nut Cashew apple The ◦Brix, total acidity, and concentration
of ascorbic acid (vitamin C) 1150–2170 nm PCA,

HCA [66]
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3.2. Raman and FT-Raman Applications

From a general point of view, Raman spectroscopy uses light scattering phenomenon to
acquire information about the molecular vibration patterns of molecular structures. When
a substrate is irritated with a laser, two different scattering types (elastic and inelastic)
are observed. On the basis of light and molecule interactions, three different types of
phenomena can be observed: Rayleigh scattering, anti-Stokes Raman scattering and Stokes
Raman scattering [67]. A Raman spectrometer consists of several units: a light source, a
monochromator, a sample holder and a detector. Using the Raman spectroscopy technique,
it is possible to obtain unique fingerprint properties of molecules on the basis of the
related specific functional groups and chemical bonds. Also, using FT-Raman systems,
the common fluorescence problem of conventional Raman systems has been overcome.
Raman spectroscopy is a strong analytical technique and can be used in a wide variety
of applications in the food industry, such as the determination of food ingredients, food
additives, food authenticity, raw materials and new compounds [68]. Raman spectroscopy
provides various advantages, such as the scanning of the materials through plastic or
glass packaging and insensitivity to water molecules [69]. The specificity and unique
fingerprinting properties of Raman spectroscopy make the technique a potential alternative
for metabolic fingerprinting and metabolic profiling. Until now, various studies have
been published for the evaluation of the metabolic detection capabilities of Raman and FT-
Raman spectroscopy. Nache et al. (2016) evaluated the capability of Raman spectroscopy
combined with chemometrics to predict the metabolic conditions within muscle cells.
Their results showed that pH values and pH changes in the meat could be determined
on the basis of the recorded Raman spectra [36]. In another study, Chen et al. (2018)
used hyperspectral stimulated Raman scattering (hSRS) microscopy and they discovered
a new cytoplasmic store of retinoids in Caenorahbditis elegans. Also, they reported that
they developed a new methodology to track spatiotemporal dynamics in retinoids in
living organisms. Stimulated Raman scattering microscopy provided the opportunity to
track the retinoid levels and fat storage at the wavelengths of 1580 cm−1 and 2857 cm−1,
respectively. The contribution of the research can be defined as the introduction of a
chemical imaging method for the monitoring of retinoids at the subcellular level [70].
Magdas et al. (2019) used FT-Raman spectroscopy for the classification of a wine sample
set (n = 126) on the basis of the cultivar, geographical origin and vintage. The Raman
bands 804 cm−1, 985 and 1635 cm−1, 960 cm−1 were attributed to caffeic acid, caftaric acid
and ferulic acid, respectively. The authors stated that caftaric acid was the most powerful
marker of production year and wine aging. Their results showed that successful wine
discrimination was accomplished on the basis of FT-Raman metabolomics [38]. Jayan et al.
(2022) evaluated the capability of surface-enhanced Raman spectroscopy coupled with
isotope probing for the analysis of the disinfection of single bacterial cells in chicken carcass
wash water. Silver nanoparticles were used to enhance Raman signals of Escherichia coli
O157:H7. Their results showed that their methodology had the capability to evaluate
the metabolic activity of the microorganism E. coli on a single-cell level and the authors
highlighted the potential of their Raman-based methodology for the evaluation of the
metabolic activity of microorganisms in complex matrices such as food products [37].
In a different study, Ma et al. (2021) evaluated the minimum inhibition concentration
and AMR profiles of Campylobacter. The authors presented the nucleic acid-, protein-
, lipid-, peptidoglycan- and unsaturated fatty acid-related Raman bands, which were
associated with the amicilin resistance mechanism in a table. According to their report,
the Raman spectra revealed the variations in the biochemical properties related to the
antibiotic concentration in the case of treatment of the C. jejuni isolate with antibiotics [39].
Huayhongthong et al. (2019) evaluated the capability of Raman spectroscopy for the
determination of foodborne pathogens. According to their findings, Raman spectroscopy
combined with multivariate statistics discriminated the bacterial species E. coli, B. cereus,
S. aureus and S. typhimurium. The authors stated the potential of Raman spectroscopy
with near-IR wavelength excitation for the fast determination of bacteria in food control
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systems [40]. The authors performed principal component analysis using the spectral
range of 500–1600 cm−1, which is specific to the characteristic properties of bacteria species.
On the basis of PCA results, it was possible to confirm that to principle components of
PC1 and PC2 showed significant properties for the discrimination of bacterial species
(Figure 2) [40]. As can be seen in Figure 2, different bacterial species (E. coli, B. cereus,
S. aureus and Salmonella typhimurium) are distinctly clustered according to the principal
component analysis of Raman data.
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3.3. NIR Applications
NIR (Near-Infrared Spectroscopy)

Various natural and agricultural products such as essential oils, seeds, vegetables and
fruits need to be explored in terms of their chemical composition. Traditional techniques,
such as chromatography and mass spectrometry, have been typically used for the evaluation
of the compositional properties of foods and natural products. Near-infrared spectroscopy
(NIR) has been widely used for the rapid monitoring of compositional quality properties
for the past 40 years [71]. As the main principle, the interaction of light and matter (sample)
is measured at the spectral range of 780–2500 nm in near-infrared spectroscopy. The
typical NIR bands are composed of O-H, C-H, N-H and S-H bond vibrations of organic
and inorganic compounds and the vibrational transitions are related to the overtone and
combination bonds [72]. From a general point of view, NIR spectroscopy can be used
efficiently for the rapid, precise and low-cost evaluation of the chemical structures of
molecules through the absorption of electromagnetic radiation in the NIR spectral range.
NIR spectroscopy can be implemented for the quality determination of a wide variety of
food products, such as cereals, milk and dairy products, meat, fish, fruit, confectionary,
beverages and vegetables. The scientific literature describes various applications of NIR
spectroscopy combined with chemometrics for the evaluation of the quality properties
of the mentioned food products [73]. In terms of metabolomics, vibrational spectroscopy
techniques such as NIR have gained attention since these techniques have the capability
of revealing chemical structures on the basis of molecular bonds reflecting the unique
fingerprint properties of the analyte. Until now, various NIR spectroscopy studies have
been performed to evaluate metabolomics in food matrices.



Molecules 2023, 28, 7933 10 of 15

In a previous study, McLeod et al. (2009) used NIR spectroscopy combined with
regression models for the prediction of biomass and chemical changes during the beer
fermentation process. According to their results, good predictive results were obtained
for the prediction of the ethanol concentration, specific gravity, optical density and dry
cell weight, and the authors highlighted the importance of the fingerprint region [42].
Cozzolino et al. (2006) combined near-infrared spectroscopy and multivariate analysis for
the discrimination of different strains of Saccharomyces cerevisiae. Their study showed the
considerable potential of NIR spectroscopy combined with chemometrics for the discrim-
ination and identification of different yeast strains. The authors reported VIS and NIR
spectroscopy as promising techniques to screen and distinguish yeast strains with deletions
in genes that disturb similar metabolic pathways. They used the spectral differences for the
classification of yeast species on the basis of their metabolomes and the results were associ-
ated with the specific metabolic functions of Saccharomyces cerevisiae [44]. Essential oils are
high-valued natural products with health-beneficial and aromatic properties. Lafhal et al.
(2016) used near-infrared spectroscopy and chemometrics for the quantification of the main
compounds in lavender and lavandin. Their results showed that PLS models were capable
of predicting linalyl acetate and linalool contents with an error lower than 3% and the main
compound-related PLS models showed a favorable R2 value ≥0.97. Their results show the
considerable potential of NIR spectroscopy and chemometrics for the characterization of
lavender and lavandin essential oils. Additionally, the authors stated that the examination
of PLS first regression coefficient helped the determination of matabolomic indicators for all
lavender/lavandin varieties [45]. In another study, Shawky and Selim (2019) highlighted
the applications of NIR spectroscopy in combination with multivariate statistics on the
Citrus species; they reported the high capability of NIR spectroscopy for the rapid quan-
tification of various bioflavonoids through the fingerprinting capabilities of the technique.
Also, they showed the potential of NIR spectroscopy combined with PLS and HCA for
the discrimination of different citrus species. As can be understood from Figure 3, a clear
classification pattern was obtained using PCA and HCA. According to their findings, PC1
and PC2 explained 52.9% and 20.3% of the results, respectively. C. sinensis Hamlin and C.
sinensis var. Washington peel extracts are distinctly classified on the positive side of the
PC1 graph when compared to the other species. Additionally, HCA revealed the hidden
relationship between different citrus species. The authors correlated the close relationship
of the red and white varieties of C. paradise in the HCA dendrogram with their chemical
similarities [54]. In a previous contribution, Krause et al. (2015) utilized NIR spectroscopy
combined with partial least squares regression for the quality analysis of brewing malt.
Their study showed the capability of NIR spectroscopy as a fingerprinting technique for
the classification of the processability of malt [56]. They obtained accuracy values higher
than 95% both in calibration and validation.

Li et al. (2014) developed a fast, cost-effective, and accurate NIR- and chemometrics-
based methodology for the discrimination of Chinese liquors. The authors presented the
results of discrimination models built using different wavelengths. The PCA-LDA, SVM
and SIMCA models showed % classification ratios of 98.89, 95 and 97.22, respectively, in
the spectral range of 570–1848 nm. Also, the spectral range of 1300–1848 nm yielded a
classification ratio higher than 94% for all discrimination models [60]. They obtained the
best results using PCA-LDA (principal component analysis), with a prediction ability of
98.94%, on a training set that could be used to combat fraudulent samples in the market. In a
previous contribution, Li et al. (2007) developed a nondestructive, no-contact methodology
for the quantification of the soluble solid content (SSC) of a tea soft drink using vis-
NIR spectroscopy. The authors reported that five fingerprint spectra (490, 498, 554, 929
and 970 nm) were detected for the soluble solid content. The wavelength range of the
spectroradiometer was selected as 325–1075 nm. The multivariate calibration models of
partial least squares (PLS) and multiple linear regression (MLR) were selected to build
regression models and a favorable regression coefficient of 0.981 was obtained [61]. Liu et al.
(2011) evaluated the potential of visible- and near-infrared (Vis-NIR) spectroscopy for the
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nondestructive determination of the soluble solid content (SSC) and vitamin C (VC) in
Gannan navel oranges. Reasonable and unacceptable PLSR prediction results were obtained
for the soluble solid content and vitamin C content, respectively. However, multiple linear
regression models yielded better prediction results for te SSC and VC values [62]. Filho et al.
(2019) employed portable near-infrared (MicroNIR) spectroscopy for the development of
a rapid and reliable phenotyping technique to evaluate cashew apple compositions. The
authors stated that MicroNIR spectroscopy could be considered a rapid, nondestructive
and cost-effective tool to obtain simultaneous results [66].
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4. Conclusions

In the last decades, there has been increasing interest in the research of metabolomics
using various analytical techniques including targeted and untargeted analyses. Tar-
geted metabolomics analysis techniques are generally used for the evaluation of a set of
metabolites. Metabolomic profiling is capable of evaluating a wide variety metabolites
and, generally, high-resolution chromatography techniques are used. Metabolomic fin-
gerprinting can be used to obtain the specific fingerprint properties of biological systems,
foods, agricultural products and natural products. Vibrational spectroscopy techniques,
such as FTIR, NIR and Raman, provide fingerprinting information about the molecules in
the composition of investigated compounds. Today, it is of great importance to acquire
key information about structural ingredients to ensure the quality and safety of food and
agricultural products. In this context, the application of fingerprinting spectroscopy tech-
niques in combination with pattern recognition analyses and multivariate statistics have
considerable potential as cutting-edge solutions to a wide variety of quality and safety
problems in the food industry. In conclusion, this review illustrated the applications of
metabolomic fingerprinting and profiling for the evaluation of various specific properties
using high-throughput FTIR, NIR and Raman spectroscopy techniques combined with
pattern recognition methodologies, which have been prevalent for last 15 years or so. Exist-
ing research shows the high capability of vibrational spectroscopy combined with pattern
recognition analysis in determining the authenticity, quality, safety and the other essential
parameters of foods on the basis of metabolomic fingerprinting. There is a need for further
studies to evaluate the various challenging food safety and authenticity issues present in
the food supply chain. In particular, studies presenting developments and innovations
in artificial intelligence applications in this field are required as these have considerable
potential for the improvement of the scientific and practical knowledge of researchers and
the community.
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