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Abstract: Due to the wide applications of silver nanoparticles (AgNPs), research on their ecological
synthesis has been extensive in recent years. In our study, biogenic silver nanoparticles were syn-
thesized extracellularly using the white rot fungus Trametes versicolor via two cultivation methods:
static and shaking. The cell filtrate of the fungus was used as a reducing agent in the process of
nanoparticle synthesis. Characterization of the obtained nanoparticles was carried out using UV–VIS
spectroscopy and scanning electron microscopy. The biosynthesized nanoparticles have antimicrobial
potential against pathogenic bacteria, particularly in Gram-negative strains. The bactericidal effect
was obtained for E. coli at a concentration of 7 µg/mL. The use of higher concentrations of compounds
was necessary for Gram-positive bacteria. Taking into account the problem of the risk of cytotoxicity
of AgNPs, combined therapy using a phytochemical was used for the first time, which was aimed
at reducing the doses of nanoparticles. The most representative synergistic effect was observed in
the treatment of 5 µg/mL silver nanoparticles in combination with 15 µg/mL ursolic acid against
E. coli and P. aeruginosa with a bactericidal effect. Moreover, the coadministration of nanoparticles
considerably reduced the growth of both Staphylococcus strains, with a bactericidal effect against
S. aureus. The viability test confirmed the strong synergistic effect of both tested compounds. Silver
nanoparticles synthesized using the T. versicolor showed excellent antibacterial potential, which opens
perspectives for future investigations concerning the use of the nanoparticles as antimicrobials in the
areas of health.

Keywords: silver nanoparticles biosynthesis; Trametes versicolor; antimicrobial activity; synergistic
effect; phytocompound

1. Introduction

Nanotechnology has revolutionized various scientific fields, including medicine, elec-
tronics, and environmental science. One of the most important advancements in this field
is the synthesis of nanoparticles. Silver nanoparticles (AgNPs) have attracted significant
interest due to their unique physical, chemical, and biological properties. AgNPs exhibit
exceptional catalytic, electrical, and antimicrobial activities, making them suitable for a
wide range of applications. They have been extensively used as antibacterial agents in the
pharmaceutical industry, industrial household and healthcare-related products, cosmetics,
medical device coatings, the food industry, diagnostics, and drug delivery [1,2]. Some
studies also indicate the successful use of AgNPs as plasmonic sensors for water pollutants
such as heavy metals and organic compounds and as suitable photocatalysts to promote
the oxidative degradation of dyes and pesticides, which enables their environmental appli-
cations [3–7].

Three main methods of nanoparticle synthesis are mentioned in the literature: chemi-
cal, physical, and biological [8]. Conventional chemical and physical methods seem to be
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very expensive and hazardous [9,10]. Climate change and global warming are stimulating
the scientific community to introduce environmentally friendly synthesis methods. In the
context of green chemistry, biological methods using microbes have an advantage over
the other two. Among the various methods available, the use of biological agents, such as
fungi, has gained considerable attention. Fungi, being eukaryotic microorganisms, possess
unique capabilities to interact with metal ions and reduce them to form metallic nanoparti-
cles. The use of fungi for synthesizing AgNPs offers several advantages, including their
eco-friendliness, cost-effectiveness, and the ability to produce nanoparticles with a narrow
size distribution. Moreover, this process coats nanoparticles with biomolecules derived
from the fungus, which may improve stability and enhance biological activity [11,12].

Various fungus species may be used in biogenic synthesis, enabling the production
of AgNPs with different properties. Certain fungi species, such as Trichoderma, Aspergillus,
Penicillium, and Fusarium, have been studied for their ability to produce AgNPs [13]. The
fungus strain is selected based on its metal tolerance, growth rate, and ability to produce
nanoparticles. The economics of the process are also important; therefore, microorganisms
with low cultivation requirements are sought. The synthesis efficiency can be optimized
by adjusting parameters such as pH, temperature, silver precursor concentration, biomass
amount, and cultivation time.

The synthesis of nanoparticles using fungi can occur in two ways: in vivo and in vitro.
The first method takes place inside the fungal cells and is a kind of defense mechanism of the
fungi against metal ions that are reduced to nanoparticles. The disadvantage of the method
is the need to extract nanoparticles. In vitro production of nanoparticles includes three
methods. The first method involves the use of fungal supernatants containing enzymes
secreted into the growth medium. In the next method, silver nanoparticles are synthesized
using post-culture extracts of fungi. The third way includes using the aqueous solution
obtained after the incubation of a fungal culture in pure water [14]. Given that fungi are
extremely efficient secretors of extracellular enzymes, it is thus possible to easily obtain
large-scale production of nanoparticles [15].

Silver nanoparticles (AgNPs) have gained significant attention due to their excep-
tional antimicrobial properties. AgNPs synthesized using fungi have demonstrated broad-
spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria.
They have been effective against pathogenic bacteria such as Escherichia coli, Staphylococcus
aureus, Pseudomonas aeruginosa, and Salmonella spp. The antibacterial activity of AgNPs is
not limited to specific strains and is generally effective against a wide range of bacterial
species, including antibiotic-resistant strains. The antibacterial properties of AgNPs are
attributed to their unique physicochemical properties and interaction with bacterial cells.
The small size and large surface area of AgNPs facilitate their efficient penetration into
bacterial cells. Once inside, AgNPs interact with various cellular components, disrupting
essential processes and leading to bacterial cell death. The main mechanisms of antibacte-
rial action include membrane damage, reactive oxygen species (ROS) generation, protein
denaturation, and DNA damage [16–18].

It has been reported that properties such as shape, size, surface charge, and diffusion state
can affect the antimicrobial activity of silver nanoparticles (AgNPs) [19–21]. It is suggested that
smaller nanoparticles (<10 nm) can penetrate bacterial cells more easily. One of the described
mechanisms of antibacterial action of AgNPs involves their adhesion to the cell membrane,
disturbing its permeability and respiration function of bacterial cells [16,22,23]. Nanoparticles
can also penetrate inside the bacteria cells [17]. AgNPs interact with sulfur-containing proteins
present in bacterial membranes and with phosphorus-containing compounds (e.g., DNA) [24].
When nanoparticles enter the bacterial cells and attack the respiratory chain, cell division
finally leads to cell death. Silver ions released in bacterial cells increase the bactericidal effect
of nanocompounds [17,18,25].

The potent antibacterial properties of silver nanoparticles synthesized using fungi
hold promise for numerous applications in biomedical and environmental settings. In the
medical field, they can be utilized in wound dressings, medical implants, and coatings to
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prevent bacterial infections. AgNPs can also be incorporated into dental materials, such as
composites and adhesives, to inhibit the growth of oral bacteria.

The current study was designed to evaluate the antimicrobial activity of nanoparticles
and their synergistic effect with the selected triterpenoid–ursolic acid. The combination
of silver nanoparticles and ursolic acid can reduce their cytotoxicity and improve their
therapeutic effectiveness at low doses. Triterpenoids are the most abundant group of
terpenoids found in dicotyledonous plants. These compounds are involved in the adapta-
tion of plants for survival and function as specific chemical weapons against competitive
plants, pathogens, or herbivores. Some studies have described the anti-inflammatory [26],
antioxidant [27], antibacterial [28–30], anticancer [31,32], and antiparasitic [33] potential of
triterpenes. The representative pentacyclic triterpenoid is ursolic acid (UA). Its activities
can also enhance bacterial susceptibility to other compounds [34].

In this paper, the antimicrobial properties of nanoparticles produced in an eco-friendly
manner using the white rot fungus Trametes versicolor are described for the first time. The
main idea of the study was to synthesize AgNPs without using toxic chemicals such as
capping or stabilizing agents.

2. Results
2.1. Eco-Friendly Silver Nanoparticles Synthesis

Silver nanoparticle (AgNP) synthesis was carried out using the Trametes versicolor.
Two cultivation methods were carried out: static and shaking. Two suspensions of newly
synthesized silver nanoparticles were obtained: AgNPs 1—from static culture and AgNPs
2—from shaking culture. The UV–VIS spectrum of the post-culture liquid supplemented
with AgNO3 demonstrated a plasmon band at 425 nm, which is the characteristic band of
metal nanoparticles. A sample from each variant was dried and applied to a silicon wafer
for analysis using a scanning electron microscope (SEM). The results of the analysis are
shown in Figure 1.
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ing culture.

Based on the SEM image, it was found that silver nanoparticles (AgNPs) produced
using the filamentous fungus Trametes versicolor have heterogeneous shapes and sizes.
Moreover, the images obtained for AgNPs 1 and AgNPs 2 suggest that the nanoparticles are
covered with an extracellular substance produced by the tested microorganism. Therefore,
detailed analysis of the shape of nanoparticles was difficult. It has been proven that during
the synthesis process, nanoparticles are coated with biomolecules derived from the fungus,
which can improve stability and confer biological activity [11].
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The progress of the ecological approach to the synthesis of silver nanoparticles is a
major step in green nanotechnology, enabling their applications in nanomedicine. The
synthesis of nanomaterials in a safe and environmentally friendly way is the main goal
of green nanotechnology. Biosynthesis of nanomaterials using microorganisms or plants
has been recognized as a sustainable and cheaper alternative to chemical and physical
methods [14,35]. The ability of fungi from the genera Penicillium, Aspergillus, Trichoderma,
and Fusarium to synthesize silver nanoparticles has been described [36–38]. Filamentous
fungi can synthesize metal nanoparticles of various shapes, sizes, and properties [14].
White rot fungi Trametes versicolor, due to their strong enzymatic system, are suggested to
be microorganisms capable of forming metallic nanoparticles [39]. However, there are little
data in the literature. Therefore, in this work, silver nanoparticles were obtained using T.
versicolor post-culture liquid. Visualization of the obtained compounds, using scanning
electron microscopy, showed that the nanoparticles are coated with a substance secreted by
the fungus. Due to the strong foaming of the T. versicolor filtrate, we assume that these were
surfactants. UV–VIS analyses of AgNPs 1 and AgNPs 2 revealed a peak with maximum
absorption at 425 nm, which is the result of surface plasmon resonance typical for silver
nanoparticles. A similar result was observed in the UV–VIS spectrum of AgNPs produced
using Rhizopus stolonifera [40]. The peak at 440 nm was observed in the UV–VIS spectrum
of AgNPs synthesized using Aspergillus tubingensis and Bionectria ochroleuca [41].

2.2. Antimicrobial Activity of Silver Nanoparticles

The silver nanoparticles (AgNPs) synthesized using Trametes versicolor were tested for
antibacterial activity against selected Gram-positive bacterial strains (Staphylococcus aureus
and Staphylococcus epidermidis) and Gram-negative strains (Escherichia coli and Pseudomonas
aeruginosa). We tested two types of nanoparticles: AgNPs 1 (nanoparticles obtained in
static culture) and AgNPs 2 (nanoparticles obtained in shaking culture). The antibacterial
potential of silver nanoparticles is shown in Figures 2 and 3.
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The experimental results showed that AgNPs 2 has a stronger effect on the tested
bacterial strains. Higher activity of the tested compounds against Gram-negative strains
was also observed. In the case of Gram-positive bacteria, it was necessary to use higher
concentrations of compounds. The use of concentrations of both tested nanoparticles
below 5 µg/mL reduced the growth of S. aureus from 20 to 60%. Moreover, their slightly
lower activity against S. epidermidis was noted. At higher concentrations, the tested silver
nanoparticles caused 80–90% growth inhibition of the Gram-positive microorganisms. E.
coli was the most sensitive strain to the tested compounds. The bactericidal effect was
obtained at a concentration of 20 µg/mL for AgNPs 1 and 7 µg/mL for AgNPs 2. At lower
concentrations of both compounds (4–5 µg/mL), satisfactory results were also obtained for
E. coli (50–60% growth inhibition). Nanoparticles also showed good antibacterial activity
against P. aeruginosa. However, the strain was less sensitive compared to E. coli. When
higher concentrations of nanoparticles (above 10 µg/mL) were added to the P. aeruginosa
culture, the growth inhibition was 80%.

Due to the increasing number of multidrug-resistant organisms, the search for alterna-
tives to antibiotics has been a recent theme of research. Silver nanoparticles are considered
alternative sources to overcome the threat of antibacterial resistance [42]. We have shown
that silver nanoparticles (AgNPs) produced using T. versicolor have stronger activity against
Gram-negative bacteria. The lower sensitivity of Gram-positive bacteria to AgNPs may
be because the peptidoglycans, which are components of the cell wall, act as a barrier
preventing the internalization of the nanoparticles [43]. A similar effect was obtained with
AgNPs synthesized using Gloeophyllum striatum, which were active against E. coli and P.
aeruginosa [44]. Singh et al. (2013) described the extracellular synthesis of AgNPs using
Penicillium spp. In this case, the nanoparticles showed antimicrobial activity against E. coli
and S. aureus strains [45]. Ahluwalia et al. (2014) synthesized silver nanoparticles using
T. harizanum, which showed great antimicrobial potential against S. aureus and K. pmeu-
moniae [46]. Silver nanoparticles produced using white rot fungi Schizophyllum radiatum
showed antibacterial activity against E. coli, K. pneumoniae, E. aerogenes, P. aeruginosa, S.
aureus, and S. paratyphi [47]. Other research described spherical silver nanoparticles synthe-
sized using A. tubingiensis and B. ochraleuca. Nanoparticles produced using A. tubingiensis
were more effective compared to the other fungus, inhibiting 98% of P. aeruginosa growth
at 0.28 µg/mL [41]. Halkai et al. (2018) showed that AgNPs synthesized using Fusarium
semitectum emerged as novel antimicrobial agents against the most resistant endodontic
pathogens, E. faecalis [48]. Other studies described silver nanoparticle-treated cotton as
having high antimicrobial activity against S. aureus and E. coli. The AgNPs were produced
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using Alternaria Alternata [49]. It has also been proven that AgNPs can exert effects on
tumor cells. Nanoparticles synthesized using Fusarium oxysporum exhibited antibacterial
(against E. coli and S. aureus) and antitumor (human breast adenocarcinoma) potential [50].

2.3. Combined Antimicrobial Activity of AgNPs and Phytocompound

Taking into account the problem of the risk of cytotoxicity of silver nanoparticles
(AgNPs), combined therapy was employed using a phytochemical, which was aimed at
reducing the doses of nanoparticles.

Based on our previous research, we chose ursolic acid (UA), which showed an an-
timicrobial potential [51]. We tested the antimicrobial synergy of AgNPs and UA. The
results are presented in Figure 4. The most representative synergistic effect was observed
with the treatment of 5 µg/mL nanoparticles (AgNPs 1 and AgNPs 2) in combination
with 15 µg/mL UA against E. coli and P. aeruginosa with a bactericidal effect (Figure 4C,D).
Moreover, satisfactory results were obtained for Gram-positive strains, where the addition
of UA significantly enhanced the effect of nanoparticles. The coadministration of AgNPs
considerably reduced the growth of both Staphylococcus strains, with a bactericidal effect
against S. aureus (AgNPs 2 + UA). The weakest antibacterial activity of the tested com-
pounds was observed for S. epidermidis. When AgNPs and UA were tested individually,
the growth of S. epidermidis was inhibited only by 30–40% and 46%, respectively.
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Synergistic approaches combine two or more compounds to result in higher efficiency
compared to that of any individual substances [52]. In our work, the synergistic effects of
biogenic silver nanoparticles in combination with a phytocompound are described for the
first time. Literature data have reported the simultaneous action of silver nanoparticles
(AgNPs) and antibiotics. However, our goal was to use a safe and natural compound
(such as ursolic acid) to reduce the concentrations of nanoparticles used. We obtained very
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satisfactory results. Fayaz et al. (2010) studied the synergistic antimicrobial activity of
AgNPs synthesized using Trichoderma viride against some Gram-positive and Gram-negative
bacteria. The results showed that the antibacterial potential of ampicillin, kanamycin,
erythromycin, and chloramphenicol increased in the presence of nanoparticles against
tested bacteria [53]. In other studies, the synergistic effects of antibiotics (azithromycin,
cefuroxime, cefotaxime, and fosfomycin) against E. coli and Salmonella spp. were increased
in the presence of AgNPs (synthesized in the aqueous extract of Ulva fasciata alga) compared
to antibiotic only [54]. They also observed an antagonistic effect. The antimicrobial activity
of nanoparticles with oxacillin and neomycin against S. aureus was significantly decreased
compared to antibiotics only [54]. Other studies reported the combination of AgNPs
(achieved using the propolis extract) with bacteriophage as an antimicrobial agent. This
combination offers nanoparticles with enhanced antimicrobial potential [55].

2.4. Bacterial Cell Viability Assays

The viability of bacterial cells incubated with silver nanoparticles and/or ursolic acid
was studied using the Alamar Blue reagent. The test involved measuring fluorescence
resulting from the conversion of non-fluorescent resazurin to highly fluorescent resorufin.
Resazurin, the active ingredient in Alamar Blue, can only be reduced to resorufin by living
microorganisms [56]. The study aimed to assess the impact of the tested compounds and
their combinations on bacteria survival.

A significant decrease in the viability of tested bacteria was noted after incubation
with a high concentration of silver nanoparticles (AgNPs) (Figures 5 and 6). Simultaneous
applications of AgNPs and ursolic acid (UA) decreased cell viability to zero in the culture
of all tested strains (Figure 7). We observed a correlation between the inhibition of Alamar
Blue reduction and bacterial growth inhibition. These results confirm the strong synergistic
effect of both tested compounds.
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3. Materials and Methods
3.1. Materials

The strain Trametes versicolor IM 373 originated from the Microorganisms Collection of
the Department of Industrial Microbiology and Biotechnology, University of Lodz, Poland.
Silver nitrate and deionized water (LC–MS Grade) LiChrosolv® were obtained from Merck
(Warsaw, Poland). Sabouraud dextrose broth and Mueller Hinton broth were obtained
from Becton Dickinson (Warsaw, Poland). Thermo Scientific™ Nalgene™ Rapid-Flow™
Sterile Single Use Vacuum Filter Units were acquired from Thermo Scientific™ (Warsaw,
Poland). DMSO was obtained from BioShop (Burlington, ON, Canada). Silicon wafers were
obtained from Agar Scientific (Stansted, UK). Alamar Blue Cell Viability Reagent supplied
by ThermoFisher Scientific (Warsaw, Poland).

3.2. Methods
3.2.1. Synthesis of Silver Nanoparticles Using Trametes versicolor IM 373

The Trametes versicolor strain was inoculated on agar plates and incubated for 7 days
at 28 ◦C. After incubation, the agar with mycelium was cut into 12 pieces and placed in a
flask containing 300 mL of Sabouraud dextrose medium. T. versicolor was incubated for
7 days at 28 ◦C in the dark (one culture in static conditions and the other on a rotary shaker
at 140 rpm). Then, the mycelium was filtered through sterile filter paper, and the post-
culture liquid was transferred to a sterile flask. The T. versicolor filtrate was supplemented
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with a stock solution of silver nitrate. The final concentration of silver ions in the fungus
filtrate was 1 mM. Controls were performed without the addition of silver nitrate. The
prepared samples were incubated for 5 days at 8 ◦C in the dark under shaking conditions
(magnetic stirrer). After incubations, the samples were centrifuged for 20 min at 9000 RPM.
The obtained sediment of nanoparticles was suspended in 5 mL of deionized water and
micronized in an ultrasonic cleaner for 30 min. Then, the samples were centrifuged, and
the sediment was dried. Characterization of obtained nanoparticles was carried out using
UV–VIS spectroscopy and scanning electron microscopy (SEM).

The process of silver ion reduction was observed on the basis of changes in the UV–
“VIS spectrum to achieve the peak maximum in the area characteristic for nanoparticles.
Monitoring of silver ion reduction was carried out via UV-VIS spectroscopy using a UV–VIS
spectrophotometer Specord 200 (Analytik Jena, Jena, Germany) operating in absorbance
mode at wavelengths from 200 to 1000 nm at a resolution of 2 nm.

The silver nanoparticles were estimated via scanning electron microscopy (SEM)
using a Nova NanoSEM scanning electron microscope (FEI, Hillsbro, OR, USA). The silver
nanoparticles were spread on a silicon wafer and dried at room temperature in the dark.
The images were achieved in immersion mode using a circular backscatter detector (CBS)
at 5.00 kV acceleration at a magnification of 100,000×.

3.2.2. Evaluation of the Antibacterial Activity of Silver Nanoparticles

The antimicrobial activity of silver nanoparticles (AgNPs) was evaluated using the
microdilution method for aerobic bacterial strains according to the CLSI documents M07
(11th Edition) [57]. The antimicrobial activity of the nanoparticles was determined against
aerobic bacteria (Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228,
Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853). The growth of
the aerobic bacterial strains that were either treated with the silver nanoparticles or left
untreated was evaluated in 96-well microtiter plates in Mueller–Hinton broth. The silver
nanoparticles were supplemented in a range of 1–30 µg/mL, and their antimicrobial
potential was determined. They were diluted in the appropriate growth medium before
administration. An inoculum of bacteria grown in the Mueller–Hinton broth was added
to each well to achieve a final density of 5 × 105 CFU/mL. The microtiter plates were
then incubated for 24 h at 37 ◦C. After incubation, the optical density was measured
spectrophotometrically at 620 nm. Experiments were performed in triplicate, leading to
the analysis of six independent experiments. The antimicrobial activity of the AgNPs was
calculated as the percentage of bacterial growth inhibition (SD) compared to that of the
biotic control (bacteria incubated in the medium).

The combined antibacterial activity of silver nanoparticles (AgNPs 1 or AgNPs 2) and
ursolic acid (UA) was investigated using the same method.

3.2.3. Bacterial Cells Viability Assays

Analyses of bacterial cell viability after 24 h of incubation with silver nanoparticles
(AgNPs) or AgNPs/ursolic acid were performed using Alamar Blue reagent [56]. Control
cultures and cultures with the addition of the tested compounds were prepared as described
in Section 3.2.2. Alamar Blue® (volume—5 µL) was added to each well with 24-h bacterial
cultures and then incubated for 40 min at 37 ◦C. The reduction in Alamar Blue® is shown
as a percentage of the control group (±SD) after fluorescence measurements at λ = 540 nm
using a multimode microplate reader BMG 139 LabTech FLUOstar Omega (BMG LABTECH
GmbH, Ortenberg, Germany).

4. Conclusions

The biological synthesis of silver nanoparticles (AgNPs) offers a sustainable and
eco-friendly approach to nanoparticle production. The use of biological agents as re-
ducing and stabilizing agents provides several advantages, including eco-friendliness,
cost-effectiveness, versatility, and biocompatibility. Silver nanoparticles synthesized using
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biological methods have shown great potential in biomedical applications, environmental
remediation, and catalysis. In the presented study, the white rot fungus T. versicolor was
used for the production of AgNPs. Such a synthesis type may be considered eco-friendly
as it is free from any toxic chemicals or organic solvents during the biosynthesis process.
The high antimicrobial potential of the tested AgNPs was confirmed. Combined therapy
using ursolic acid was used for the first time, which allows for the reduction of the doses of
nanoparticles. With further research and development, the biological synthesis of AgNPs
is expected to play a significant role in advancing nanotechnology and its diverse applica-
tions. Moreover, it is very important to explore new approaches to eliminate pathogens,
including reducing the amount of antibiotics used, to overcome the current emergency
of drug resistance. Filamentous fungi are promising candidates for silver nanoparticle
production because of the simplicity and low cost of their culture.
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