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Abstract: MOF (metal organic framework) materials have been used as functional materials in a
number of fields due to their diverse spatial tunability, which produces rich porous structures with
stable and continuous pores and a high specific surface area. A triboelectric nanogenerator can convert
trace mechanical energy into electrical energy, and the application of MOF materials to triboelectric
nanogenerators has been intensively studied. In this work, we report on two MOFs with similar
spatial structures, and the modulation of the end microstructures was achieved using the difference
in F content. The output performance of friction power generation increases with the increase in F
content, and the obtained polyacidic ligand materials can be used to construct self-powered corrosion
protection systems, which can effectively protect metallic materials from corrosion.

Keywords: TENG; MOF; corrosion protection; cathodic protection

1. Introduction

With the development of society, the gradual depletion of fossil energy sources and
the increase in environmental pollution have forced us to accelerate the search for green
and sustainable energy sources. Nature provides ample sustainable energy sources, such
as solar, thermal, wind, water, and mechanical energy, which, if utilized, can partially
mitigate the depletion of fossil fuels and the energy crisis [1–5]. However, solar, wind,
and other sustainable energy sources are costly to collect and construct, are vulnerable to
climate change, among other factors, which prevents them from being popularized on a
large scale, and their impacts are geographically limited [6]. First invented by Zhonglin
Wang and his team in 2012 [7–11], the friction nanogenerator (TENG) aims to convert
tiny quantities of mechanical energy into electrical energy by utilizing the coupling of
the frictional electrification effect and the electrostatic induction effect. Friction electric
nanogenerators (TENGs) have been favored in recent years as a new type of energy storage
and output device that directly recovers almost all types of mechanical energy present in
our daily lives and in nature. Compared to other energy sources, harvesting mechanical
energy is easier because it is commonly found in nature and in people’s daily lives. For
example, the flow of air and water, the movement of the human body, and even the slightest
change in pressure somewhere in the body due to breathing, heartbeat, or blood flow, all
have the potential to drive nanogenerators to generate electricity. Therefore, the TENG
can be regarded as a sustainable renewable energy source [12–14]. The merit of TENGs’
output performance is closely related to the charge density of TENG electrode materials.
Increasing the charge density of the contact layer can improve the performance of TENG,
and by creating curved surfaces it can improve electric charge density (σ) and show the
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excellent output performance of nanocomposites with structural, polarization, surface
functionalization, doping, and other treatments and applications [15]. One of the effective
ways to improve the output properties of the TENG is to increase the effective contact area
by preparing a micro/nano weave on the contact surface [16,17].

Metal organic frameworks (MOFs), consisting of metal ions/clusters and organic
linkers, are a class of highly crystalline porous materials with a large specific surface
area, high porosity, tunable structure, and a rich variety of crystalline materials and other
characteristics [18,19]. With diverse structures and highly tunable pore sizes, MOFs are
able to cover the complete pore size gap between microporous zeolites and mesoporous
silica. With a large number of metal nodes and a theoretically infinite number of organic
linkers, the composition and structure of MOFs can be easily tuned to precisely realize
the target function. The superior properties of MOFs have led to their widespread use in
the study of gas storage [20,21], molecular separations [22,23], catalysis [24,25], chemical
sensing [26–28], and bioimaging [29–32]. The output performance of TENGs is mainly de-
termined by the nature of frictionally electroactive materials, and MOFs provide flexibility
in the size, function, and geometry of TENGs. The easily tunable surface of MOFs in TENGs
and the friction layer with a wide specific surface area increase the contact area and charge
output of TENGs.

The influence of the overall negative electric effect of the negative electronegative
groups on the output performance of friction power generation is investigated while
keeping the spatial structure approximately the same. Exploring the conformational rela-
tionship, the effect of terminal microstructure on TENGs was thoroughly investigated to
provide a theoretical basis for improving the output performance of TENGs based on a
metal–organic skeleton.

In this paper, we choose to synthesize MOF materials from the same Co metal center
and different ligands to use as friction power generation materials. The MOF material
synthesized from 2,3,5,6-tetrafluoroterephthalic acid ligand is called compound 1, and
the MOF material synthesized from 2,5-bis(trifluoromethyl)terephthalic acid ligand is
called compound 2. The Co-TENG devices prepared from the corresponding electrode
materials were named 1- and 2-TENG. The effect of the number of F groups on the output
properties of TENGs was investigated by controlling the body structure to change the
terminal structure. The electrochemical characterization test results show that compound
2-TENG has the best output performance, followed by 1-TENG; compound 2 has more
electronegative groups, and electronegative groups can improve the output performance
of TENGs. In order to protect metal materials from corrosion, we introduce it into the
self-powered cathodic protection system, and the TENG-based cathodic protection system
realizes the ideal model of utilizing nature’s energy to protect metals from corrosion. The
self-powered cathodic protection system has the potential to be used in daily life, industrial
production, and marine development due to its advantages of low cost, no external energy
consumption, and ease of preparation.

2. Results

Compound 2 was synthesized using a hydrothermal method centered on the metal
Co and 2,5-bis(trifluoromethyl)terephthalic acid. The crystal structure of the compound
is shown in Figure 1. In compound 2, the central metal Co ion is in the geometrical
configuration of a six-coordinated octahedron, in which the four oxygen atoms are derived
from the carboxyl groups in each of the two ligands, and the two oxygen ligands come from
water molecules, and the organic ligand uses all of its oxygen atoms to form a ligand bond
with the metal-centered cobalt (Figure 1a). The coordination mode of the organic ligand of
compound 2 is that one ligand connects to four metal-centered cobalt ions, the four cobalt
ions all connected to oxygen atoms in the carboxyl group on the ligand (Figure 1b), and
the compounds are three-dimensional mesh structures consisting of chains of octahedral
Co atoms in a coordination environment of O6 (Figure 1c). Figure 1d is a plan view of the
compound shown along the a-axis direction and Figure 1e shows the three-dimensional
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mesh structure of the compound; it is clear from Figure 1d,e that the compound is a rhombic
coordination polymer.
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rosy red; all H atoms are omitted for clarity.

Compounds 1 and 2 were characterized and tested via XRD, FT-IR, and XPS. The
XRD patterns of the compounds were in agreement with the previously reported PXRD
patterns (Figure 2a) and both fitted well, indicating the good crystallinity and purity
of the compounds. The IR spectra of the compounds showed that the peaks of IR at
1550–1650 cm−1 proved the presence of the C=O bond and the peaks at 1100–1350 cm−1 and
700–1100 cm−1 proved the presence of the C-F bond and the C-C bond (Figures S1 and 2b).
The valence and elemental composition of Co in the compounds were analyzed using
the profiles obtained from the XPS tests of the compounds, and the full XPS profile of
compound 2 illustrated that it contained the elements Co, F, C, and O (Figure 2c). The peaks
at 781.99 eV for compound 1 corresponded to those for Co 2p3/2 and those at 797.78 eV
corresponded to those for Co 2p1/2 (Figure S2); the peaks at 781.78 eV and 797.51 eV for
compound 2 corresponded to those for Co2+ 2p3/2 and 2p1/2, respectively (Figure 2d), both
confirming the presence of Co in the form of Co2+.

Figure S3 shows the thermogravimetric analysis (TGA) curves and N2 adsorption-
desorption isotherms of compounds 1 and 2 after drying in an oven at 70 degrees Celsius for
4 h. Compounds 1 and 2 show significant weight loss at 110 and 223 ◦C Celsius as a result
of the volatilization of residual DMF from the compounds. The BET specific surface areas of
compounds 1 and 2 were 10.25 m2/g and 33.00 m2/g, and the adsorption-desorption values
were 19.81 cm3/g and 61.54 cm3/g, respectively, which were type IV adsorption–desorption
isotherms, and the pore size distribution curves indicated the presence of mesopores in
the materials.
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Prior to the TENG output performance test, we performed the Mott—Schottky test
and the UV-2600 spectroscopic test for compounds 1 and 2 (Figure 3). The test data allowed
us to determine the semiconductor type of the compounds as well as the highest occupied
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and to prejudge
the output performance of the TENG. Compound 1 has UV peaks at 325 and 550, and
compound 2 has UV peaks at 280 and 550. Both materials have π→π* and n→π* absorption
bands, with both double-bonded and carbonyl n-electronic absorption in the aromatic ring.
With respect to Compound 1, because of the electron-rich structure, the peak is shifted to
the right and the band gap is reduced to enhance conductivity. From the UV-Vis diffuse
reflectance spectra of compounds 1 and 2, the bandgap energies (Eg) of compounds 1 and
2 can be seen to be about 1.61 eV and 3.98 eV, respectively (Figure 3b,d). Compounds 1 and
2 are both n-type semiconductors from the positive slopes of the Mott—Schottky curves
versus the potential curves (Figure 3e,f). The lowest unoccupied molecular orbital (LUMO)
flat bands of compounds 1 and 2 are −0.57 V and −0.64 V, respectively, when Ag/AgCl is
used as a reference (obtained at the union of −0.77 V and −0.84 V, respectively), and the
HOMO orbitals of 1 and 2 are 1.04 eV and 3.34 eV, respectively. From the results, it can be
seen that the HOMO orbitals of compound 2 are slightly higher than those of compound 1,
which implies that the internal electron jumping ability of compound 2 is stronger than that
of compound 1, and the output performance will be higher, so we speculate that the output
performance of 2-TENG will be slightly better than that of 1-TENG. In addition to the
electrode materials that have a greater influence on the output performance of the TENG,
the contact tightness between the electrode materials also has an influence on the output
performance. Therefore, we tested the two compounds under the same experimental
conditions by taking the same amount of compounds 1 and 2 in the same mortar for the
same amount of time and grinding them into powder and then uniformly coating them
on copper tape to minimize the influence of other errors on the output performance of
the TENG.
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The working principle of TENGs based on MOF materials is based on the coupling
of frictional charging and electrostatic induction. The simplest vertical contact–separation
model was used in this experiment (Figure S4). The positive electrode materials of the
friction power generator are compounds 1 and 2, and the negative electrode material is
polyvinylidene difluoride (PVDF), named 1-TENG and 2-TENG.

The output performance of the TENG was tested as shown in Figure 4, with short-
circuit currents and open-circuit voltages at 5 Hz of 40.4 µA and 406.4 V, and 80.5 µA and
543.8 V, respectively (Figure 4a); with respect to the Isc and Voc of 1-TENG, the Isc and
Voc of 2-TENG are larger. At 5 Hz, the values obtained with 1- and 2-TENG through the
rectifier bridge are 39.0 µA and 76.8 µA, respectively (Figure S7c); the charge densities are
87.0 µC m−2 and 101.2 µC m−2, respectively, based on the power densities and short-circuit
currents of the friction nanogenerator at different load resistances; when the load resistance
was 10 MΩ, the instantaneous power peaked at 1455.1 mW m−2 and 2629.7 mW m−2,
respectively (Figure 4b). We also tested the output performance of compounds 1 and 2
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under different frequency conditions. It was found that Isc (Figure 4c) and Voc (Figure 4d)
increased with increasing frequency, and the output performance of 2-TENG was higher
than that of 1-TENG at 1–8 Hz. When 2-TENG was operated at 8 Hz, the current and
voltage could reach 121.7 µA and 568.9 V. The test results showed that the magnitude
of the compound’s output performance was 2-TENG > 1-TENG, which indicates that
the more F is contained, the stronger the overall electronegativity of the moiety and the
obvious electron withdrawal effect is, and the greater the TENG output performance of the
compounds is. The specific output performance data of 1-TENG and 2-TENG are shown
in Figures S5 and S7.
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In addition, we tested the stability and durability of 2-TENG at 5 Hz. The cycling test
results showed that after 50,000 cycles, the Isc and Voc values of 2-TENG did not show
significant changes and remained in a stable state (Figure 5), and the Isc and Voc values
of 1-TENG did not show significant changes (Figures S8 and S9), which indicates that the
samples have good stability and lays the groundwork for their practical applications. To
further verify the stability of the friction electric materials, we observed the morphology of
compounds 1–2 using scanning electron microscopy (SEM) and the elemental distributions
of compounds 1 and 2 with characteristic K spectral lines (EDS) (Figures S10 and S11). The
SEM results showed that the morphologies of compounds 1 and 2 were almost unchanged
before and after the experiments, indicating that compounds 1 and 2 were relatively stable.

Metal corrosion protection has always been a hot topic of research and application
because it can cause huge economic losses and serious accidents [33,34]. The TENG
can harvest available energy from the surrounding environment to form a self-powered
applied current cathodic protection system. A TENG-powered cathodic protection system
is an effective means of electrochemical corrosion control, in which the oxidation reaction
occurs mainly at the anode while inhibiting the corrosion of the cathode (i.e., the protected
metal), which realizes the ideal mode of utilizing the energy of nature to protect metals
from corrosion.

Based on the superior output performance of 2-TENG, it can be used for self-powered
cathodic protection. The schematic diagram of the anti-corrosion mechanism is shown in
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Figure 6a. The 2-TENG output signal is converted from DC to be rectified by connecting a
rectifier bridge, the positive pole of which is connected to a platinum electrode, and the
negative pole of which is connected to carbon steel. Rust can allow a visualization of the
degree of metal corrosion, and the degree of metal corrosion is usually judged by observing
rust spots. In our experiments, we used 3.5 wt% NaCl in aqueous solution to simulate
a seawater electrolyte and determined the effectiveness of protection by observing and
comparing the surface morphology of the carbon steel with and without 2-TENG connected.
By comparing the rust spots on the surface of carbon steel after 0 h, 1 h, 3 h, 5 h, and 7 h, it
was found that the surface of the carbon steel with 2-TENG attached was almost free of
rust spots in 0–7 h, but the surface of the carbon steel without 2-TENG attached became
more and more rusty with the extension of time (Figure 6e). This verifies that the corrosion
protection method of self-powered cathodic protection is effective.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 12 
 

 

unchanged before and after the experiments, indicating that compounds 1 and 2 were 
relatively stable. 

 
Figure 5. 2−TENG after 50,000 cycles of (a) Isc; (b) Voc. 

Metal corrosion protection has always been a hot topic of research and application 
because it can cause huge economic losses and serious accidents [33,34]. The TENG can 
harvest available energy from the surrounding environment to form a self-powered ap-
plied current cathodic protection system. A TENG-powered cathodic protection system is 
an effective means of electrochemical corrosion control, in which the oxidation reaction 
occurs mainly at the anode while inhibiting the corrosion of the cathode (i.e., the protected 
metal), which realizes the ideal mode of utilizing the energy of nature to protect metals 
from corrosion. 

Based on the superior output performance of 2-TENG, it can be used for self-powered 
cathodic protection. The schematic diagram of the anti-corrosion mechanism is shown in 
Figure 6a. The 2-TENG output signal is converted from DC to be rectified by connecting 
a rectifier bridge, the positive pole of which is connected to a platinum electrode, and the 
negative pole of which is connected to carbon steel. Rust can allow a visualization of the 
degree of metal corrosion, and the degree of metal corrosion is usually judged by observ-
ing rust spots. In our experiments, we used 3.5 wt% NaCl in aqueous solution to simulate 
a seawater electrolyte and determined the effectiveness of protection by observing and 
comparing the surface morphology of the carbon steel with and without 2-TENG con-
nected. By comparing the rust spots on the surface of carbon steel after 0 h, 1 h, 3 h, 5 h, 
and 7 h, it was found that the surface of the carbon steel with 2-TENG attached was almost 
free of rust spots in 0–7 h, but the surface of the carbon steel without 2-TENG attached 
became more and more rusty with the extension of time (Figure 6e). This verifies that the 
corrosion protection method of self-powered cathodic protection is effective. 

Figure 5. 2−TENG after 50,000 cycles of (a) Isc; (b) Voc.

We evaluated the properties, corrosion degree, and protection efficiency of carbon steel
using open-circuit potential (OCP), EIS, and Tafel with and without 2-TENG connected. It
was found that the open-circuit potential (OCP) of the protected metal carbon steel was
stabilized at 0.20 V when no 2-TENG was connected, whereas when 2-TENG was connected,
the OCP of the protected metal carbon steel decreased rapidly to −0.10 V. This was due
to the negative migration of the OCP due to the charge transfer between the sample and
the solution, and the negative migration indicated that the metal carbon steel was in the
protected stage. When 2-TENG is removed, the OCP value returns to the original position
again (Figure 6b).

The size of the radius of the EIS circle in the impedance spectrum usually indicates
the magnitude of the electrical resistance in the electrochemical reaction; the larger the
radius of the circle, the more difficult it is for the electrochemical reaction to take place,
which leaves the carbon steel unprotected and corroded (Figure 6c). The carbon steel with
2-TENG attached shows a smaller semicircle than does the carbon steel without 2-TENG
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attached, indicating that the internal resistance of the connection is smaller. This is due
to the fact that the charge transfer between the sample and the solution makes the carbon
steel with 2-TENG connected more susceptible to electrochemical reactions than the carbon
steel without a TENG connected. The equivalent circuit diagram in the corrosion study is
clearer and more concise in explaining and illustrating the EIS plot, which is located in the
upper-left corner of the EIS plot. (Rs: solution resistance; Rct: charge transfer resistance;
QdI: double-layer resistance).
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At the same time, we tested the polarization curves with and without the 2-TENG
carbon steel connected. From the experimental data, it can be seen that the polarization po-
tential (Ecorr) of the carbon steel with 2-TENG connected was negatively shifted compared
with that of the carbon steel without 2-TENG connected (Figure 6d), which is consistent
with the test results of the OCP. In addition, the polarization current (Icorr) of the carbon
steel with 2-TENG attached was slightly higher than the value without 2-TENG attached,
which was attributed to the higher number of electrons generated by 2-TENG on the surface
of the carbon steel, which limited the electrochemical reaction. In summary, 2-TENG can
effectively protect carbon steel cathodes.
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3. Discussion

The electronegativity of the triboelectric nanogenerator electrode material affects the
TENG’s output performance when the overall electronegativity of the groups is strong, i.e.,
the more significant electron-absorbing effect, the stronger the TENG output performance
of the compound. In this paper, more electronegative groups are introduced into the
terminal microstructure to improve the TENG’s output performance under the control
of a similar spatial structure. The experimental results show that 2-TENGs with more F
materials show superior output performance, and the materials are rich in electronegative
F, which realizes electron delocalization conjugation and is more conducive to electron gain
and loss. In practical applications, 2-TENG can be used as a self-powered cathodic protector
to protect metallic materials from corrosion based on its high stability and excellent output
performance. Therefore, this study not only reveals the effect of terminal microstructure
negativity on the output performance of TENGs, but also provides a simple method for the
design of novel self-powered cathodic protection materials in the future.

4. Materials and Methods
4.1. Compounds Preparation

All the chemicals and reagents used in this experiment were obtained by purchas-
ing them through Aladdin’s Reagent platforms and were used directly without further
purification. Compound 1 was prepared on the basis of reports in the literature [35] and
compound 2 was made through our own exploration. The experimental data for the
MOF-based TENGs of compounds 1–2 were collected with the relevant experimental appa-
ratus. Electrochemical measurements were carried out on carbon steel with and without
2-TENGs attached via a three-electrode system on an electrochemical workstation. The crys-
tal structures were determined with a X-ray single-crystal diffractometer and solved, and
the single-crystal structures were plotted with Diamond 4 software. Thermogravimetric
analysis (TGA) data were collected on a Netzsch STA 449C thermal analyzer. Compounds
were subjected to the Mott—Shottky test with a three-electrode system on an electrochem-
ical workstation (CHI 660E, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China).
The chemical bond determination of the compounds was tested via FT-IR; purity was
characterized via powder X-ray diffraction mapping (PXRD) under Cu-kα irradiation using
an instrument manufactured by Bruker D8 Advance. For testing the elemental compo-
sition and valence states, XPS was used to obtain spectral data plots of the compounds
using Al-Kα as the ray source. The morphology, elemental composition, and distribu-
tion of the compounds were tested with a German-made FE-SEM and its accompanying
EDS. The Isc and Voc of the friction nanogenerators were tested on an SR570 low-noise
current amplifier (Stanford Research Systems) and a 2657A high-power system source
meter. The bandgap size of the samples was tested with a UV-2600 UV-Vis (Manufacturer
Perkin Elmer Instruments (Shanghai) Co., Shanghai, China, Model Lambda 950) diffuse
reflectance spectrometer.

4.2. Synthesis of [Co (2,3,5,6-Tetrafluoroterephthalic acid)] (Compound 1)

A solid mixture of Co(NO3)2-6H2O (29.1 mg, 0.1 mmol) and 2,3,5,6-tetrafluoroterephthalic
acid (23.8 mg, 0.1 mmol) was weighed and dissolved in a mixture of DMF (2 mL), water
(2 mL), and ethanol (6 mL), the resultant solution was transferred to a small glass vial
with a pipette gun, and the vial was opened and allowed to evaporate naturally at room
temperature; light-purple crystals were precipitated after three weeks, washed three times
with ethanol, and dried at room temperature.

4.3. Synthesis of [Co (2,5-Bis(trifluoromethyl)terephthalic acid)] (Compound 2)

A solid mixture of Co(NO3)2-6H2O (15.2 mg, 0.05 mmol) and 2,5-bis(trifluoromethyl)
terephthalic acid (15.2 mg, 0.05 mmol) was weighed and dissolved in a mixture of DMF
(6 mL), water (2 mL), and ethanol (2 mL), the resulting solution was transferred to the
reactor using a pipette gun, and then the reactor was placed in an oven preheated to 80 ◦C
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for 24 h. The solution was cooled to room temperature, washed three times with DMF and
placed in a vacuum drying oven for drying.

4.4. Preparation of 1/2 Base TENG

With regards to positive electrode sheet preparation for the TENG, compound 1 and 2
were ground, evenly coated on a 5 cm × 6 cm copper sheet, and is then coated with the
conductive silver epoxy resin of the copper wire fixed on the other side of the copper sheet.
The fixed copper wire of the copper tape surface was covered with a layer of transparent
adhesive tape, and finally cut out into 5 cm × 5 cm sections.

In terms of TENG negative electrode sheet (PVDF) preparation, we weighed the
appropriate amount of PVDF powder, dissolved in a mixture of DMA and acetone, stirring
at 60 ◦C until the PVDF powder was completely dissolved to stop the heating. It was cooled
to room temperature, and the desktop homogenizer was uniformly coated with the PVDF
mixture on the Kapton membrane. The membrane was spin-coated, placed in the oven for
drying at 80 ◦C for 4 h, and then removed to be cool to room temperature. A copper tape
measuring 5 cm × 6 cm was applied to the reverse side of the PVDF film, and the negative
electrode sheet was prepared in the same way as the positive electrode sheet was.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28237894/s1, Table S1. Crystallographic data and struc-
ture refinement parameters for compounds 1–2. Figure S1. FT-IR of compound 1. Figure S2. XPS
profile of Co ion in compound 1. Figure S3. (a,b) TGA of compounds 1 and 2; (c,d) N2 adsorption-
desorption isotherms of compounds 1 and 2. Figure S4. Mechanism diagram of TENG device
operation. Figure S5. (a) Isc, (c) σ, (d) Voc, (f) 1-TENG power density at 5 Hz; (b), (e) Isc vs. Voc for
1-TENG at different frequencies from 1 to 8 Hz. Figure S6. (a) Isc, (c) σ, (d) Voc, (f) 2-TENG power
density at 5 Hz; (b), (e) Isc vs. Voc for 2-TENG at different frequencies from 1 to 8 Hz. Figure S7.
Comparison plots of 1-,2-TENG at 5 Hz (a) current comparison, (b) voltage comparison, (c) recti-
fication comparison, (d) charge density comparison. Figure S8. Isc of 1-TENG after 50,000 cycles.
Figure S9. Voc of 1-TENG after 50,000 cycles. Figure S10. (a) FE-SEM image of compound 1 before
testing; (b) SEM image of compound 1 after testing; (c–h) EDX-mapping analysis of each element
in compound 1. Figure S11. (a) FE-SEM image of compound 2 before testing; (b) SEM image of
compound 2 after testing; (c–h) EDX-mapping analysis of each element in compound 2. Figure S12.
XRD of compound 1.
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