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Abstract: Ureido-heterocycles exhibiting different triple- and quadruple H-bonding patterns are
useful building blocks in the construction of supramolecular polymers, self-healing materials, stimuli-
responsive devices, catalysts and sensors. The heterocyclic group may provide hydrogen bond
donor/acceptor sites to supplement those in the urea core, and they can also bind metals and can be
modified by pH, redox reactions or irradiation. In the present review, the main structural features of
these derivatives are discussed, including the effect of tautomerization and conformational isomerism
on self-assembly and complex formation. Some examples of their use as building blocks in different
molecular architectures and supramolecular polymers, with special emphasis on biomedical applica-
tions, are presented. The role of the heterocyclic functionality in catalytic and sensory applications is
also outlined.

Keywords: ureido-heterocycles; H-bonding; self-assembly; complexation; supramolecular polymers;
anion sensing

1. Introduction

Hydrogen bonds formed between neutral molecules play an excessively important
role in the structure of different chemical and biological systems. The most well-known
example of this phenomenon is the structure of bio-molecules’ DNA and RNA. Inspired
by nature, several organic compounds with different hydrogen-bonding motifs have been
developed to construct hydrogen-bonded assemblies.

Hydrogen bonds are considered weak interactions, typically with binding energy
between 5 and 30 kJ/mol, which means that the introduction of multiple hydrogen-bonding
functionalities is necessary to fabricate stable non-covalent molecular assemblies. However,
it has long been known that the number of hydrogen bonds is not the only significant factor,
but the arrangement of the hydrogen acceptor and donor groups, as well as the secondary
interactions acting between them, should also be taken into consideration [1–6].

The fact that urea and thiourea derivatives are capable of forming multiple hydro-
gen bonds has inspired several scientists to use them in supramolecular chemistry. The
first examples of urea derivatives as binding motifs were reported at the end of the last
century [7–10].

In order to achieve a deeper understanding of the self-assembly properties of urea
groups and to increase the strength of interactions, hydrogen-acceptor/-donor groups were
attached to the urea backbone and in this regard, the best results could be obtained by
using heterocyclic side chains.

From the systems developed so far, the ureido-pyrimidinone (UPy) derivatives
(Figure 1), introduced by Meijer [11], turned out to be the most successful. The members of
this group are among the best studied synthetic multiple hydrogen-bonding systems. The
reason for this is the relatively cheap and simple synthetic methodology and the ability to
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form four strong hydrogen bonds (Kassoc > 106) in non-competitive solvents, such as chloro-
form or methylene chloride. This feature can be useful during the design of new hydrogen
bonding polymers, molecular receptors, and in studying the competition between inter-
and intramolecular hydrogen bonding. Reviews of quadruple hydrogen bonding motifs,
focusing not only on ureido-pyrimidinone derivatives, but taking most of the examples
from that group, appeared in 2003 [12], 2013 [13] and in 2019 (in Chinese) [14].
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With the use of molecules with two or more H-bonding arrays, supramolecular struc-
tures with different architectures and tunable properties can be constructed. This area seems
to be the most rapidly growing field of applications. Accordingly, supramolecular polymers
based on quadruple H-bonds have been reviewed recently [15,16]. Also, a great number of
reviews, summarizing the development, properties and applications of supramolecular
polymers formed via different types of secondary interactions, including H-bonded arrays,
have been reported. For reviews from the past three years, see refs. [17–22].

At the same time, ureido-heterocycles with triple H-bonding arrays or offering bonding
patterns different from UPys can also be useful in molecular recognition, as no competition
with homodimerization should be reckoned with. Also, heterocycles attached to the urea
functionalities have other advantages, beyond providing further H-bond donor/acceptor
sites. They are capable of binding metal ions and this can be exploited in catalysis and in the
development of sensors. They can be modulated by protonation, oxidation/reduction or
irradiation, which might lead to stimuli-responsive materials. To the best of our knowledge,
the properties and applications of these H-bonding systems have not been reviewed before.
We felt that, for the better understanding of the differences between UPys and other ureido-
heterocycles, and to demonstrate the factors determining binding strength of compounds
with different H-bonding motifs, properties of UPy derivatives (even if summarized in
ref [13]), should also be included here. Accordingly, self-assembly and host–guest interac-
tions of ureido-pyrimidinones, other ureido-pyrimidine, and urea derivatives incorporating
other heterocycles and bearing functionalities capable of forming multiple H-bonds and
developed in the past 20 years, are discussed in detail. Special emphasis will be placed on
derivatives with reversibly switchable H-bonding properties that make it possible to con-
struct stimuli-responsive material. In addition to comparing the binding properties of UPYs
and other ureido-heterocycles in the formation of homo- and heterodimers, the present
review is intended to give an overview of their possible applications in supramolecular
chemistry, electro- and photochemistry, biomedicine, catalysis and anion-sensing, to show
the great versatility of these derivatives. Because of the growing number of publications
in these areas, the examples are taken from the past 10 years. Also, due to the several
reviews available on the use of supramolecular polymers [15–22], just some examples
will be presented to highlight the main areas of applications, without intending to be
comprehensive.

2. Hydrogen Bonding, Self-Assembly and Complexation with Neutral Guests

Arrays of multiple hydrogen bonds are useful building blocks for the assembly of
complex molecular architectures, especially owing to their directionality and specificity.
Similarly to biological systems, cooperative action of certain H-bonding acceptor and
H-bonding donor patterns can lead to highly specific molecular recognition events.

The magnitude of Kassoc that shows the ability for complex formation is determined
by several factors, for example, by the number of the binding sites, the arrangement of
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the donor and acceptor groups and their secondary interactions. However, the presence
of any internal hydrogen bonds, different tautomeric forms and conformational changes
of the monomers, as well as solvation, can also significantly influence the stability of
the assemblies.

In the design of new supramolecular arrays, it has been suggested that Kassoc (in
the case of homodimers also referred to as Kdim), should be comparable or greater than
105 M−1 [23–25], but there are several other applications of hydrogen-bonded complexes
that do not require to achieve such high tendency for association.

In the case of self-complementary quadruple hydrogen-bonding arrays, either self-
assembly or, in the presence of another molecule with complementary hydrogen-bonding
motifs, the formation of heterodimers is possible in non-competitive solvents. Heterodimers
with good stability can also be obtained from molecules bearing non-self-complementary
quadruple or triple hydrogen-bonding donor/acceptor patterns.

2.1. Formation of Homodimers

The first self-complementary quadruple hydrogen-bonding motifs (DADA) designed
by Meijer and co-workers in the late 1990s were based on the urea core [26]. The higher
stability of dimers of ureido compounds (Figure 2) compared to amido derivatives was
attributed to a combination of favorable entropic and enthalpic effects of the intramolecular
hydrogen bonds between the NH of the ureido substituent and the nitrogen atom of the
heterocycle (pyrimidine or triazine).
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Figure 2. Comparison of dimerization constants for amido- (1, 3) and ureido derivatives (2, 4) of 
pyrimidine and triazine [26]. 
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Figure 2. Comparison of dimerization constants for amido- (1, 3) and ureido derivatives (2, 4) of
pyrimidine and triazine [26].

At the same time, due to stabilization/destabilization effects of the electrostatic attrac-
tion/repulsion between the atoms in adjacent H-bonds, the DDAA array was expected
to be more stable than the DADA motif. This led to the construction of a series of ureido-
pyrimidinones (Scheme 1) [11,27].

UPys may exist in different tautomeric forms, namely the non-dimerizing pyrimidin-
6[1H]-one tautomer, as well as two other isomers that may lead to the formation of
two types of self-complementary hydrogen-bonding units with DDAA and DADA (ADAD)
arrays [28] (Scheme 1). In addition, by rotation within the urea unit or around the aryl–urea
bond, each tautomer may exist in several rotameric forms, some of which are stabilized by
intramolecular H-bonds (Figure 3). Although undesirable tautomers are usually converted
to the proper form by complexation, the phenomenon lowers association constants.

The ratio of dimers formed from the pyrimidin-4[1H]-one and the pyrimidin-4-ol
tautomers depends strongly on the substituents, e.g., those attached to position C6 of
the pyrimidine ring. Dominance of pyrimidine-4-ol type dimers was proved for com-
pounds with either strongly electron withdrawing [11] or electron donating substituents
(Scheme 1) [29,30], but their association constants were noticeably different.
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pyrimidinones.

The presence of polar groups can also influence association strength considerably.
Lower values of Kdim for UPys with oligo(ethylene oxide) side chains of a certain size (e.g.,
5, Scheme 2), compared to those with aliphatic groups, were attributed to a competitive
intramolecular hydrogen bonding of an oxygen atom of the side chain, resulting in a
backfolding of the chain to the polar groups of the 2-ureido-pyrimidinone moiety [31].
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forms. The ratio of the dimer formed from the enol tautomer (8″) was present in less than 
2% (Scheme 3) [33]. To avoid tautomerization, 1,8-naphthyridine was attached to the urea 
nitrogen, instead of the pyrimidinone moiety [34] (9, Scheme 4). The measured associa-
tion constant was much lower than was expected, which was attributed to the favorable 
effect of intramolecular H-bonds on the stability of dimers of 8-8″ (Scheme 3). As another 
problem, the conformational change leading to the folded form 9′ results in a dimer 
where the monomers are held together by only two H-bonds [35]. 

Scheme 2. Competitive intramolecular hydrogen bonding of the side chain in an ureido-pyrimidinone
(5) with oligo(ethylene oxide) moiety.

Although in some cases Kassoc values were high enough for the formation of supramolec-
ular systems [27], different strategies were adopted to avoid the change in the H-bonding
patterns. By the introduction of an H-acceptor group into an appropriate position of the C6
substituent of the UPy core (6, 7, Figure 4), the pyrimidine NH could be ‘locked’ by bifurcated
H-bonding, which hindered tautomer formation [32]. This led to the formation of dimers with
exceptionally high association constants.
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tion constant was much lower than was expected, which was attributed to the favorable 
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Figure 4. Ureido-pyrimidinones (6, 7) locked in the pyrimidin-4[1H]-one tautomer by bifurcated
intramolecular H-bonds.

Another option was the replacement of the pyrimidinone core by other heterocycles.
Zimmerman and co-workers reported a deazapterin derivative with an association constant
exceeding 107 M−1 bearing a DDAA binding motif (8, 8′) in the two main protomeric forms.
The ratio of the dimer formed from the enol tautomer (8′′) was present in less than 2%
(Scheme 3) [33]. To avoid tautomerization, 1,8-naphthyridine was attached to the urea
nitrogen, instead of the pyrimidinone moiety [34] (9, Scheme 4). The measured association
constant was much lower than was expected, which was attributed to the favorable effect of
intramolecular H-bonds on the stability of dimers of 8–8′′ (Scheme 3). As another problem,
the conformational change leading to the folded form 9′ results in a dimer where the
monomers are held together by only two H-bonds [35].

Sanjayan introduced urea derivatives, free from tautomerization problems, by the
use of degenerate prototropy. 5,5-Disubstituted-pyrimidine-4,6[1H]-diones (e.g., 10a,
Figure 5) [36] and 1,3,5-triazine-2,4[1H,3H]-diones (e.g., 11) [37] show uniform DDAA
arrays in either tautomeric (protomeric) forms and lead to a single dimeric structure both
in solution and in the solid state. Another approach was the use of cytosine instead of
pyrimidinone as the heterocyclic unit (12). From these molecules, stable unfolded homod-
imers were obtained in CDCl3 (Kassoc > 2.5 × 105), although small amounts (5%) of folded
structures held together by two H-bonds were also present in the solution [38]. By the
investigation of a series of N1, C5 and N9-substituted derivatives, it was revealed that the
unfolded rotamer was stabilized by the interaction of 5-H and 8-O and its ratio is increased
by the introduction of longer alkyl chains on N1 [39].



Molecules 2023, 28, 7757 6 of 43Molecules 2023, 28, x FOR PEER REVIEW 6 of 46 
 

 

N N

N

N N

O

O
H

C4H9

H H

DDAA

N N

N

N

OH

H

ON
H

C4H9

D

D

A

A

N N

N

N

O

H

NO
H

C4H9

D

D
A

A

8 8' 8''

8 : 8, 8 : 8', 8': 8' complexes 8'': 8'' complex
.

Kdim > 107 M-1 in CDCl3

H

 
Scheme 3. Tautomeric forms of the deazapterin derivative (8) developed by Zimmerman [33]. 

NNN

O
Bu

H H
N

NNN

O
Bu

H H
N

N N N

O
Bu

HH
N

NN
H

N

NO
H

Bu

NN
H

N

NO
H

Bu
N N

H
N

N O
H

Bu

9

9'

9 : 9

9' : 9'

Kdim = 105 M-1 in CDCl3

 
Scheme 4. Dimer formation of conformers of ureidona-phthyridine 9. 

Sanjayan introduced urea derivatives, free from tautomerization problems, by the 
use of degenerate prototropy. 5,5-Disubstituted-pyrimidine-4,6[1H]-diones (e.g., 10a, 
Figure 5) [36] and 1,3,5-triazine-2,4[1H,3H]-diones (e.g., 11) [37] show uniform DDAA 
arrays in either tautomeric (protomeric) forms and lead to a single dimeric structure both 
in solution and in the solid state. Another approach was the use of cytosine instead of 
pyrimidinone as the heterocyclic unit (12). From these molecules, stable unfolded ho-
modimers were obtained in CDCl3 (Kassoc > 2.5 × 105), although small amounts (5%) of 
folded structures held together by two H-bonds were also present in the solution [38]. By 
the investigation of a series of N1, C5 and N9-substituted derivatives, it was revealed that 
the unfolded rotamer was stabilized by the interaction of 5-H and 8-O and its ratio is in-
creased by the introduction of longer alkyl chains on N1 [39]. 

Scheme 3. Tautomeric forms of the deazapterin derivative (8) developed by Zimmerman [33].

Molecules 2023, 28, x FOR PEER REVIEW 6 of 46 
 

 

N N

N

N N

O

O
H

C4H9

H H

DDAA

N N

N

N

OH

H

ON
H

C4H9

D

D

A

A

N N

N

N

O

H

NO
H

C4H9

D

D
A

A

8 8' 8''

8 : 8, 8 : 8', 8': 8' complexes 8'': 8'' complex
.

Kdim > 107 M-1 in CDCl3

H

 
Scheme 3. Tautomeric forms of the deazapterin derivative (8) developed by Zimmerman [33]. 

NNN

O
Bu

H H
N

NNN

O
Bu

H H
N

N N N

O
Bu

HH
N

NN
H

N

NO
H

Bu

NN
H

N

NO
H

Bu
N N

H
N

N O
H

Bu

9

9'

9 : 9

9' : 9'

Kdim = 105 M-1 in CDCl3

 
Scheme 4. Dimer formation of conformers of ureidona-phthyridine 9. 

Sanjayan introduced urea derivatives, free from tautomerization problems, by the 
use of degenerate prototropy. 5,5-Disubstituted-pyrimidine-4,6[1H]-diones (e.g., 10a, 
Figure 5) [36] and 1,3,5-triazine-2,4[1H,3H]-diones (e.g., 11) [37] show uniform DDAA 
arrays in either tautomeric (protomeric) forms and lead to a single dimeric structure both 
in solution and in the solid state. Another approach was the use of cytosine instead of 
pyrimidinone as the heterocyclic unit (12). From these molecules, stable unfolded ho-
modimers were obtained in CDCl3 (Kassoc > 2.5 × 105), although small amounts (5%) of 
folded structures held together by two H-bonds were also present in the solution [38]. By 
the investigation of a series of N1, C5 and N9-substituted derivatives, it was revealed that 
the unfolded rotamer was stabilized by the interaction of 5-H and 8-O and its ratio is in-
creased by the introduction of longer alkyl chains on N1 [39]. 

Scheme 4. Dimer formation of conformers of ureidona-phthyridine 9.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 46 
 

 

N

NO

C6H13

N N

O
C6H13

H H

Kdim > 1.1 × 105 M-1 in CDCl3

N N

O
Bu

H H
N

N

N

R

Kdim > 2.5 × 105 M-1 in CDCl3

N

N

N N

O

O
H

R2

H H

Kdim = 1.2 x 104 M-1 in CDCl3
R1=allyl, R2=isobutyl

O

R1

R1

R = C6H13

N

N

N

N N

O

O
H

cHex

H H

Kdim > 1.9 x 107 M-1 in CDCl3

O

Bn

DDAA

DDAA

N

N

N

O

O

R1

R1

H

O
R2

HH

A

A

D

D

N

N

N

N

O

O
H

O
cHex

HH

A

A

D

D

Bn

10a

11

12

13

H
5

8

 
Figure 5. Urea derivatives with DDAA motifs. 
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via the formation of a DADA array. Interestingly, in contrast to other pyrimi-
dine-4,6-diones (10, 14, 15), the 1-naphthyl derivative 16 was shown to form a dimeric 
structure of the DADA tautomers [41]. This assumption was supported in solution as 
well as in solid state by NMR measurements and X-ray crystallography, respectively. 
Dimeric structure of 6-(4-aminophenyl) derivatives of UPys were found to be dependent 
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No such competition between folded and unfolded conformers was observed in the
case of urea derivatives with an imidazo-pyrimidine core (13), introduced by Hisamatsu.
The existence of stable unfolded dimers with DDAA patterns was observed without any
conformational competition and undesired complexes [40].

Although the DDAA pattern was shown to be the favorable motif in obtaining stable
homodimers in most cases, there are also some examples when complexation takes place
via the formation of a DADA array. Interestingly, in contrast to other pyrimidine-4,6-diones
(10, 14, 15), the 1-naphthyl derivative 16 was shown to form a dimeric structure of the
DADA tautomers [41]. This assumption was supported in solution as well as in solid
state by NMR measurements and X-ray crystallography, respectively. Dimeric structure of
6-(4-aminophenyl) derivatives of UPys were found to be dependent on the polarity of the
solvent. In CDCl3, they behaved in the normal manner, adopting the pyrimidin-4[1H]-one
structure (17, Figure 6), though dimerization constants could not be determined due to the
low solubility. On the contrary, they dimerized via the pyrimidinol form (17′) in DMSO,
producing a complex with the DADA array [42]. Moreover, this was the first example of
when a dimer with quadruple H-bonding was detected in such a polar solvent.
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As another example, UPy derivatives 18a,b were locked in the enol tautomer via the 
introduction of substituents, facilitating the formation of bifurcated H-bonds to generate 
a DADA-ADAD dimeric array. These compounds were used to construct supramolecular 
nanostructure morphologies in both chloroform and water, but no association constants 
were provided [43]. 
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Although quadruple hydrogen bonding patterns are the focus of investigation in 

most cases, examples of high affinity triple-bond systems were also reported to connect 
two different monomers. In these cases, only weak self-association can be expected, so 
the competition between self-association and hetero-complex formation usually exerts 
negligible effect. 

Zimmerman studied pyridyl-urea derivatives with DDA binding motifs (19, Figure 
7) [5,44]. The association constant of the complex held together by three hydrogen bonds 
(19:20) was rather small, as was expected. Also, complexation can take place by sacrific-
ing the intramolecular H-bond that keeps the urea derivative in the folded conformation 
(19′). Interestingly, the heterodimer formed from pyridyl-urea 19 and tet-
ra-azaanthracenedione (21) was more stable than a heterodimer held together by four 
hydrogen bonds with DDAD-AADA complementary patterns [44]. This could only be 
explained by a secondary (C-H…O) interaction between 6-H in 19 and 2-O in 21, as well 
as some geometric effects [5]. 

Figure 6. Substituent and solvent effects in dimerization via DDAA and DADA patterns.

As another example, UPy derivatives 18a,b were locked in the enol tautomer via the
introduction of substituents, facilitating the formation of bifurcated H-bonds to generate a
DADA-ADAD dimeric array. These compounds were used to construct supramolecular
nanostructure morphologies in both chloroform and water, but no association constants
were provided [43].
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2.2. Formation of Heterodimers

Although quadruple hydrogen bonding patterns are the focus of investigation in
most cases, examples of high affinity triple-bond systems were also reported to connect
two different monomers. In these cases, only weak self-association can be expected, so
the competition between self-association and hetero-complex formation usually exerts
negligible effect.

Zimmerman studied pyridyl-urea derivatives with DDA binding motifs (19,
Figure 7) [5,44]. The association constant of the complex held together by three hydro-
gen bonds (19:20) was rather small, as was expected. Also, complexation can take place
by sacrificing the intramolecular H-bond that keeps the urea derivative in the folded
conformation (19′). Interestingly, the heterodimer formed from pyridyl-urea 19 and tetra-
azaanthracenedione (21) was more stable than a heterodimer held together by four hydro-
gen bonds with DDAD-AADA complementary patterns [44]. This could only be explained
by a secondary (C-H. . .O) interaction between 6-H in 19 and 2-O in 21, as well as some
geometric effects [5].

Molecules 2023, 28, x FOR PEER REVIEW 9 of 46 
 

 

Kassoc= 30 M-1 in CDCl3

NNN
Bu

HH

O

N N N Bu

O

H

19

20

Kassoc= 406 M-1 in CDCl3

NNN
Bu

HH

O

N N N
H

19

21

N

O

O

H6

2

NN

19'

H

O N
Bu

H

 
Figure 7. Heterodimers obtained from pyridyl-urea derivatives 19. 

In contrast to 19, urea derivatives of five-membered heterocycles, such as oxazole 
(22, Figure 8), thiazole (23) and imidazo[1,2-a]pyridine (24), were shown to form more 
stable heterodimers with a cytosine derivative (25) [45]. Higher values of association 
constants were explained by the lack of steric hindrance between the aromatic proton 
(Ha) and urea oxygen, which pushes the equilibrium towards the folded conformer that is 
not suitable for dimer formation in the case of six-membered heterocycles. 

NN
C8H17

HH

O

22 X=O
23 X=S

N

X
Ph

NN
Bu

HH

O

N

N

24

N

25

N

O

R

N
H

H
OTBDMSTBDMSO

O
OTBDMS

N

N

O

R

N
H

H

25

R:

22 : 25 Kassoc= 4 x 103 M-1 in CDCl3

23 : 25 Kassoc= 1.5 x 103 M-1 in CDCl3

Kassoc = 2 x 103 M-1 in CDCl3

NO
H

N

N

N

H

H

N

N O
N

O H

NN
HH

O

N

N
H

H

N

NO N

O
H

H

26 26'

27 27

Kassoc = 3.3 x 104 M-1 in CDCl3

Ha Ha

 
Figure 8. Complexation of urea derivatives of 5-membered heterocycles (22–24, 26) with cytosine 
derivatives 25, 27. 

Wilson and co-workers investigated urea derivatives with an imidazolyl group. 
Although compound 26 can adopt two different conformations stabilized by internal 
H-bonds, both of them show the same ADD binding pattern and can form heterodimers 
with amido-isocytosines (e.g., 27). This leads to a nearly three order of magnitude 
stronger complexation than that of the analogous pyridine derivative. (e.g., 19, Figure 7) 
[41,46]. With the use of ditopic ureido-imidazole and amido-isocytosine motifs, hetero-
dimers held together by six hydrogen bonds were also constructed [47]. 

N,N’-bis-heterocyclic derivatives of urea can form heterodimers with di-
amido-naphthyridines through ADDA-DAAD binding motifs. Association constants 
were shown to depend strongly on the nature of heterocycles. The triazolyl derivative 29 
formed a much more stable complex [48] than the pyridine analog 28 (Figure 9) [34,48], 
similarly to the difference in the behavior of the compounds with one heterocyclic ring 19 
(Figure 7) and 26 (Figure 8). At the same time, unexpectedly, a weaker interaction was 
observed for ureido-diimidazole 30 [49], possibly due to several factors, such as energet-
ically favored formation of a folded conformer, differences in shape complementarity 
between the two monomers and higher potential for self-association of 30. 

Figure 7. Heterodimers obtained from pyridyl-urea derivatives 19.

In contrast to 19, urea derivatives of five-membered heterocycles, such as oxazole (22,
Figure 8), thiazole (23) and imidazo[1,2-a]pyridine (24), were shown to form more stable
heterodimers with a cytosine derivative (25) [45]. Higher values of association constants
were explained by the lack of steric hindrance between the aromatic proton (Ha) and urea
oxygen, which pushes the equilibrium towards the folded conformer that is not suitable
for dimer formation in the case of six-membered heterocycles.
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derivatives 25, 27.

Wilson and co-workers investigated urea derivatives with an imidazolyl group. Al-
though compound 26 can adopt two different conformations stabilized by internal H-bonds,
both of them show the same ADD binding pattern and can form heterodimers with amido-
isocytosines (e.g., 27). This leads to a nearly three order of magnitude stronger complexation
than that of the analogous pyridine derivative. (e.g., 19, Figure 7) [41,46]. With the use of
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ditopic ureido-imidazole and amido-isocytosine motifs, heterodimers held together by six
hydrogen bonds were also constructed [47].

N,N’-bis-heterocyclic derivatives of urea can form heterodimers with diamido-
naphthyridines through ADDA-DAAD binding motifs. Association constants were shown
to depend strongly on the nature of heterocycles. The triazolyl derivative 29 formed a
much more stable complex [48] than the pyridine analog 28 (Figure 9) [34,48], similarly to
the difference in the behavior of the compounds with one heterocyclic ring 19 (Figure 7)
and 26 (Figure 8). At the same time, unexpectedly, a weaker interaction was observed for
ureido-diimidazole 30 [49], possibly due to several factors, such as energetically favored
formation of a folded conformer, differences in shape complementarity between the two
monomers and higher potential for self-association of 30.
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Figure 10. Complexation of ureido-guanine derivatives 32 and 33. (A: folded conformer, B: un-
folded onformer of ureido-guanosines). 
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for the amino compound 34a due the more acidic NH of the amides [53]. At the same 
time, these values show still weaker binding compared to that between quadruply 
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the difference might be explained by geometric effects, i.e., a weaker association due to an 
inward curvature of the AADA counterpart 21 [5]. 

Figure 9. ADDA-DAAD heterocomplexes of N,N’-bis-heterocyclic derivatives of urea.

An exceptionally high association constant was measured for a ureido-guanosine-
diamido-naphthyridine complex (32:31c, Figure 10) held together by four hydrogen bonds
with ADDA-DAAD pattern [50]. The guanosine derivative showed only weak self-
association (with Kdim around 230 M−1), in contrast to deazapterin (8, Scheme 3) and
ureido-pyrimidine (Scheme 1) derivatives. According to NMR measurements, ureido-
guanosine undergoes a conformational change from the more stable unfolded conformer
(A) to the folded form (B) prior to complexation.
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for the amino compound 34a due the more acidic NH of the amides [53]. At the same 
time, these values show still weaker binding compared to that between quadruply 
H-bonded complexes with ADDA-DAAD patterns. Although the number of positive and 
negative secondary interactions is the same in the former and in the AADA·DDAD pair, 
the difference might be explained by geometric effects, i.e., a weaker association due to an 
inward curvature of the AADA counterpart 21 [5]. 

Figure 10. Complexation of ureido-guanine derivatives 32 and 33. (A: folded conformer, B: unfolded
onformer of ureido-guanosines).

In contrast, conformational equilibria of deaza derivatives (33a,b) were shown to be
solvent-dependent: in DMSO-d6 the unfolded conformer was dominant, while in CDCl3
the folded form was favored. This means that these urea derivatives are preorganized in the
latter solvent for complex formation, which results in association constants of approximately
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one order of magnitude higher than guanosine 32 during complexation with diamido-
naphthyridines (31a,c) [51,52]. At the same time, their dimerization ability also increases
(Kdim = 880 M−1 (for 33a) and Kdim ≈ 600 M−1 (for 33b)).

Similarly to the formation of homodimers, the value of binding constants was influ-
enced considerably by the change of the substituents. Stronger binding of monomers with
DDAD/AADA patterns was observed for acylated derivatives 34b,c (Figure 11) than for
the amino compound 34a due the more acidic NH of the amides [53]. At the same time,
these values show still weaker binding compared to that between quadruply H-bonded
complexes with ADDA-DAAD patterns. Although the number of positive and negative
secondary interactions is the same in the former and in the AADA·DDAD pair, the differ-
ence might be explained by geometric effects, i.e., a weaker association due to an inward
curvature of the AADA counterpart 21 [5].

Molecules 2023, 28, x FOR PEER REVIEW 11 of 46 
 

 

21 : 34a Kassoc= 120 M-1 in CDCl3
21 : 34b Kassoc= 590 M-1 in CDCl3
21 : 34c Kassoc= 872 M-1 in CDCl3

NNN
Bu

HH

O

N N N
H

34a R= H
34b R = COCH3
34c R = COCH2(CH2CH2O)3CH3CH3

21

N

O

O

N
H

R

 
Figure 11. Complexation of pyridyl urea derivatives with DDAD bonding pattern (34a–c). 

In the case of urea derivatives capable of forming strong homodimers via 
self-complementary hydrogen bonding motifs, heterodimerization should compete with 
self-association. In many cases, conformational changes or formation of other protomeric 
forms precede heterodimerization. Upon addition of diamido-naphthyridine 35a to the 
urea derivative depicted in Scheme 3, a full dissociation of dimers 8:8, 8:8′, 8′:8′ and 
complex formation with 35a was observed (Figure 12) [33], which supports a strong as-
sociation of the two counterparts in the latter. Before heterodimerization, deazapterin 8 
underwent a conformational change to exhibit the ADDA binding pattern (8′′′). As an-
other example, heterodimer 11′:35b was formed with approximately 60% yield after ad-
dition of one equivalent of 35b to the CDCl3 solution of homodimer 11:11 via disruption 
of the homodimer and a conformational change to 11′ [37]. 

N N

N NO
H

O
Bn

11'
N

N

N N
H

O
H

8'''

O

N
H C4H9

H
O

N
H cHex

N N N C4H9

O

NC4H9

O

H H

35a

N N N C7H15

O

NC7H15

O

H H

35b

8 : 8

8 : 8'

8': 8'

35a

11 : 11
35b

 
Figure 12. Heterodimer formation from deazapterin 8 and triazine 11. 
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35c, Scheme 5) takes place via the non-self-dimerizing pyrimidin-6[1H]-one tautomer 
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36a:36a and 35c:36a″ dimers, while the enol homodimer was found to disappear very 
quickly [30]. 

Figure 11. Complexation of pyridyl urea derivatives with DDAD bonding pattern (34a–c).

In the case of urea derivatives capable of forming strong homodimers via self-
complementary hydrogen bonding motifs, heterodimerization should compete with self-
association. In many cases, conformational changes or formation of other protomeric forms
precede heterodimerization. Upon addition of diamido-naphthyridine 35a to the urea
derivative depicted in Scheme 3, a full dissociation of dimers 8:8, 8:8′, 8′:8′ and complex
formation with 35a was observed (Figure 12) [33], which supports a strong association of
the two counterparts in the latter. Before heterodimerization, deazapterin 8 underwent a
conformational change to exhibit the ADDA binding pattern (8′′′). As another example,
heterodimer 11′:35b was formed with approximately 60% yield after addition of one equiv-
alent of 35b to the CDCl3 solution of homodimer 11:11 via disruption of the homodimer
and a conformational change to 11′ [37].
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Figure 12. Heterodimer formation from deazapterin 8 and triazine 11.

In the case of UPys, complex formation with 2,7-diamido-1,8-naphthyridine (e.g., 35c,
Scheme 5) takes place via the non-self-dimerizing pyrimidin-6[1H]-one tautomer (36a′).
The mixture of keto- and enol type dimers (in a ratio of 90/10, for the structures of similar
homodimers see also Scheme 1) was turned into an equilibrium mixture of 36a:36a and
35c:36a′′ dimers, while the enol homodimer was found to disappear very quickly [30].
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Scheme 5. Heterodimer formation from ureido-pyrimidinone 36a.

Strong association between the 3-cyano-diamido-naphthyridine (35d) derivative and
UPys bearing solubility-enhancing substituents (36b,c) was observed by Lüning, based on
NMR measurements (Figure 13) [54]. In contrast, the folded conformer (10b′) of pyrim-
idinedione (10b), constructed to avoid the problem of formation of different tautomeric
forms, developed much weaker interaction with the same guest. This was assumed to be
the result of the sp3 carbon atom in the heterocycle that led to a distortion of the ring and
so allowed an easier contact between the polyethylene glycol chain and the binding site
and hindered association.
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Figure 13. Heterodimer formation from ureidopyrimidinones 36b,c and ureido-pyrimidinedione 10b.

Bis-naphthyridine 37 (Scheme 6) and bis-urea 38 were shown to exist in the folded
conformations (37′ and 38′) in solution. At higher concentrations, the latter was found to
self-dimerize via the formation of the unfolded conformer (37). In the mixtures of the two
components a robust, sextuply H-bonded complex (37:38) was obtained by the association
of the unfolded conformers of each monomers [55].

Heterodimers (12:36d, Figure 14) were present in a considerable amount in the 1:1
mixture of self-associating ureido-cytosine (12, Kdim > 9 × 106 M−1 in C6D6) and ureido-
pyrimidinone (36d) derivatives (ratio 5:6:5), which shows the strength of interaction be-
tween the two different monomers [38].

As another example, heterodimer formation was also detected between the pyrimidin-4-
ol tautomer of amino-ureido-pyrimidinone 39a and amido-naphthyridone 40a (Scheme 7) [56].
According to calculations, the free energy change for the formation of heterocomplexes from
homodimers is negative, so the heterocomplex should be favored over the latter in equimolar
mixtures of the components. NMR studies revealed that, indeed, the ratio of heterocomplex
39a:40a was 73% at 263 K.
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Scheme 7. Heterodimer formation from homodimers of amino-ureido-pyrimidinone 39a and amido-
naphthyridone 40a.

In order to mimic signaling pathways of biological systems, sequential self-sorting
cascades were developed with the use of multiple components capable of self-association
and/or heterodimer formation.

The thermodynamically disfavored heterodimer (36a′′′:39, Scheme 8) could be ob-
tained as a kinetic product by mixing the 2,7-diamido-1,8-naphthyridine (35c): ureido-
pyrimidinone (36a′′) heterodimer with the homodimer of the 6-amino-ureidopyrimidinone
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derivative 39 [30]. In addition, 36a was shown to be released from dimer 35c:36a′′ in the
pyrimidin-6[1H]-one form (36a′′) that could rapidly turn into its tautomeric enol form
(36a′′′) via an [1,3]-shift and is associated with 39. The formation of the pyrimidin-4[1H]-
one (36a) homodimer would require both a [1,3] proto-tropic shift and the break of an
intramolecular hydrogen bond, so it is a much slower process.
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A four-component molecular cascade was built by Wilson et al. [57]. The formation of
two heterodimers (26:27 and 31a:41′′) as the main products was observed in the equimolar
mixture of ureido-imidazole 26, amido-cytosine 27, a bis-amido-naphthyridine (31a) and
ureido-pyrimidinone 41 (Figure 15). The two heterodimers could also be obtained upon
sequential addition of 26→ 27→ 31a to the UPy homodimer 41:41. From the results, it was
concluded that product distribution was not governed solely by the value of association
constants and the main driving force in determining product distribution was to maximize
non-covalent interactions in the entire system. At the same time, it is advantageous if one
of the components recognizes a limited number of other derivatives (in the present case,
compound 27).

This network was extended by two further derivatives, amino-ureido-pyrimidinone
39b and amido-naphthyridone 40b [58]. It was shown that the product distribution of
the systems obtained by sequential additions of up to five of the six building blocks can
be understood by detailed NMR analysis of molecular recognition behavior of hydrogen-
bonding motifs, supplemented with calculations.

In the examples discussed above, a conformational change often precedes heterodimer-
ization, accompanied by disruption of intramolecular H-bonding. Ośmiałowski et. al.
found that even the formation of five intermolecular hydrogen bonds (e.g., with guest 43)
were not enough to change the thermodynamically preferred conformation of bis-urea 42
bearing two intramolecular H-bonds (Scheme 9) [59]. In contrast, the addition of benzoate
ions (44) resulted in a complexation with conformer 42′′. This was found to be followed by
a conformational change to 42′′′ due to the electronic repulsion between benzoate oxygen
and the non-substituted N3 of the pyrimidine ring in 42′′. Moreover, a bifurcated H-bond
could also stabilize conformer 42′′′. The latter isomerization opened up the way for associ-
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ation of the bis-amido-pyridine guest 45 via an ADA/DAD bonding pattern resulting in
the terner complex of 44:42a′′′:45.
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2.3. Incorporation of Stimuli-Responsive Moieties into Urea Derivatives Functionalized by
Heteroaromatic Groups

Sufficient increase in temperature evidently results in the disruption of H-bonds. This
is reversible in most cases: the counterparts with the proper motifs can be reassembled upon
cooling. Beside the change in temperature, H-bonding ability can be altered considerably
by reduction/oxidation or photochemical reactions if redox- or photoactive moieties are
introduced either into heterocyclic ureas or into the derivatives that can serve as their
counterparts in complexation reactions. Also, the H-bonding motif can be modified by
protonation/deprotonation [60]. Investigation of these features can lead to the development
of redox-active sensors or switchable supramolecular assemblies.

2.3.1. Redox-Active Urea Derivatives

By the introduction of electroactive moieties into heteroaromatic urea derivatives,
complexation processes can be followed not only by NMR and UV/Vis spectroscopy, but
also by electrochemical methods, e.g., by cyclic voltammetry (CV). As another feature, the
strength of H-bonds can be altered by electron transfer to create redox-responsive H-bonded
complexes [61,62] that can result in the development of stimuli-responsive formation of
supramolecular polymers.

Similarly to simple derivatives, ureidopyrimidin-4,6-diones (e.g., 46, Figure 16) and
-pyrimidin-4-ones (e.g., 47) decorated with ferrocenyl moieties were found to form stable
dimers in apolar solvents, such as CDCl3 or CD2Cl2, and were shown to exist as monomers
(in the case of 47, in the pyrimidin-6[1H]-one form 47′) in polar media, e.g., in DMSO-d6
and CD3CN, as supported by NMR measurements [63,64].
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Figure 16. Dimeric structures obtained from ferro-cenyl compounds 46 and 47.

In accordance with these observations, two reversible oxidation waves with similar
current levels were detected for dione 46 by CV in CH2Cl2 [63]. At the same time, increased
current levels for the first oxidation wave and gradually decreasing levels for the second
one at more positive potential were obtained in CH2Cl2/CH3CN mixtures, while only
one wave could be observed in acetonitrile. It was concluded that the two equivalent
ferrocene centers in the dimer exhibited a remarkable level of electronic communication as
they underwent oxidation at very different half-wave potentials. In contrast to this, two
waves with different levels of current were detected in CH2Cl2 for compound 47, while
one reversible wave was obtained at lower potential after the addition of DMSO (30%) [64].
The phenomenon was attributed to the pyrimidin-4-one dimer (47:47)→ pyrimidin-6-one
monomer (47′) transition.

Another group suggested that the observation of the two oxidation and two reduction
peaks was due to electronic communication between the two ferrocene units [65], similarly
to the pyrimidin-4,6 dione derivatives (46) [63]. It should be emphasized that, in contrast
to the behavior of the latter derivative, there was a great difference in the current levels of
the two waves in the case of compound 47.
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Smith and co-workers reported a detailed study on the octyl-derivative (47) [66] and
their results supported the assumption of Cooke’s group [64]. They suggested that the
pyrimidin-4-one dimers broke up due to electrochemical oxidation in CH2Cl2. According to
their results, these phenomena can be caused by a combination of electrostatic repulsion and
decreased H-accepting ability of the oxidized species. They supposed that, on the CV time
scale, the most probable product was the pyrimidin-4-one monomer (47) that tautomerized
to the pyrimin-6-one monomer (47′) afterwards. The two waves with different currents can
be attributed to the equilibrium (Scheme 10) of the dimer (major component) and monomer
(minor component) in the reduced form, and dimer (minor component) and monomer
(major component) after oxidation.
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NMR studies proved the existence of an equilibrium between the two folded conform-
ers of 2-ureido-4-ferrocenylpyrimidines (48 and 48′) bearing an intramolecular hydrogen
bond [67]. Both conformers were shown to establish host–guest interaction with appro-
priate guests, such as 2,6-diaminopyridine (49, Figure 17) with a donor–acceptor–donor
H-bonding pattern. Complexation could be followed by the anodic shift of Epa values.
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Fullerene derivatives have interesting properties that make them ideal building blocks
in organic solar cells or functional materials. Several fullerene-labelled hydrogen-bonded
molecular assemblies (e.g., 50 and 51, Figure 18) were synthesized and investigated, using
Meijers quadruple hydrogen-bonding ureido-pyrimidines [68–70]. Their electrochemical
investigations revealed that the fullerene moieties are oxidized simultaneously and there is
no electronic communication between the two units.
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Two well-defined waves were observed in the voltammograms of solutions of tri-
arylamine derivatives (54a–c) in CH2Cl2 [72] that could be explained by the sequential 
oxidation of the two NAr3 units to give a one- and a two electron-oxidized species. This 
was the first example for a proton coupled organic mixed valency in solution, where the 
stability of the dimers could be controlled by varying the substituents of the triarylamine 
moiety. 

Zimmerman et. al. developed a redox switchable system composed of dea-
za-guanosine 33b and the naphthyridine derivative 55 (Figure 20). In its reduced form, 
the latter can form heterodimers with the urea derivative 33b held together by strong 
DAAD:ADDA arrays. In contrast, the oxidized compound with the DAAA pattern 
showed a much weaker association [73]. 

Figure 18. Fullerene-decorated UPy dimers (50, 51) formed by multiple hydrogen bonds.

Zális and co-workers studied Os and Ru complexes of styryl-functionalized
ureidopyrimidin-4,6-dione derivatives, forming stable dimers due to quadruple hydrogen
bonding (Figure 19). The existence of dimers was proved by X-ray crystallography, 1H
NMR measurements and infrared spectroscopy, as well as by conventional electrochemical
methods and UV/Vis spectro-electrochemistry. Similarly to the fullerene derivatives, no
electronic communication could be detected in these complexes between the two redox cen-
ters, which was attributed to the poor contribution of the groups involved in the hydrogen
bonding to the occupied frontier molecule orbitals [71].
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Two well-defined waves were observed in the voltammograms of solutions of tri-
arylamine derivatives (54a–c) in CH2Cl2 [72] that could be explained by the sequential 
oxidation of the two NAr3 units to give a one- and a two electron-oxidized species. This 
was the first example for a proton coupled organic mixed valency in solution, where the 
stability of the dimers could be controlled by varying the substituents of the triarylamine 
moiety. 

Zimmerman et. al. developed a redox switchable system composed of dea-
za-guanosine 33b and the naphthyridine derivative 55 (Figure 20). In its reduced form, 
the latter can form heterodimers with the urea derivative 33b held together by strong 
DAAD:ADDA arrays. In contrast, the oxidized compound with the DAAA pattern 
showed a much weaker association [73]. 

Figure 19. Dimeric Os and Ru complexes (52, 53) and triarylamine derivatives (54a–c) held together
by quadruple H-bonding.

Two well-defined waves were observed in the voltammograms of solutions of triary-
lamine derivatives (54a–c) in CH2Cl2 [72] that could be explained by the sequential oxidation
of the two NAr3 units to give a one- and a two electron-oxidized species. This was the first
example for a proton coupled organic mixed valency in solution, where the stability of the
dimers could be controlled by varying the substituents of the triarylamine moiety.

Zimmerman et. al. developed a redox switchable system composed of deaza-guanosine
33b and the naphthyridine derivative 55 (Figure 20). In its reduced form, the latter can
form heterodimers with the urea derivative 33b held together by strong DAAD:ADDA
arrays. In contrast, the oxidized compound with the DAAA pattern showed a much weaker
association [73].
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Scheme 11. Hydrogen-bonded supramolecular systems manipulated by an electrochemically in-
duced proton-coupled electron-transfer reaction. 

2.3.2. Photo-Switchable Derivatives 
During the investigation of self-sorting cascades, Wilson et al. developed a pho-

to-triggered dimerization between imidazole-urea 26 and amido-isocytosine 27 (Scheme 
12). While the N-benzyl derivative 57 did not destroy either 41:41 or 26:41 dimers, the 
mixture of 57 and dimer 26:41 could be converted to a mixture of the homodimer 41:41 
and the heterocomplex 26:27 via photochemical cleavage of the N-benzyl group [57]. 

Figure 20. Redox switchable system of deaza-guanosine 33b and naphthyridine 55.

Smith demonstrated an example of the splitting of the hydrogen bonds in a
phenylenediamine-labelled UPy (56H, Scheme 11) assembly by an electrochemically in-
duced proton-coupled electron-transfer reaction. The difference in the intensity of the two
oxidation waves was explained by a mechanism in which the original DDAA bonding
pattern (in the 56H:56H dimer) is converted to the weaker DADA array (in 56H2+:56H2+).
Due to this and also to the greater electrostatic repulsion of the positively charged compo-
nents, the equilibrium is shifted towards the monomers. Their highly acidic protons can
protonate another dimer in the reduced form (56H:56H), which leads to quinoidal cation
monomers (56+) and protonated reduced dimers (H56H+:H56H+) [74].
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2.3.2. Photo-Switchable Derivatives

During the investigation of self-sorting cascades, Wilson et al. developed a photo-
triggered dimerization between imidazole-urea 26 and amido-isocytosine 27 (Scheme 12).
While the N-benzyl derivative 57 did not destroy either 41:41 or 26:41 dimers, the mixture
of 57 and dimer 26:41 could be converted to a mixture of the homodimer 41:41 and the
heterocomplex 26:27 via photochemical cleavage of the N-benzyl group [57].
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Scheme 12. Photochemically triggered dimerization imidazole-urea 26 and amido-isocytosine 27.

Ureido-pyrimidinone with an azobenzene unit (58, Scheme 13) was shown to undergo
dimerization only after a UV irradiation induced isomerization (from E58 to Z58) that
disrupted the intramolecular H-bonds and made the DDAA bonding pattern available for
dimer formation [75]. The process could readily be reversed by blue light irradiation. The
azobenzene derivative E58 was also capable of establishing quadruple hydrogen bonds,
either with non-labelled ureido-pyrimidinone 36a [75] or bis-amido-naphtyridine 31d [76]
under similar conditions. In the latter case a conformational change was also necessary
to adopt the ADDA H-bonding pattern (Z58′). Homo- and heterocomplexes could be
constructed reversibly from pyrimidinedione (E59, Scheme 14) and pyridyl derivatives
(E60), respectively, although association constants were considerably lower than those
observed for the azobenzene-substituted UPy E58 [77]. Photoisomerization of similar
systems can lead to development of photo-responsive supramolecular polymers [78].
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and amido-isocytosine 27, the formation of the heterodimer could be proved by NMR 
after the addition of sodium hydrogen carbonate. No change in the 1H NMR spectrum 
could be noticed upon addition of the benzo-isoquinolino-naphthyridine 62 to the het-
erodimer 26:27, which showed that the interaction could not be disturbed due to the 
much smaller association constant of the complex 26:62 (Kassoc = 2 × 103 M−1 in CDCl3). In 
contrast, naphthyridine 62 could construct a heterocomplex with the protonated deriva-
tive 26H+ even in the presence of amido-isocytosine 27. 
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pyridyl derivatives (E60).

2.3.3. pH-Switchable Derivatives

H-bonding patterns can also be modulated by protonation/deprotonation reactions.
Wilson et al. showed that, by switching the DDA array of the imidazole derivative 26 into
a DDD motif (26H+, Scheme 15), the complexation behavior of the compound could be
altered [79]. While no interaction was observed between the protonated derivative 26H+

and amido-isocytosine 27, the formation of the heterodimer could be proved by NMR after
the addition of sodium hydrogen carbonate. No change in the 1H NMR spectrum could
be noticed upon addition of the benzo-isoquinolino-naphthyridine 62 to the heterodimer
26:27, which showed that the interaction could not be disturbed due to the much smaller
association constant of the complex 26:62 (Kassoc = 2 × 103 M−1 in CDCl3). In contrast,
naphthyridine 62 could construct a heterocomplex with the protonated derivative 26H+

even in the presence of amido-isocytosine 27.
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3. Formation of Different Molecular Architectures via Supramolecular Assembly

In the first years after Meijer’s report of self-assembling UPys, great interest turned
to the application of heterocyclic urea derivatives in nanotechnology and supramolecular
polymer chemistry. The ability to form hydrogen-bonded assemblies [12] can be exploited
in the field of self-healing gels, synthesizing either modified ureido-pyrimidine oligomer
chains or by attaching ureido-pyrimidines to a polymer backbone [23]. These polymers can
be broken down by heating via splitting the hydrogen bonds that can be regenerated after
cooling. In case of electrochemically active ureido-pyrimidines, redox-switchable polymers
can also be obtained.

Meijer discovered that, besides supramolecular polymers, bifunctional UPys are also
able to form small cyclic oligomers in CHCl3. The equilibria between open chain polymers
and cyclic oligomers of UPy derivatives were investigated by 1H NMR and viscosimetry. It
was found that the use of alkyl linkers with methyl substituents next to the UPy moieties
changed the preferred conformation of the monomers, which resulted in a shift of the
equilibrium towards the cyclic dimers in solution. This means that, by the choice of the
substitution pattern and length of the linker moiety, the ratio of cyclic oligomers and
long-chain polymers can be influenced [80]. The importance of the structure of linker
groups was also supported by the work of Mendoza et al. The bifunctional UPy derivative
63 (Figure 21), bearing a 3,6-carbazole linker, was found to lead to a viscous polymeric
structure, while the insertion of methylene spacers resulted in the formation of cyclic
aggregates of 64 with preference for a tetrameric structure [81].
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Figure 21. UPy derivatives of 3,6-carbazole (63–65) and 2,2′-bipyridine (67).

Cyclic three-component molecular complexes were constructed by quadruple H-
bond formation between dimeric UPy units (65) and bis-amido-naphthyridines (66) dec-
orated with ligands capable of binding metals. By the addition of neutral Pd-precursors,
652664Pd2-type cyclic complexes were formed [82]. A combination of metal coordination
and self-assembly of UPy motifs led to the construction of tetrahedral cages from bipyridine
derivative 67 and Fe2+ or Zn2+ ions, even in polar solvents, such as in acetonitrile and
methanol [83].

UPys decorated with low molecular weight tetra-ethylene glycol (TEG) monomethyl
ether chains were shown to assemble into vesicles or micelles in water depending on the
number of hydrogen bonding units [84]. According to TEM, cryo-TEM and dynamic light
scattering measurements, compound 68 (Figure 22) dimerizes through H bonding into
bola-amphiphiles that form vesicles via self-assembly. In contrast, the ureido-pyrimidine
units of bis-UPy 69 were found to cross-link with each other and to form random-coiled
supramolecular polymers that led to the formation of micelles. With the help of Nile Red
encapsulated into these micelles, it was shown that they could be disrupted under basic
conditions, possibly by the altered hydrogen bonding pattern due to the formation of
enolate via the deprotonation of the enol form. This shows that these and similar molecules
can find applications in drug delivery.
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The star-shaped derivatives of bile acid with UPy end groups (70, Figure 23) were
shown to form micelles in DMSO with the nonpolar cholic acid skeletons in the micellar
core and polar chains pointing towards the solvent [85,86]. Hydrogen bonding between
the pyrimidinone units was thought to be suppressed by DMSO. By the addition of water,
first the formation of fibrillary aggregates was observed, which turned into spheres by
further aggregation. The changes are thought to be the result of an increase in the number
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of hydrogen bonds between the side chains and also between the micelles with UPy
moieties on the surface. Although water usually inhibits dimerization, hydrophobic hexyl
chains are believed to form hydrophobic pockets that facilitate the formation of hydrogen-
bonded dimers.
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Figure 23. Star-shaped molecules with multiple UPy units.

Reversible formation of dimeric capsules from other star shaped molecules (71) was
used for the purification of fullerenes that could be encapsulated in the cavity [87]. Moreover,
a remarkable selectivity for the inclusion of C70 over C60 was observed. Other fullerene
encapsulating assemblies were built from enantiomerically pure monomers (72a,b, Figure 24)
obtained by fusing two UPy units to the bicyclo[3.3.1]nonane framework [88]. Detailed studies
revealed a series of interesting features of these structures. A mixture of cyclic pentamers and
tetramers was obtained in toluene, while the tetrameric form was the only structure detected
in CDCl3. By mixing the toluene solutions of the two very similar monomers, a scrambling
could be detected after an aging period resulting in tetramers and pentamers containing both
monomers. At the same time, no such change in the structures of cyclic oligomers took place
in CDCl3. An association constant of Kassoc = 1.16 × 105 M−1 was measured for C60:72a4
complexes and an even stronger interaction could be observed with C70 due to the larger
π-surface of this fullerene. As another feature, the encapsulation that could be observed in
toluene, but not in CHCl3, hindered scrambling between the two types of monomers 72a
and 72b. In contrast to these compounds with the bicyclo[3.3.1]nonane framework, only the
tetramer of the dioxabicyclo[3.3.1]nonane derivative 73 was observed, either in CHCl3 or in
benzene [89].
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Figure 24. UPy derivatives with dioxabicyclo[3.3.1]nonane framework. Figure 24. UPy derivatives with dioxabicyclo[3.3.1]nonane framework.

A monomer with the same bicyclo[3.3.1]nonane backbone but containing one UPy and
one iso-cytosine (ICyt) motif (75, Figure 25a) was found to form tetrameric cyclic aggregates
via three complementary H-bonding motifs (UPy-ICyt) at the junctions (Figure 25b) [90].
With the formation of further H-bonds (labelled with an *), two tetramers were shown to



Molecules 2023, 28, 7757 24 of 43

assemble to a tubular octamer. By the addition of C60 in toluene, this octamer was found
to rearrange into a complex C60:754 by changing the H-bonding pattern in the tetramers
into UPy-UPy and ICyt-ICyt’ connections with DDAA/AADD and DDA/AAD motifs,
respectively (Figure 25c).
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Another switchable assembly was developed based on monomer 74 (Figure 24) that 
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Another switchable assembly was developed based on monomer 74 (Figure 24) that
adopted the tetrameric form in CDCl3 [91]. At the same time, by using toluene as sol-
vent or upon addition of a C70 guest, aggregation to tubular supramolecular polymers
was observed.

It should be mentioned that, by the integration of orthogonal self-assembly of H-
bonding motifs and macrocyclic host–guest interactions, supramolecular polymers of
diverse structures and with interesting properties were obtained, as reviewed in 2020 [92].

Various derivatives with UPy motifs were shown to assemble into two-dimensional
nanomaterials that drew great attention in various applications, such as in chemical sensors.
The water-soluble derivative 18b (Figure 6) locked in the enol tautomer was shown to
form nanosheets even in water. Hydrogen bonds remained undisturbed even in water
due to the shielding effect of the hydrophobic π-stacking pockets of quinolone [43]. As
another example, aggregation of the molecules of UPy derivative 76 (Figure 26), bearing a
cyclo-siloxane moiety as the hydrophobic unit, led to the formation of large-area nanosheets
with a lamellar structure [93].
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4. Applications Exploiting the H-Bonding Ability of Ureido-Heterocycles
4.1. Supramoleular Polymers

The ability of multiple H-bonding motifs to connect different molecular entities with
relatively strong secondary interactions that can usually be disrupted and reassembled in a
reversible way makes them ideal building blocks in large molecular assemblies. The great
interest shown towards these applications is demonstrated well by the several reviews
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that appeared recently covering a great variety of topics. As a consequence, only the main
areas are summarized here with reference to these reviews and in some cases some specific
examples are highlighted.

Macromolecules bearing hydrogen bonding end-groups can generally be synthesized
by post-polymerization functionalization or by the use of functional precursors to introduce
hydrogen bonding groups to the polymers [94]. The integration of H-bonding subunits into
different positions of the monomer strand not only aids the evolution of the polymer frame,
but it also helps in creating a matrix that is increased in strength and tolerates defects. This
could be explained by the energy-dissipating character of the sacrificial H-bonds [95].

The capability to form multiple H-bonds makes the ureido-pyrimidine moiety an ideal
unit in supramolecular polymers, i.e., in polymers in which the monomers are crosslinked
physically. The non-covalent interactions can be useful in the design of elastomers, self-
healing polymers, bioactive materials and molecular catalysts. Although there are some
examples of supramolecular polymers of ureas constructed using triply [96] or sextuply
H-bonded units [97], the most common motifs are those capable of forming quadruple
H-bonds [15,98,99].

Self-healing in materials means the re-formation of disrupted chemical bonds that
leads to the regain of original mechanical properties. Polymer gels incorporating H-bonding
sites such as ureido-triazine, ureido-deazapterin and UPy units are ideal for such purposes.
The main properties of these materials were also summarized in recent reviews [100,101].

Complementary H-bonding can also play a key role in adhesion processes as ob-
served between two glass surfaces modified with ureido-7-deazaguanine moieties, using
polystyrene films obtained by copolymerization of styrene and a 2,7-diamidonaphthyridine
functionalized styrene as the adhesive (see Figure 10 for the H-bonding pattern) [102].
Highly fluorinated linking groups were shown to minimize nonspecific adhesion [103].

4.2. Electrochemical and Photochemical Applications

UPy derivatives were also applied in the field of photochemistry, photo-physics
and electrochemistry. Electronic communication between quadruple H-bonded, electron
donating- and accepting monomers (77, 78, Figure 27) can occur via photoinduced elec-
tron transfer, which makes them suitable light-energy conversion agents. The attach-
ment of visible light responsive chromophores resulted in a system with fast single-step
electron-transfer and slow charge-recombination that could be exploited for light-energy
conversion [104].

Polymers constructed of multivalent UPy monomers capable of non-covalent
aggregation-induced emission were used for light-harvesting purposes. UPy derivatives of
tetra-phenylethylene (79, Figure 27) were shown to form supramolecular hyperbranched
polymers that could self-assemble further to nanoparticles [105]. The latter were used
as energy donors together with sulforhodamine 101 as energy acceptor to construct an
artificial light-harvesting system, in which the two components were held together by
electrostatic interaction between the dye and positively charged surfactant cetyltrimethy-
lammonium bromide (CTAB) covering the nanoparticles. Similar systems based on dimeric
UPy-dibenzyl-anthracene (80) [106] or UPy-tetra-phenylethylene units (81) [107] were de-
veloped that could be assembled to nanoparticles in aqueous media in the presence of
surfactants. Upon the addition of different ratios of energy acceptors, e.g., a benzothiadia-
zole derivative (82) in the latter case, tunable emittance could be achieved.
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4.3. Biomedical Applications

Hydrogels are three-dimensional networks composed of hydrophilic polymer chains
that possess the ability to absorb a large amount of water. These materials have widespread
biomedical applications [108–110]. UPy-containing gels undergo controllable gelation and
display self-healing properties due to their great number of repeating complementary
binding motifs. Moreover, they show great biocompatibility and thus can be applied even
in living organisms, so they can be ideal for use in tissue engineering and drug release.
As an example, no macroscopic adverse effects could be detected after intraperitoneal
administration of UPy-modified poly(ethylene-glycol) hydrogels in rats [111].

Bioactive materials were obtained by mixing polymer chains with UPy end-groups
and UPy-derivatized peptides, such as oligopeptides, with cell adhesion promoting effect.
In the in vivo experiments carried out by subcutaneous implantation in rats, vascularization
and infiltration of macrophages and, after a couple of days, even the formation of large
giant cells were observed [112].

Hyaluronic acid modified with side chains incorporating UPy moieties showed self-
healing and some other advantageous properties, such as improved lubrication, enhanced
free-radical scavenging, attenuated enzymatic degradation and improved in vivo reten-
tion [113].

Polymers, obtained by the co-polymerization of 83 (Figure 28) and N,N-dimethylacrylamide,
were shown to form transparent hydrogels that could be injected through a syringe needle
without losing their rheological characteristics [114]. The multiple hydrogen bonds could be
shielded effectively by the bulky hydrophobic adamantyl moiety. It was proposed that the
material could be used as injectable substitute for the eye’s vitreous humor as, after injection in
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the vitreous cavity, they could recover their gel-like properties. Preliminary in vitro evaluation
showed no cytotoxicity.
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Another injectable hydrogel was obtained by incorporating UPy units randomly
into ABA-type triblock copolymers built from central poly(ethylene-oxide) and terminal
poly(methyl-methacrylate) blocks. Drug release from the hydrogel was investigated using
bovine serum albumin as a model [115].

Hydrogels formed from poly(ethylene-glycol) chains coupled with UPy end-groups
via alkyl-urea spacers could be switched to a viscous liquid at pH > 8.5, which made it
possible to pass through a catheter used during intervention to treat myocardial infarc-
tion [116]. At the same time, it could form a hydrogel upon contact with the tissue. Also, a
growth factor could be incorporated into the hydrogel and its release could be controlled to
reduce scar collagen in myocardial infarction in pigs.

Poly(ethylene-glycol) chains end-capped with self-dimerizing ureido-cytosine moieties
(see Figure 14) were shown to assemble into nanospheres maintaining structural integrity
in a serum-containing biological medium [117]. These structures could be used as drug
carriers and induced selective apoptosis in cancer cells in vitro.

UPy-modified gelatin derivatives showed self-healing properties and, according to
in vitro studies, they were capable of release of metronidazole, an antimicrobial drug [118],
as well as 5-fluorouracil [119]. In the latter case, high UPy content and the presence of
Fe3+ ions made it possible to control drug release. Rheological investigation of a similar
system showed that gel formation was the result of ionic coordination, while strength and
self-healing property could be connected to the UPy moieties [120].

In vivo radioactive imaging of hydrogels in a porcine heart was realized by introducing
an 111In-binding moiety to a hydrogel precursor (84, Figure 28) [121].

Hybrid hydrogels, composed of conductive polyaniline chains, thermo-responsive
and self-healing UPy-decorated poly(4-styrenesulfonate) chains and Fe3+ ions, were found
to monitor vibrations created by human vocal chords, pulse beating or finger bending,
even after damaging and recovery, so they may have great potential in construction of
wearable devices [122]. Due to the easy formation of complementary H-bonds, even
infrared irradiation from human skin is sufficient to promote the self-healing of UPy
elastomers that can be used in wearable electronics to monitor different motions [123].
A nanocomposite sensor obtained from UPy-decorated multi-walled carbon nanotubes
and polymer networks with UPy units, was shown to respond to various deformations,
including stretching, bending, and twisting [124].

In order to form modular multi-layered scaffolds for tissue engineering, hierarchical
fibrous architectures were constructed from UPy-functionalized polymers and bioactive
UPy-peptide conjugates [125] by electrospinning [126,127]. It was shown, that by a modular
approach using different UPy-modified building blocks, both cell-adhesive and non-cell
adhesive characters could be incorporated into a single bi-layered scaffold.
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4.4. Applications in Catalysis

Based on their H-bonding properties, urea derivatives are widely used as either
basic or Lewis acidic organo-catalysts [128], but there are only a few examples for the
application of heterocyclic derivatives. H-donor ability of thiourea catalysts could be
increased electrostatically, by the quaternarization of the N-atom of the heterocyclic unit
attached to the urea core. Enhanced activity of catalysts 85 and 86 (Figure 29) was observed
by Kass in Friedel-Crafts alkylation of trans-β-nitro-styrene with N-methyl-indole, Diels-
Alder reaction between cyclopentadiene and methyl vinyl ketone and in the aminolysis of
styrene oxide with aniline [129]. The favorable effect of stronger binding was proved by
the theoretical calculations of Shao and Zou [130].
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Another useful strategy for enhancing catalytic activity and enantioselectivity of
(thio)urea catalysts was found to construct an internal H-bond by protonation of the
heterocyclic moiety [131]. Seidel compared the activity and enantioselectivity of a series
of protonated heterocyclic(thio)urea catalysts in the asymmetric addition reactions of
indoles to nitroalkenes and found pyridinium derivative 87 the most efficient one with
this structure.

In order to avoid self-aggregation that hinders catalytic effect, the bis-urea derivative
88 (Figure 30) was incorporated into periodic mesoporous organo-silica that prevents dimer
formation via isolation of the catalytic units. The co-condensation of 88 with Si(OEt)4 in
the presence of CTAB led to the formation of mesoporous material that was tested as a
heterogeneous catalyst in Henry reactions. In addition to good activity, another advantage
of the catalyst is its recyclability [132].
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H-bonding ability of UPy derivatives could be exploited even during recycling of a
homogenous copper catalyst by introducing a UPy moiety into the ligand (89, Figure 30).
After the reaction, a domino Sonogashira coupling/cyclization or an azide-alkyne cycload-
dition, the solvent was evaporated and a resin with a UPy tag (90) was added to the residue
of the mixture in CHCl3. Thus, due to the formation of H-bonds between the UPy moi-
eties, the catalyst could be filtered. The homogeneous catalyst was cleaved from the resin
by washing it with DMF and methanol and, after the evaporation of the solvent, it was
reused with only a small loss of activity [133]. Although this methodology requires a rather
tedious workup for efficient recycling, it is an interesting example of the utilization of
such assemblies.
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Equilibria between homo- and heterodimerization processes could be used to regulate
catalyst concentration in organocatalytic processes in which efficiency and selectivity are
usually concentration-dependent. Similarly to the equilibrium depicted in Scheme 5, at
high concentrations, a heterodimer structure (91′:35e2, Figure 31) is favored, while upon
dilution the homodimer form, a cyclic derivative in the present case (91dim), is preferred
(following Le Chatelier’s principle) and, thus, catalyst 35e will be released. This means
that concentration of the free catalyst will be regulated by the equilibrium between homo-
and heterodimeric structures. In the reaction of acetylacetone and trans-β- nitro-styrene,
it was proved that the application of UPy derivative 91 and catalyst 35e in a ratio of 1/2
resulted in an autoregulated system, in which TOF values did not depend significantly
on the total concentration of catalyst 35e, in contrast to the non-regulated variant [134].
Catalytic effect was due to a synergism between naphthyridine 35e and K2CO3, so for
efficient autoregulation, the concentration of the salt should also be kept constant [135].
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Further investigations showed that, while simple UPys had no catalytic effect on
Michael additions, the ester functionalized derivative 92 was also able to act as a phase-
transfer agent for K2CO3 (similarly to the naphthyridine derivative 35e) and, thus, to
catalyze Michael additions in CDCl3 [136].

4.5. Applications in Sensors

Due to their H-bond donor ability, urea and thiourea derivatives are capable of binding
various anions, so they can be useful building blocks in sensory devices [137,138]. Thiourea
compounds usually form stronger bonds with anionic guests because of the higher acidity
of N-H groups. In order to increase the number of interactions between the hosts and guests,
the most efficient receptors incorporate multiple urea/thiourea moieties. The introduction
of heterocycles can also lead to enhanced binding and/or selective complexation of a
specific anion that is often accompanied by structural changes in the urea host.

Stronger association can be achieved by the incorporation of heterocycles with NH
functionalities to increase the number of H-bonds between hosts and oxo-anion guests,
while a lone pair of basic nitrogen atoms may facilitate anion binding by preorganization
of the hosts in the proper conformation. The superiority of heterocyclic ureas over other
derivatives was shown by the higher affinity of diindolyl-ureas then diphenyl-urea [139],
and also by the stronger binding of carboxylates to ureido-indols (e.g., 93a, Figure 32) than
amido-derivatives (e.g., 94) [140]. Interestingly, on comparing the affinity of urea (93b)
and thiourea derivatives (93c), the more acidic thiourea group showed a lower association
constant, probably due to steric hindrance between the large sulfur atom and the aromatic
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CH groups of the receptor in the conformation necessary for the formation of the proper
H-bonding motif.
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derivatives (A–C).

Based on NMR studies, different complexation of halide- (Figure 32, A), nitrate-
(Figure 32, B) and acetate (Figure 32, C) ions by the receptor 93d could be assumed [141]. The
presence of the amido group was essential to bind acetate, but nitrate was found to interact
only with the urea functionality. Interestingly, much higher association constants towards
halides were obtained for the unsubstituted derivative 95a (Kassoc(95a:Cl−) = 4.4× 105 M−1 in
CDCl3, Kassoc(93d:Cl−) = 9 × 103 M−1 in CDCl3). This phenomenon was assumed to be due
to steric repulsion and unfavorable dipoles in receptor 93d after the change from the anti–anti
to the syn–syn conformation upon anion binding.

Thiourea derivative 95b was shown to be a good chloride/bicarbonate exchange
agent in phospho-lipide or phospho-lipide/cholesterol membranes. As mis-regulation of
either chloride- or bicarbonate transport can result in a number of serious diseases, similar
compounds may find applications in medicinal chemistry [142].

1,3-Diindolylureas (e.g., 96, Figure 33) were shown to bind oxo-anions, such as acetate,
benzoate and dihydrogen phosphate, with Kassoc > 104 M−1 in DMSO-d6 containing 0.5%
water, but their affinity for chloride was low (Kassoc = 128 M−1). On the increase in the
water content to 10%, a considerable selectivity was observed for dihydrogen phosphate
(Kassoc(H2PO4

−)/Kassoc(AcO−) = 8.5). Solid state structures were found to be considerably
different from those in solution. X-ray measurements showed that two or three ureas could
bind to each anion so the complexes were stabilized by eight or twelve hydrogen bonds,
while solution-phase NMR studies proved the formation of 1:1 complexes in most cases.
Thiourea receptors were less effective again [140]. It should be mentioned, however, that
1,3-diindolylureas (e. g. 97) were also capable to bind fluoride ions. According to DFT
calculations, the presence of fluoride induced a conformational change from the anti–anti
to the syn–syn conformer [143].
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Figure 33. Di-indolyl-urea derivatives (96–99) used as anion receptors and anion complexation of 
2-amido-derivative 98a (A,B). 

Based on the results of NMR titrations, different modes for binding were assumed 
for complexes of the anion receptor containing six hydrogen bond donor groups (98a) 
with carboxylates (A) and dihydrogen phosphate (B). Upon addition of dihydrogen 
phosphate in excess, a proton transfer process may also occur, and the deprotonation of 
the complexed anion results in the formation of a mono-hydrogen phosphate-receptor 
complex and H3PO4 [144]. 

Strong binding of sulfate could be observed for bis-amide 98b with Kassoc > 104 M−1 in 
DMSO-d6 containing 10% water, and X-ray structure proved the formation of eight 
H-bonds with the involvement of urea, indole and amide NH protons [145]. 

7,7′-Diureido-2,2′-diindolylmethanes showed preferential binding of tetrahedral 
oxo-anions, such as hydrogen sulfate and dihydrogen phosphate, over chloride or ben-
zoate, with association constants between 235–535 M−1 for compound 99 even in metha-
nol [146]. 

Carbazolyl-ureas were found to be even better receptors for oxo-anions with associ-
ation constants exceeding 104 M−1 for acetate, 5 × 103 M−1 for benzoate and 6 × 103 M−1 for 
dihydrogen phosphate (in DMSO-d6 containing 0.5% water). Moreover, the fluorescence 
of compound 100 (Figure 34) could be quenched by benzoate, which makes it an espe-
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2-amido-derivative 98a (A,B).

Based on the results of NMR titrations, different modes for binding were assumed for
complexes of the anion receptor containing six hydrogen bond donor groups (98a) with
carboxylates (A) and dihydrogen phosphate (B). Upon addition of dihydrogen phosphate
in excess, a proton transfer process may also occur, and the deprotonation of the com-
plexed anion results in the formation of a mono-hydrogen phosphate-receptor complex
and H3PO4 [144].

Strong binding of sulfate could be observed for bis-amide 98b with Kassoc > 104 M−1

in DMSO-d6 containing 10% water, and X-ray structure proved the formation of eight
H-bonds with the involvement of urea, indole and amide NH protons [145].

7,7′-Diureido-2,2′-diindolylmethanes showed preferential binding of tetrahedral oxo-
anions, such as hydrogen sulfate and dihydrogen phosphate, over chloride or benzoate,
with association constants between 235–535 M−1 for compound 99 even in methanol [146].

Carbazolyl-ureas were found to be even better receptors for oxo-anions with associa-
tion constants exceeding 104 M−1 for acetate, 5× 103 M−1 for benzoate and 6× 103 M−1 for
dihydrogen phosphate (in DMSO-d6 containing 0.5% water). Moreover, the fluorescence of
compound 100 (Figure 34) could be quenched by benzoate, which makes it an especially
useful sensor for this anion [147]. Analogous thiourea derivatives showed weaker binding
and lower selectivity [148].

Among other receptors, association constants of diindolyl- and dicarbazolyl ureas
for 11 different carboxylate anions were determined [149]. These derivatives were proved
to be better acceptors than bis-or tris-ureas lacking heterocyclic functionalities. It was
revealed that, beside differences in acidity/basicity of hosts and guests, steric effects had a
considerable effect on binding strength. As an example, receptor 100 established only weak
interaction with acetate, while it was the best binder for pivalate. This was explained by
the perfect fitting of the latter into the cavity of the receptor that allowed for an interaction
between the tBu groups of the anion and the carbazole rings. At the same time, acetate
is too small for such an effect. In contrast, carbazole 101 showed similar affinity for both
carboxylates: in this case acetate had the right size, while pivalate was too large.

Involvement of different tautomer forms of benzimidazolyl-ureas were observed in
complexation with different anions. In the absence of guests, compounds 102 and 103 were
stabilized by intramolecular H-bonds that were retained in the presence of chloride ions
(Figure 34, A). At the same time, the addition of acetate resulted in the formation of the
other tautomer that made it possible to develop more interactions between hosts and guests
(Figure 34, B, C) [150].
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Figure 34. Anion receptors with carbazole (100, 101) and benzimidazole functionalities (102, 103) and
anion complexation of benzimidazolyl derivatives (A–C).

The chiral macrocycle 104 (Figure 35) showed a preference to bind N-protected L-
aspartate and L-glutamate over the D-enantiomers with Kassoc > 104 M−1 in CH3CN or
DMSO [151]. According to DFT studies, eight H-bonds could be established between the
host and the L-amino acid derivatives.

Molecules 2023, 28, x FOR PEER REVIEW 35 of 46 
 

 

N

S

N
HH NN

O NH OHN
Ph Ph

N

S

N
H HN N

OHNO NH
PhPh

S
N

H
N

NH
Ph

Ph

ON
H

N

N
H

Ph

Ph

O

S
N

H
N

N
H

O N
H

N

N
H O

O

O

O
O NHR

H

104 A  
Figure 35. Chiral macrocycle 104 and its complex with L-glutamate (A). 

Quinoline derivatives with various substituents in the amide and urea functionali-
ties were found to be excellent and selective receptors for fluoride ions, with Kassoc = 1.5 × 
105 M−1 (in CDCl3) for 105 (Figure 36) [152]. The difference in the binding strength for 
different anions was explained by the size of the cavity that accommodated well the small 
fluoride anion but not the larger anions that had to be located above the plane of the re-
ceptor. 

N
O

NH

O

HN

OtBu

C6H11

Ph 105

Fe
NH

NH

NH
O

O HN

N

N
106

 
Figure 36. Fluoride sensors. 

Behavior of the ferrocene-containing heteroditopic receptor 106 towards a series of 
anions could be investigated not only by NMR titrations, but also by UV–Vis spectros-
copy and CV. Cathodic shift was observed only in the presence of fluoride ions and, to a 
lesser extent, upon addition of H2PO4−. Also, a salient association constant (Kassoc = 9 × 106 
M−1 in DMSO-d6) was measured during complexation of the former anion [153]. 

During the investigation of a series of triazolyl receptors, ureido derivatives were 
shown to have higher affinity towards chloride and bromide ions than the analogous 
amide type compounds [154]. The incorporation of the pyridyl group resulted in a pre-
organization of the hosts 107a,b (Figure 37) that led to increased interaction than that 
observed for the pyrimidine-type compound (108) adopting another conformation in the 
non-complexed form. Thiourea receptors had slightly higher association constants than 
urea derivatives (Kassoc(107a:Cl−) = 1.0 × 103 M−1, Kassoc(107b:Cl−) = 2.5 × 103 M−1, Kas-

soc(108:Cl−) = 1.7 × 102 M−1 in CD3CN). 

108

N N

N N

N N N N

H H

S
Bu

HN
HN

SBu

NH
NH

S Bu

NN NN
N N

N

N

N
X

N

N
X

H

R
H

R
H

H
H H

107a: X = O, R = C(CH3)2CH2CH3
107b: X = S, R = Bu  

Figure 37. Triazolyl receptors for chloride and bromide ions. 

Figure 35. Chiral macrocycle 104 and its complex with L-glutamate (A).

Quinoline derivatives with various substituents in the amide and urea functionalities were
found to be excellent and selective receptors for fluoride ions, with Kassoc = 1.5 × 105 M−1

(in CDCl3) for 105 (Figure 36) [152]. The difference in the binding strength for different
anions was explained by the size of the cavity that accommodated well the small fluoride
anion but not the larger anions that had to be located above the plane of the receptor.
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Figure 36. Fluoride sensors.

Behavior of the ferrocene-containing heteroditopic receptor 106 towards a series of
anions could be investigated not only by NMR titrations, but also by UV–Vis spectroscopy
and CV. Cathodic shift was observed only in the presence of fluoride ions and, to a lesser
extent, upon addition of H2PO4

−. Also, a salient association constant (Kassoc = 9 × 106 M−1

in DMSO-d6) was measured during complexation of the former anion [153].
During the investigation of a series of triazolyl receptors, ureido derivatives were shown

to have higher affinity towards chloride and bromide ions than the analogous amide type
compounds [154]. The incorporation of the pyridyl group resulted in a preorganization of the
hosts 107a,b (Figure 37) that led to increased interaction than that observed for the pyrimidine-
type compound (108) adopting another conformation in the non-complexed form. Thiourea
receptors had slightly higher association constants than urea derivatives (Kassoc(107a:Cl−) =
1.0× 103 M−1, Kassoc(107b:Cl−) = 2.5× 103 M−1, Kassoc(108:Cl−) = 1.7× 102 M−1 in CD3CN).
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As another advantage of the heterocyclic moieties, they may ensure the binding of
cations, which, together with the urea functionality, results in a complex formation with
anion-cation pairs.

Reversible protonation could be followed by a change in the color of solution of
ferrocenyl ureido-pyrimidine 48a from orange to violet and back upon multiple protona-
tion/deprotonation cycles [155]. The addition of acids resulted in a conformational change
in the ferrocene derivative leading to a DDA H-bonding array (48aH+, Scheme 16) that can
serve as a proper binding site for the anion of the acid. In contrast to the non-protonated
form, the slow exchange between the two conformers (48aH+ and 48a′H+) of the com-
plexes obtained with CF3SO3

− and BF4
− anions made them distinguishable even at room

temperature. At the same time, separate signals of the two isomers could be detected only
by low temperature 1H NMR experiments in the presence of CF3CO2H, which showed
a rapid equilibrium between non-protonated, complexed and protonated (decomplexed)
forms. The differences were also reflected in the electrochemical behavior of the complexes.
Gradually decreasing levels of peak currents and a new peak at higher potential with
increasing intensity were observed in the CVs obtained by the titration of 48a either with
CF3SO3H or HBF4. In contrast, a gradual shift of both the cathodic and anodic peak could
be measured in the presence of increasing amounts of CF3CO2H.
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The formation of an [Ag(109)2](NO3)·MeOH assembly (Figure 38A) was observed 
upon addition of AgNO3 to urea 109 in a methanol/water = 1/1 mixture, while CF3SO3− 
and SO42− salts did not form analogous species [156]. This complexation might find ap-
plication in ion sequestration as was shown for Cu(NO3)2 using a polymer bound variant 
of 109 as the trapping agent [157]. 

Scheme 16. Acid-induced conformation change in ferrocenyl derivative 48.

The formation of an [Ag(109)2](NO3)·MeOH assembly (Figure 38A) was observed
upon addition of AgNO3 to urea 109 in a methanol/water = 1/1 mixture, while CF3SO3

−

and SO4
2− salts did not form analogous species [156]. This complexation might find

application in ion sequestration as was shown for Cu(NO3)2 using a polymer bound
variant of 109 as the trapping agent [157].
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The [Ag(110)2]+ host, obtained from an analogous thiazolyl derivative, could form
cage-like host-guest complexes with 2:1 stoichiometry with SO4

2− and SiF6
2− ions even in

DMSO, a highly competitive medium [158].
Metal-organic cages with M4L6 (M = Ni, Zn) stoichiometry, obtained via coordination-

driven self-assembly, were shown to be capable of binding tetrahedral EO4
n− type oxo-

anions (E = S, Se, P, Cr, Mo, W) [159,160]. In these tetrahedral cages, the four metal ions were
in the vertices and the ligands occupied the edges of the tetrahedron. The bipyridyl units of
the ligands served as coordination sites for the metal ions and the urea functionalities were
responsible for anion binding in the cavity. The self-assembly was found to be templated
by the anions, and upon removal of the latter the cages rearranged into different assemblies.
Due to this instability in the absence of anions, only a lower limit could be estimated for
the association constant of the Ni4(111a)6

8+ cage for sulfate binding (Kassoc> 6 × 106 M−1).
In case of the [Zn4(111b)6(EO4)]6+ cages, relative anion encapsulation selectivity followed
the order of PO4

3− � CrO4
2− > SO4

2− > SeO42− > MoO4
2− > WO4

2− as determined by
NMR experiments.
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Coordination of metals to the heterocyclic functionality may also make it possible to
follow anion binding by photochemical methods. In this regard, the applicability of several
Ru-complexes was tested. Emission spectral studies showed that the emission intensity of
complex 112a (Figure 39) was completely quenched (‘switched off’) in the presence of an excess
of F−, CH3COO− and H2PO4

− ions, but only a small change in the intensity of emission was
observed for Br−, Cl−, HSO4

− or I− [161]. H-bonded adducts with 1:1 stoichiometry were
formed at relatively low concentration of the first three anions, while at higher concentrations
a deprotonation of the receptor took place. The same conclusions could be drawn from
experiments carried out with the Ru-complex 112b, but association constants were lower [162]
(e.g., Kassoc(112a:F−) = 2.2 × 105 M−1. Kassoc(112b:F−) = 6.5 × 104 M−1 in CH3CN).
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Figure 39. Ru-and Eu-based colorimetric sensors for anions.

In contrast to the previous examples, no change was observed in the emission of com-
plex 113 in the presence of fluoride [163]. Phosphate anions could be detected selectively
over other anions, such as acetate and sulfate. Moreover, the receptor could differentiate
between phosphate and pyrophosphate, as the former caused an increased emission, and,
on the contrary, emission could be quenched in the presence of the latter.

Ru-terpyridine complexes 114a,b showed an affinity order of different anions of Cl− >
NO2

− > Br− > NO3
− > I− [164]. Similarly to the previous observations, binding constants

for the nitro derivative 114a were almost an order of magnitude larger (Kassoc(114b:Cl−)
= 4.5 × 105 M−1. Kassoc(114a:Cl−) = 2.0 × 106 M−1, Kassoc(114b:I−) = 9.5 × 103 M−1.
Kassoc(114a:I−) = 2.5 × 104 M−1 in CH3CN).

The Ru-complex with the anion binding triazolyl-urea unit (115a) could form com-
plexes with phosphates and carboxylates [165]. It was proved by NMR studies that the
strongly basic phosphate ions were bound by both urea NH and triazol CH groups, while
carboxylates formed H-bonds only with the urea moiety. Phosphate anions could selectively
be sensed in the presence of other competitive anions via enhancement of the emission of
the complex. Similar behavior was observed with complexes 115b and 115c, but association
constants with the latter were an order of magnitude larger [166].
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The addition of AcO−, H2PO4
−, Cl−, Br− and I−, ions into the solution of Eu-complex

116 led to significant changes in the Eu(III) emission [167]. Moreover, it was fully quenched,
in the presence of AcO− and H2PO4

−. Titration with F− resulted in an initial enhancement
of emission up to one equivalent, followed by quenching when the anion was in excess. This
was explained by initial binding of the anion to the metal center that led to an increase in
the Eu(III)emission, followed by quenching of the emission by complex formation between
the anion and the urea moieties.

In contrast to the applications discussed above, self-assembly of molecules with a UPy
moiety was utilized during the construction of a fluoride sensor 117 (Scheme 17) [168]. The
9-methylene-anthracene unit made it possible to determine binding strength by fluorescence
titration. Addition of less than one equivalent of fluoride led to a small decrease in the
intensity of fluorescence, while the presence of the anion in excess led to quenching,
i.e., the formation of a non-emissive complex. This phenomenon was explained by the
deprotonation of the UPy derivative 117 and formation of the very stable HF2

− anion.
Other halide ions induced no changes in the spectra.
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5. Summary and Outlook

The most important property of urea-functionalized heterocycles is their capability
to establish multiple H-bonds to form either homodimers or host–guest complexes with
other molecules bearing a complementary H-bonding array. The bonding pattern is often
influenced by conformational changes and the existence of different tautomeric forms.
At the same time, with the choice of a suitable heterocycle as well as the introduction of
other functionalities, the structure can often be pushed towards the array necessary for a
given interaction. Although strongest binding can mostly be achieved by UPys, ureido
derivatives of other heterocycles, bearing triple- or quadruple H-bonding motifs, can also be
useful elements in different assemblies. Moreover, the heterocycles may perform a number
of other functions beyond offering further H-bond donor/acceptor groups: they can be
used as metal binding sites, redox responsive or photo-switchable elements. Bifunctional
molecules can serve as monomers in supramolecular polymers, often with self-healing
properties. The advantages of such systems in material science applications have been
proved. In addition, their biocompatibility and advantageous mechanical properties make
them ideal candidates for biomedical applications from drug release to tissue engineering.
This is among the most rapidly expanding fields of research concerning ureido-heterocycles.
There are some really promising results and the utility of some methodologies was proved
even in in vivo experiments. At the same time, it there is still a long way to go to achieve
applicability in human medicine.

Another interesting area is the application of urea-functionalized heterocycles as
building blocks in sensory devices where redox- pH- and photoactivity of the heterocycles
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can be prominently profitable. Complexation of anions, mainly that of oxo-anions, is a well-
explored field; at the same time, sensing of neutral molecules, especially in aqueous media,
is more problematic. In this regard, the introduction of the proper functionalities to ensure
the formation of hydrophobic pockets, as is shown by some examples for aggregation in
water, seems to be essential.
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