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Abstract: An unprecedented photocatalyst, Sm2EuSbO7, was successfully fabricated in this paper,
through a high-temperature solid-state calcination method, which represented its first ever syn-
thesis. Additionally, using the solvothermal method, the Sm2EuSbO7/ZnBiSbO5 heterojunction
photocatalyst (SZHP) was fabricated, marking its debut in this study. XRD analysis confirmed that
both Sm2EuSbO7 and ZnBiSbO5 exhibited pyrochlore-type crystal structures with a cubic lattice,
belonging to the Fd3m space group. The crystal cell parameter was determined to be 10.5682 Å or
10.2943 Å for Sm2EuSbO7 or ZnBiSbO5, respectively. The band gap width measured for Sm2EuSbO7

or ZnBiSbO5 was 2.73 eV or 2.61 eV, respectively. Under visible light irradiation for 150 min (VLTI-
150 min), SZHP exhibited remarkable photocatalytic activity, achieving 100% removal of parathion
methyl (PM) concentration and 99.45% removal of total organic carbon (TOC) concentration. The
kinetic constant (k) for PM degradation and visible light illumination treatment was determined to be
0.0206 min−1, with a similar constant k of 0.0202 min−1 observed for TOC degradation. Remarkably,
SZHP exhibited superior PM removal rates compared with Sm2EuSbO7, ZnBiSbO5, or N-doped TiO2

photocatalyst, accompanied by removal rates 1.09 times, 1.20 times, or 2.38 times higher, respectively.
Furthermore, the study investigated the oxidizing capability of free radicals through the use of
trapping agents. The results showed that hydroxyl radicals had the strongest oxidative capability,
followed by superoxide anions and holes. These findings provide a solid scientific foundation for
future research and development of efficient heterojunction compound catalysts.

Keywords: Sm2EuSbO7; Sm2EuSbO7/ZnBiSbO5 heterojunction photocatalyst; parathion methyl;
visible light irradiation; photocatalytic activity; degradation pathway; degradation mechanism

1. Introduction

To meet the incremental international demand for foodstuffs, more and more pesticides
are used to boost crop yields in most developing countries [1–4]. It is worth mentioning
that organophosphate pesticides (OEPs) are extensively utilized for their cost effectiveness
and efficacy in managing pests, weeds, and diseases [5–7]. However, it is worth noting
that fewer than 1% of the applied OEPs in agricultural production effectively fulfill their
intended function of pest control. Consequently, a significant portion of the remaining
OEPs remains in the soil, leading to the pollution of water resources [8,9]. Addressing
the pressing need to efficiently eliminate pesticide residues from sewage and ensure the
purification of water resources is of utmost importance.

Parathion methyl (PM), one of the most widely used OEPS, has been studied for its
removal from water using various methods. Nevertheless, each of the methods has its
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limitations. Chemical oxidation, despite its effectiveness, comes with high costs and the
risk of introducing additional toxic pollutants into water [10]. Meanwhile, biodegradation
techniques are limited to treating diluted wastewater [11–13]. Similarly, methods like ad-
sorption, precipitation, and membrane filtration present challenges in terms of operational
costs, implementation complexities, and overall efficacy [14–17].

To address these limitations, photocatalytic technology has emerged as a potential
approach for effluent treatment [18–22]. Photocatalytic technology utilizes solar energy
to drive photocatalysts and realize the decomposition of water to produce free radicals
with highly oxidative and reductive properties [23,24]. The free radicals can effectively
remove organic pollutants without generating secondary pollution. Additionally, the
photocatalyst has the advantage of being recyclable as well [25]. Therefore, the key to
achieving commercial industrialization lies in the development of optimal photocatalysts
that exhibit superior efficiency, significant specific surface area, maximum utilization of
solar energy, and recyclability.

Owing to the wide band gaps, conventional metal oxide photocatalytic materials,
namely titanium dioxide and zinc oxide, are mainly restricted to utilizing ultraviolet
radiation, which dominates merely 5% of the solar energy wavelength range [26–31]. Thus,
the remaining optical energy is wasted. To realize the utilization of the rest of the energy
(43%), it is feasible to construct composite materials [32,33]. The composite materials
have shown significant improvements in sunlight absorption range and photocatalytic
performance (PCP) compared with single metal oxide catalysts [34–36]. In accordance with
the conclusions drawn from previous investigations, AB2O5 and A2B2O7 mixtures have
demonstrated superior PCP under visible light irradiation (VLTI) [37–41]. Karimi et al.
have executed a study about the photocatalytic degradation (PDD) of metronidazole using
Fe2TiO5 under UV-Vis lamp irradiation. Similarly, Zhang et al. made a indagation of the
impressive PDD potential of La2Ce2O7 powders in the presence of methyl orange [42,43].

In previous work, we investigated the potential of structural modification on Bi2InTaO7,
a visible light-responsive photocatalyst with a stable pyrochlore structure [44]. Addition-
ally, we have drawn inspiration from previous studies on ZnO to guide our research. For
example, Selvaraj et al. conducted a synthesis of Sm-doped ZnO and observed a prominent
betterment in the PDD of methyl blue compared with pure ZnO. This finding suggests
that the incorporation of Sm into ZnO has the potential to enhance its PCP [45]. Likewise,
Zong et al. synthesized Eu-doped ZnO and observed a notable enhancement in the PDD of
methyl orange in relation to pristine ZnO. This signifies that the incorporation of Eu can
considerably ameliorate the PDD of organic dyes [46]. Furthermore, Nasser et al. synthe-
sized Sb-doped ZnO, which demonstrated remarkable enhancements in the degradation of
rhodamine B compared with undoped ZnO [47]. These studies collectively accentuate the
effectiveness of rare earth element (such as Sm and Eu) and Sb introduction in enhancing
the PCP of ZnO. Therefore, by replacing certain elements in Bi2InTaO7, such as Bi3+ with
Sm3+, In3+ with Eu3+, and Ta5+ with Sb5+, we hypothesized that the novel Sm2EuSbO7
photocatalyst possessed improved PCP.

Additionally, the construction of heterostructure photocatalysts has shown great
promise in enhancing PCP [48–51]. The interlaced band structure within the heterostructure
forms a tight interface, establishing a strong internal electric field near the interface, thereby
achieving efficient transfer and separation of light-activated carriers [52–55]. Zhao et al.
developed a highly effective Ag3VO4/BiVO4 heterojunction photocatalyst, demonstrating
superior effectiveness in degrading Bisphenol S as compared with pure Ag3VO4 and
BiVO4 [56]. Lu et al. demonstrated that a Bi2O3/Bi2SiO5 heterojunction photocatalyst
achieved a high photodegradation rate for organic pollutants [57].

Based on these insights, we designed and prepared a novel heterostructure photo-
catalytic material, Sm2EuSbO7/ZnBiSbO5, with the aim of significantly removing PM
from pesticide wastewater under VLTI. The experimental findings demonstrated that
the Sm2EuSbO7/ZnBiSbO5 heterojunction photocatalyst (SZHP) exhibited remarkable
enhancement in the PDD of PM, achieving a removal rate of 91% within 100 min of VLTI.
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This highlights its superior PCP relative to NiO-Bi2MoO6 (a nearly 80% removal rate)
and Ag-TiO2 nanoparticulate film (a nearly 60% removal rate) in parallel experimental
scenarios [58,59].

In this research endeavor, we characterized the structures of pure-phase Sm2EuSbO7
and single-phase ZnBiSbO5 by means of an X-ray diffractometer (XRD), ultraviolet-visible
(UV-Vis) spectrophotometer, Fourier transform infrared (FTIR) spectrometer, Raman spec-
trometer, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM),
and energy dispersive X-ray spectroscopy (EDS). Furthermore, we evaluated the perfor-
mance of these photocatalysts, including SZHP, Sm2EuSbO7, ZnBiSbO5, and nitrogen-
doped titanium dioxide (N-TO), by studying their degradation efficiency of PM in pesticide
wastewater under VLTI. The main innovation of this study lies in the first synthesis of
an innovative visible-light-responsive Sm2EuSbO7 photocatalyst with high PCP using
the high-temperature solid-state calcination method. Furthermore, the findings of this
study contribute significantly to the betterment of a highly effective and safe photocatalytic
system for the PDD of PM in pesticide wastewater.

2. Results and Discussion
2.1. X-ray Diffraction Analysis

Figure 1a showcases the XRD pattern of the Sm2EuSbO7/ZnBiSbO5 heterojunction
photocatalyst (SZHP), which was fabricated using the solvothermal method. In Figure 1b,c,
the XRD patterns of ZnBiSbO5 and Sm2EuSbO7 prepared via the solid-state calcination
method are presented. The prominent peaks observed in the XRD pattern of SZHP coincide
with those of both ZnBiSbO5 and Sm2EuSbO7, indicating the successful synthesis of SZHP.
The experiment data of Sm2EuSbO7 and ZnBiSbO5 compounds were subjected to Rietveld
refinement using the Materials Studio program. The refinement results for Sm2EuSbO7 and
ZnBiSbO5 compounds are presented in Figures 2a and 3a correspondingly. The Rietveld
refinement of Sm2EuSbO7 (RP = 2.42%) and ZnBiSbO5 (Rp = 15.81%) confirmed excellent
agreement in the comparison of experimental and calculated intensities, indicating a high
level of precision in characterizing the pyrochlore-type structure. Meanwhile, the results
demonstrated that both compounds were single-phase and cubic lattice with the space
group Fd3m. According to the interplanar crystal spacing d of every diffraction peak,
the diffraction angle of every diffraction peak, and the wavelength of the copper target
(1.5406 Å) in the X-ray diffractometer, the crystal lattice dimensions of Sm2EuSbO7 and
ZnBiSbO5 were determined to be 10.5862 Å and 10.2943 Å, respectively. The refinement
model included O atoms, which showed excellent agreement in the comparison of exper-
imental and calculated intensities. Figures 2b and 3b illustrate the atomic structures of
Sm2EuSbO7 and ZnBiSbO5 severally. The atoms’ positions and the geometric factors of
Sm2EuSbO7 and ZnBiSbO5 are provided in Tables 1 and 2, respectively. These observations
support the notion that the synthesized compounds possess excellent structural stability
and could potentially be applied as efficient photocatalysts in various fields [60].
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Figure 1. XRD spectra of as-fabricated specimen: (a) SZHP, (b) ZnBiSbO5, (c) Sm2EuSbO7.
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Figure 2. (a) XRD patterns and Rietveld refinement and (b) The atomic structure (Red atom: O,
purple atom: Eu or Sb, green atom: Sm) of Sm2EuSbO7.
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Figure 3. (a) XRD patterns and Rietveld refinement and (b) the atomic structure (Red atom: O, green
atom: Zn, purple atom: Bi or Sb) of ZnBiSbO5.

Table 1. Architecture dimensions of Sm2EuSbO7 fabricated by the solid-state calcination method.

Atom x y z Occupied Index

Sm 0 0 0 1
Eu 0.5 0.5 0.5 0.5
Sb 0.5 0.5 0.5 0.5

O(1) −0.175 0.125 0.125 1
O(2) 0.125 0.125 0.125 1

Table 2. Architecture dimensions of ZnBiSbO5 fabricated by the solid-state calcination method.

Atom x y z Occupied Index

Zn 0.5 0.5 0.5 1
Bi 0 0 0 1
Sb 0.5 0.5 0.5 1

O(1) 0.125 0.125 0.125 0.5
O(2) 0.125 0.125 0.375 1

Pyrochlore-type A2B2O7 compounds are renowned for their exceptional structural
stability. The x co-ordinates of the O(1) atom carries significant weight in the analysis of
the crystal architecture and is universally acknowledged as a fundamental parameter for
characterizing the structural properties, indicating its significance in characterizing the
material. The x value of 0.375 signifies the equivalence between the six A-O(1) connection
dimensions and the two A-O(2) connection dimensions [61]. It is observed that deviations
from x = 0.375 indicate a distortion in the MO6 (M = Eu3+ and Sb5+) octahedra, implying
a crystal structure distortion in Sm2EuSbO7 [61]. Carrier separation realizes a prominent
role in the efficient PDD of PM under VLTI, as it prevents the recombination of light-
activated carriers. In some photocatalytic materials, including BaTi4O9 and Sr2M2O7
(M = Nb5+ and Ta5+), a local distortion of MO6 octahedra has been reported to prevent
charge recombination and improve PCP [62,63]. Therefore, the distortion of MO6 (M = Eu3+
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and Sb5+) octahedra in Sm2EuSbO7 could potentially enhance PCP. Sm2EuSbO7 has a 3D
interconnected framework of common-corner MO6 (M = Eu3+ and Sb5+) octahedra, which
are connected into chains by Sm3+ ions. The crystal structure of Sm2EuSbO7 displays
two types of Sm-O connection dimensions, where the six Sm-O(1) connection dimensions
(2.491 Å) are longer than the two Sm-O(2) connection dimensions (2.230 Å). The six M-O(1)
(M = Eu3+ and Sb5+) connection dimensions were 2.020 Å, and the M-Sm (M = Eu3+ and
Sb5+) connection dimension was 3.642 Å. The M-O-M (M = Eu3+ and Sb5+) interatomic
angle was 128.640◦, while the Sm-M-Sm (M = Eu3+ and Sb5+) interatomic angle was 135.00◦

in the crystal architecture of Sm2EuSbO7. The Sm-M-O (M = Eu3+ and Sb5+) interatomic
angle was 139.203◦. The M-O-M interatomic angle affects the delocalization of the excitation
state. A smaller deviation from 180◦ in the M-O-M angle enhances the luminescent function.
The M-O-M interatomic angle in Sm2EuSbO7 affects PCP by influencing the migration
of light-activated electron–hole pairs, which affects their potential to reach surface-active
centers of photocatalytic substances. Additionally, the larger Sm-Eu-O interatomic angle or
Sm-Sb-O interatomic angle in Sm2EuSbO7 increases its PCP. The effect of PM degradation
under VLTI with Sm2EuSbO7 as a photocatalyst mainly depends on its crystalline and
electronic structure.

2.2. FTIR Analysis

To determine the presence of functional groups and chemical bonding in SZHP, as well
as Sm2EuSbO7 and ZnBiSbO5, an FTIR spectrum was obtained using an FTIR spectrometer.
Figure 4 illustrates the FTIR spectrum of SZHP, prepared via the solvothermal method, as
well as Sm2EuSbO7 and ZnBiSbO5 prepared through the solid-state calcination method.
The FTIR spectrum exhibits several characteristic absorption peaks. These include peaks as-
sociated with Sm-O, Zn-O, Bi-O, Sb-O, Sb-O-Sb, and Eu-O bonds. The stretching oscillation
of Sm-O is identified at 520 cm−1 [64–66], while the bending oscillation of Zn-O occurs at
468 cm−1 [67]. The stretching oscillation of Bi-O is associated with peaks at 428 cm−1 [68,69],
and the bending oscillation of Sb-O is manifest at 458 cm−1, 583 cm−1, and 599 cm−1 [70].
The bending oscillation of Sb-O-Sb is represented by peaks at 655 cm−1 and 658 cm−1 [71].
Additionally, the stretching oscillation of Eu-O is detected at 422 cm−1 [72,73]. Furthermore,
the broad peak observed at 3431 to 3576 cm−1 indicates the stretching oscillations of O-H
groups from chemisorbed water molecules [74,75]. The peak at 1632 cm−1 is in agreement
with the bending oscillation manner of these O-H groups [76]. The multiple bands observed
at 1379 to 1632 cm−1 can be in association with the oscillations of C-H bonds from adsorbed
water [77,78].
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2.3. Raman Analysis

In order to obtain the interactions among the various chemical bonds within SZHP,
Sm2EuSbO7, and ZnBiSbO5, a Raman spectrum was obtained with a Raman spectrometer.
Figure 5 depicts the Raman spectrum of SZHP prepared by the solvothermal method, as
well as Sm2EuSbO7 and ZnBiSbO5 prepared via the solid-state calcination method. The
Raman spectrum of Sm2EuSbO7 exhibits characteristic modes, including the Ag internal Sm-
O stretching modes at 172 cm−1 [79], as well as the E1g main vibrational modes at 375 cm−1,
446 cm−1, and 703 cm−1, in association with the stretching oscillation of Eu-O bonds [80].
Additionally, peaks at 221 cm−1, 282 cm−1, 476 cm−1, and 529 cm−1 can be designated to
the bend oscillation of Sb-O and Sb-O-Sb [81,82]. The Raman spectra of ZnBiSbO5 reveal
a broad band at 210 cm−1, 390 cm−1, and 730 cm−1, which can be in association with the
stretching oscillations of Bi-O, Sb-O, and Zn-O, respectively [81–86]. Notably, the Raman
spectra of SZHP exhibited strong peaks encompassing the distinct absorption peaks of both
Sm2EuSbO7 and ZnBiSbO5, including peaks at 173 cm−1, 218 cm−1, 281 cm−1, 377 cm−1,
442 cm−1, 472 cm−1, 532 cm−1, and 707 cm−1.
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Figure 5. Raman spectra of (a) SZHP, (b) Sm2EuSbO7, and (c) ZnBiSbO5.

2.4. UV-Vis Diffuse Reflectance Spectra

To scrutinize the band architecture of the synthesized materials, an absorption spec-
trum was acquired. Figure 6a illustrates the absorption spectrum of Sm2EuSbO7 and
ZnBiSbO5, both synthesized through solid-phase sintering, along with SZHP, which was
prepared using the solvothermal method. The absorption boundary of new photocat-
alytic materials Sm2EuSbO7 and ZnBiSbO5 was measured to be at 434 nm and 455 nm
severally. The absorption boundary of SZHP was 523 nm, displaying prominent red-shift
relative to ZnBiSbO5 and Sm2EuSbO7. It was demonstrated that SZHP showcased superior
light-absorbing properties relative to ZnBiSbO5 and Sm2EuSbO7.
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The energy band gaps of the light-activated catalysts can be evaluated by identifying
the dot of intersection between the photonic energy hν axis and the line extrapolated from
the rectilinear portion of the absorption boundary, which is represented by the Kubelka–
Munk function (1). This function is utilized for this purpose [87,88].

[1− Rd(hν)]
2

2Rd(hν)
=

α(hν)
S

(1)

Here, S represents the scattering determinant, Rd refers to the diffuse reflectivity, and
α denotes the light absorption determinant of simulation radiation.

The photon ingestion near the energy band boundary of the light-activated catalysts
followed Equation (2) [89,90]:

αhν = A
(
hν− Eg

)n (2)

In this mathematical model, A, α, Eg, and ν correspond to the merical number of pro-
portionality, optical ingestion parameter, energy gap, and photonic frequency, respectively.
The merical number of n controls the optical transition behavior of the photocatalyst. To
determine Eg and n, the following steps were taken: (1) depict ln(αhν) versus ln

(
hν− Eg

)
establishing a rough approximation of Eg; (2) deduce the merical number of n guided by the
slope of the diagram; (3) optimize the merical number of Eg by depicting (αhν)1/n versus
hν and extrapolating the mapping to (αhν)1/n = 0. An estimation of the valence-conduction
gap, Eg, for Sm2EuSbO7 or ZnBiSbO5 was obtained using the straightforward approach
(1240/transition wavelength λ).

The Eg merical number of Sm2EuSbO7 or ZnBiSbO5 was evaluated to be 2.85 eV or
2.72 eV severally. The precise band gap width of Sm2EuSbO7 or ZnBiSbO5 was measured
using the indirect method (Equation (2)) with the estimated Eg merical number. According
to Figure 6b, the computed Eg merical numbers for Sm2EuSbO7 and ZnBiSbO5 were 2.73 eV
and 2.61 eV severally. The determined merical number of n was about 2 for Sm2EuSbO7 and
ZnBiSbO5, indicating that the light-induced transition was indirectly allowed. Similarly,
based on Figure 6b, the Eg value for SZHP was 2.30 eV and the optical transition was
indirectly allowed [91].

The Eg value of SZHP was smaller compared with that of Sm2EuSbO7 and ZnBiSbO5,
which can be credited to the inclusion of interface effects and electron transport effects
during the formation of the heterojunction. In SZHP, when Sm2EuSbO7 and ZnBiSbO5
came into contact and formed an interface, there were intrinsic differences in the properties
of these two photocatalytic materials [92]. These differences resulted in band bending
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and energy level shifts at the interface, known as interface effects. As a consequence,
the band structure was modified, resulting in a decrease in the band gap width. Besides
the interface effects, electron charge migration behavior came to pass at the interface of
SZHP due to the contrasting electron affinities and ionization potentials of its constituent
components [93]. This charge transfer caused energy level shifts in the corresponding bands,
further contributing to the band narrowing [94]. Therefore, SZHP demonstrated a narrower
band gap compared with the separate Sm2EuSbO7 and ZnBiSbO5 components within the
heterojunction. This band-narrowing effect was advantageous as it expanded the absorption
range of the heterojunction photocatalytic materials, enhanced its photocatalytic activity,
and promoted the enhanced dissociation and conveyance of optically generated electron–
hole pairs, consequently increasing the catalytic reaction efficiency. By incorporating these
interface effects and electron transfer effects, SZHP exhibited superior performance as a
photocatalyst compared with Sm2EuSbO7 and ZnBiSbO5 in their individual forms. These
findings support the potential application of SZHP as an efficient photocatalyst in various
catalytic processes.

2.5. Property Characterization of Sm2EuSbO7/ZnBiSbO5 Heterojunction Photocatalyst

To investigate the element constitution and oxidation states of SZHP, prepared via the
solvothermal method as well as Sm2EuSbO7, and ZnBiSbO5, prepared through the solid-
state calcination method, XPS was employed. The integrated spectrum in Figure 7 clearly
demonstrates the presence of Sm, Eu, Sb, Zn, Bi, and O elements in SZHP. A carbon peak
was observed and attributed to adventitious hydrocarbon, which served as a calibration
reference. Upon comparing the spectrum of Sm2EuSbO7 to that of SZHP, distinctive zinc
and bismuth signals were observed in the latter, highlighting the introduction of ZnBiSbO5
in SZHP.
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Figure 7. The XPS full spectrum of the synthesized SZHP, Sm2EuSbO7, and ZnBiSbO5.

Figure 8a–e presents the deconvoluted spectral peaks of Sm 3d, Eu 4d, Sb 4d, Zn
2p, and Bi 4f in Sm2EuSbO7 and ZnBiSbO5. These peaks were observed at 1084.04 eV
(Sm 3d5/2), 134.67 eV (Eu 4d5/2), 35.08 and 35.13 eV (Sb 4d5/2), 1022.56 eV (Zn 2p3/2)
and 159.69 (Bi 4f7/2) and 165.05 eV (Bi 4f5/2). Intriguingly, these peaks exhibit slight
shifts towards higher binding energies, such as 1084.29 eV (Sm 3d5/2), 134.92 eV (Eu
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4d5/2), 35.33 eV (Sb 4d5/2), 1022.76 eV (Zn 2p3/2), 159.89 eV (Bi 4f7/2) and 165.29 eV
(Bi 4f5/2) in SZHP [95,96]. These observed shifts provide evidence for a robust interfacial
interaction between Sm2EuSbO7 and ZnBiSbO5, suggesting a possible electron transfer
and delocalization phenomenon within the heterojunction photocatalytic materials. The
presence of such interfacial interaction strengthens the overall efficiency and performance
of the materials in photochemical processes. Moreover, the spin-orbit separation values
between Bi 4f7/2 and Bi 4f5/2 were determined to be 5.36 eV for both ZnBiSbO5 and SZHP,
indicating the exclusive presence of Bi3+ [97].
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Figure 8. The corresponding XPS spectra of (a) Sm 3d, (b) Eu 4d, (c) Sb 4d, (d) Zn 2p, (e) Bi 4f, and (f)
O 1s of SZHP, Sm2EuSbO7, and ZnBiSbO5.

Figure 8f illustrates the deconvoluted O 1s spectrum of SZHP, Sm2EuSbO7, and
ZnBiSbO5. The O 1s orbital coordinates with the peaks at 530.40 eV, 530.65 eV, and 530.85 eV.
The distinct shifts further confirm the interfacial interaction between Sm2EuSbO7 and
ZnBiSbO5. Moreover, the recorded peaks at 531.88 eV and 532.13 eV, as well as 531.93 eV,
along with 540.16 eV, 540.41 eV, and 540.21 eV, can be put down to the Sb 3d5/2 and Sb
3d3/2 orbitals, respectively. These findings indicate the presence of specific electronic
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transitions and provide valuable insights into the electronic structure of the materials under
investigation. Likewise, the spin-orbit separation value between Sb 3d5/2 and Sb 3d3/2 was
observed to be 8.28 eV for ZnBiSbO5, Sm2EuSbO7, and SZHP, confirming the exclusive
presence of Sb5+ [98,99].

In accordance with the outcomes obtained from the XPS analysis, it can be inferred
that the oxidation states of Sm, Eu, Sb, Zn, Bi, and O ions within the material are +3, +3,
+5, +2, +3, and −2 severally. This empirical evidence proffers valuable insights into the
valence states of the constituent elements and their contributions to the overall chemical
composition. Further analysis of the surface composition indicated that the average atomic
ratio of Sm:Eu:Sb:Zn:Bi:O was determined to be 785:391:773:414:402:7235. The atomic ratio
of Sm:Eu:Sb or Zn:Bi:Sb in SZHP was 2.03:1.01:1.00 and 1.07:1.04:1.00 severally. Clear
evidence of the absence of any other phase was observed as no shoulder or broadening in
the XPS spectrum of both Sm2EuSbO7 and ZnBiSbO5 samples. This finding indicates that
the materials were in pure- and single-phase states.

The SZHP sample, which was prepared using the solvothermal method, was inspected
through transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy
(EDS). Figures 9 and 10 illustrate the TEM scheme and EDS element mapping of SZHP
(Sm, Eu, Sb, and O from Sm2EuSbO7 and Zn, Bi, Sb, and O from ZnBiSbO5) severally. The
EDS spectrum of SZHP is presented in Figure 11. Upon observation of Figures 9 and 10,
it is evident that the larger microboulders correspond to ZnBiSbO5, while the smaller
globular microboulders belong to Sm2EuSbO7. The TEM images further reveal that the
microboulders of ZnBiSbO5 are enveloped by the microboulders of Sm2EuSbO7, indicating
successful synthesis of SZHP. The particle dimension of Sm2EuSbO7 was assessed to be
approximately 380 nm, whereas the larger microboulder dimension of ZnBiSbO5 measured
around 1300 nm [100].
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Figure 11. The EDS spectrum of SZHP.

The EDS element mapping of SZHP in Figure 10 confirms the presence of samarium,
europium, antimony, zinc, bismuth, and oxygen elements within SZHP. This observation
indirectly supports the coexistence of both Sm2EuSbO7 and ZnBiSbO5 in SZHP. These find-
ings conform to the XPS data of SZHP depicted in Figures 7 and 8. The EDS spectral distri-
bution, which is manifested in Figure 11, revealed that the atomic ratio of Sm:Eu:Sb:Zn:Bi:O
in SZHP was determined to be 773:382:771:409:402:7259. This finding matches the results
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obtained from XPS analysis, reinforcing the reliability of the obtained data. The atomic ratio
of Sm2EuSbO7:ZnBiSbO5 was close to 1.2:1, which was consistent with the approximate
molar ratio of the two compounds used in the experiment. Based on these findings, one
can conclude that SZHP was successfully synthesized with a high level of purity under the
specific preparation conditions employed.

2.6. Property Activity

The present study investigated the concentration variability profiles of PM during PDD
under VLTI using various photocatalysts. The photocatalysts employed in this investigation
consisted of SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO. The concentration patterns of PM in
pesticide wastewater over time under VLTI are depicted in Figure 12a. The obtained results
clearly demonstrate a consistent decline in the concentration of PM corresponding to the
extended period of irradiation.
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Figure 12. Saturation variation profiles of (a) PM and (b) TOC during the photodegradation of PM
with SZHP, Sm2EuSbO7, ZnBiSbO5, or N-TO as the photocatalyst under VLTI.

Analysis of the data obtained from Figure 12a revealed that the use of SZHP as the
photocatalyst resulted in complete removal of PM within pesticide wastewater, achieving a
reaction velocity of 2.78 × 10−9 mol·L−1·s−1 and a photonic efficiency (PNE) of 0.0580%
after 150 min of VLTI. The other photocatalysts were subjected to similar experimental
conditions. When Sm2EuSbO7 was utilized as the photocatalyst, it achieved a remarkable
PM removal rate of 89.1%, demonstrating a reaction velocity of 2.48 × 10−9 mol·L−1·s−1

and PNE of 0.0521%. Likewise, in the case of ZnBiSbO5 as the photocatalyst, a significant
PM removal rate of 83.2% was achieved in pesticide wastewater, accompanied by a reaction
velocity of 2.31 × 10−9 mol·L−1·s−1 and PNE of 0.0485%. Lastly, N-TO exhibited a PM
removal rate of 42%, indicating a reaction velocity of 1.17 × 10−9 mol·L−1·s−1 and PNE
of 0.0246%.

Based on the above findings, it can be concluded that SZHP demonstrated the highest
photodegradation efficiency for PM compared with the other photocatalysts. Additionally,
the photodegradation efficiency achieved using Sm2EuSbO7 as the photocatalyst was
superior to that of ZnBiSbO5 and N-TO. Furthermore, the photodegradation efficiency
obtained with ZnBiSbO5 as the photocatalyst surpassed that of N-TO. These findings
indicate that SZHP exhibits enhanced photocatalytic activity under VLTI compared with
individual Sm2EuSbO7, ZnBiSbO5, and N-TO materials.

Moreover, upon comparing the PM degradation velocity achieved through 150 min
of VLTI, it becomes clear that the effectiveness of SZHP surpassed that of Sm2EuSbO7 by
1.11 times, ZnBiSbO5 by 1.20 times, and N-TO by 2.38 times.
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The saturation variation profiles of TOC throughout the PDD of PM in pesticide
effluent under VLTI using different photocatalysts are presented in Figure 12b. The investi-
gated photocatalysts include SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO. As illustrated in
Figure 12b, the TOC concentration exhibited reduction as the VLTI time increased.

The analysis of Figure 12b demonstrates that following a 150-min duration of VLTI,
the degradation rates of TOC within pesticide wastewater were found to be 99.45%, 87.5%,
80.55%, and 40.95% when employing SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO as photo-
catalysts, respectively, for the treatment of PM.

The superior PDD efficiency and TOC removal efficiency of SZHP compared with
Sm2EuSbO7, ZnBiSbO5, and N-TO could primarily be traced back to the efficient segrega-
tion of photoproduced electrons and photoproduced holes, and suppression reassociation
of photoproduced carriers. The formation of the heterostructure photocatalytic materials fa-
cilitated the dimensional segregation of carriers within distinct regions of the photocatalytic
materials, effectively mitigating their recombination [101–103]. The effective separation of
photoproduced carriers and the suppression of recombination processes had a significant
impact on enhancing the capability of PDD and TOC removal. Additionally, the formation
of heterojunctions brought about alterations in the band structure, including the shift of
band edge positions and modulation of band gaps. These modifications expanded the
absorption range, allowing for more efficient excitation of electrons to the conduction
band by absorbing a broader spectrum of photons [104–106]. Through these controlled
band structure adjustments, SZHP exhibited higher light absorption and enhanced PCP.
Moreover, the heterojunction interface provided additional active sites and surface defects,
which played a crucial role in chemical reactions. These inherent features contributed to
enhanced PDD efficiency and TOC removal. The interface effects offered opportunities
for enhanced catalyst interactions, potentially resulting in synergistic effects and increased
catalytic activity. In summary, the superior photodegradation efficiency and TOC removal
efficiency of SZHP stemmed from its ability to effectively separate and suppress the recom-
bination of light-activated electron–hole pairs, and also stemmed from the adjustments
in the band structure and the availability of additional active sites at the heterojunction
interface. These attributes highlighted the potential of SZHP as a promising material for
high-performance photocatalysis, with broad applications in enhancing photocatalytic
reaction efficiency and energy conversion.

The saturation variation profiles of PM and TOC during four consecutive degradation
cycles using SZHP as a photocatalyst under VLTI were shown in Figure 13a,b, respec-
tively [107]. After 150 min of VLTI, the removal rates of PM were found to be 98.94%,
97.96%, 96.88%, and 96.12% in the four cycles; the removal rates of TOC were found to
be 97.5%, 96.45%, 95.3%, and 94.2% in the four cycles. These observations reveal the re-
markable stability of SZHP during the degradation process. Additionally, a reduction of
2.82% in the PM degradation rate and a decrease of 3.3% in the TOC removal rate were
observed across four consecutive degradation cycles. These findings suggest that SZHP
exhibits remarkable structural stability and can be effectively reused as a photocatalyst.

To underscore the novelty and significance of our research in the realm of PM degra-
dation through photocatalysis, a comprehensive comparative analysis was conducted. In
Table 3, a comparative overview of pertinent studies in this field is presented, highlighting
the superior PM degradation efficiency of SZHP. The results unequivocally demonstrate
that when SZHP serves as the photocatalyst, it outperforms other catalysts in terms of PM
degradation, emphasizing the notable catalytic potential of SZHP in this context. These
findings underscore the pivotal role of SZHP in enhancing the rate of PM PDD, thereby
contributing significantly to the field of photocatalysis.
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Table 3. Comparative analysis of the PCP of SZHP fabricated via the solvothermal method with other
documented photocatalysts in the PDD of parathion methyl.

Photocatalyst Radiation Irradiation Time
(min) Pesticide Removal Rate (%) Ref.

TiO2 UV 300 Parathion methyl 90 [108]
ZnO/CuO Simulated solar light 100 Parathion methyl 90 [109]

ZnO nanorod Visible light 180 Parathion methyl 99 [2]
Bi2MoO6 Visible light 120 Parathion methyl 69 [58]

NiO/Bi2MoO6 Visible light 120 Parathion methyl 95 [58]
GO-Fe2O3 Visible light 140 Parathion methyl 40 [110]

GO-Fe2O3/Bi2MoO6 Visible light 140 Parathion methyl 98 [110]
Ag-TiO2 Visible light 420 Parathion methyl 100 [59]

Sm2EuSbO7 Visible light 150 Parathion methyl 92 This study
SZHP Visible light 150 Parathion methyl 100 This study
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Figure 14 exhibits the first-order kinetic schematics of PM (Figure 14a) and TOC
(Figure 14b) during the photodegradation of PM with various photocatalysts, including
SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO, under VLTI. KC (the kinetic merical number
derived through the dynamic curve of PM saturation and VLTI time) were 0.0206 min−1,
0.0096 min−1, 0.0076 min−1, and 0.0029 min−1 for SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO
severally. Additionally, KTOC (the kinetic merical number derived through the dynamic
curves of TOC saturation as a function of VLTI time) were determined to be 0.0202 min−1,
0.009 min−1, 0.0071 min−1, and 0.0028 min−1 for SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO
severally. Notably, KTOC was lower than KC for all the catalysts, indicating the formation
of intermediate species during the PDD process. SZHP displayed superior mineralization
performance for PDD of PM as opposed to the other photocatalysts.

Figure 15 exhibits the first-order kinetic plots of PM (Figure 15a) and TOC (Figure 15b)
during the photodegradation of PM with SZHP as the photocatalyst under VLTI in four
consecutive degradation cycles. KC (the kinetic merical number derived out of the power
mechanics profile of PM concentration as a function of VLTI time) for four cycles were
ascertained as 0.0177 min−1, 0.0186 min−1, 0.0164 min−1, and 0.0151 min−1. Additionally,
KTOC (the kinetic merical number derived through the power mechanics profile of TOC
concentration and VLTI time) for four cycles were detected as 0.0131 min−1, 0.0140 min−1,
0.0161 min−1, and 0.0131 min−1. These results indicate that the photodegradation of PM in
pesticide wastewater using SZHP follows the kinetics characterized by first-order kinetics.

Figure 16 showcases the XRD pattern of the synthesized SZHP materials before and
after PDD of PM. The XRD analysis confirms the preservation of the crystal structure of
SZHP, indicating no significant alterations throughout the PDD process. Additionally,
Figure 17 presents the XPS pattern of SZHP materials before and after the PDD of PM. The
XPS analysis affirms that no noteworthy changes occurred in the elemental content, molec-
ular structure, and atomic valence states of elements of SZHP following the PDD process.
Therefore, it can be inferred that the shape and position of the high-resolution lines will
likewise not change. In summary, both the XRD and XPS analyses consistently demonstrate
the structural integrity of SZHP throughout the PDD of PM. These findings collectively un-
derscore the robustness and chemical stability of SZHP during the photocatalytic treatment
of PM.
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Figure 14. Identified first-order kinetic charts for (a) PM and (b) TOC during the photodegradation
of PM with SZHP, Sm2EuSbO7, ZnBiSbO5, or N-TO as the photocatalyst under VLTI.
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Figure 16. The XRD pattern of the sustained recyclable performance of PDD of PM with SZHP in the
function of a photocatalytic material.
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Figure 17. The XPS spectrum of the sustained recyclable performance of PDD of PM with SZHP in
the function of a photocatalytic material.

Figure 18 investigates the effect of diverse radical scavengers, including benzoquinone
(BQ), isopropanol (IPA), and ethylenediamine tetraacetic acid (EDTA), on the degrada-
tion rate of PM using SZHP under visible light exposure [111]. These scavengers were
introduced at the initiation of the PDD experiments to investigate the active intermediates
participating in the PDD course. Hydroxyl radicals (•OH) were apprehended through the
integration of IPA. BQ was utilized to apprehend superoxide anions (•O2

−), which were
apprehended through the integration of BQ. Apprehended holes (h+) were apprehended
through the integration of EDTA. The formulary IPA saturation or BQ saturation or EDTA
saturation was 0.10 mmol L−1, and the input quantity of IPA or BQ or EDTA was 1.5 mL.
With the existence of IPA, BQ, or EDTA, the decomposition velocity of PM decreased by
68.8%, 50.8%, and 38%, respectively, compared with the standard group. These findings
propose the involvement of ·OH, ·O2

− and h+ as active radicals in the PDD process of PM.
Hydroxyl radicals exhibited the highest oxidation removal ability in eliminating PM in
pesticide wastewater when using SZHP as a light-activated photocatalytic material. The
order of oxidation removal ability for degrading PM is as follows, in descending order:
·OH> ·O2

−> h+.
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Figure 18. The implication of various radical interceptors on (a) PM concentration and (b) elimination
efficiency of PM with SZHP in the function of a photocatalytic material under VLTI.
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For the purpose of verifying the pivotal significance of fabricated photocatalysts in
practical water pollution control projects, another widely used insecticide, isocarbophos
(ISB), was used as the target pollutant in the degradation experiments. The photocatalysts
employed in this investigation consisted of SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO.
The concentration patterns of ISB in pesticide wastewater over time under VLTI are de-
picted in Figure 19a. The obtained results clearly demonstrate a consistent decline in the
concentration of ISB corresponding to the extended period of irradiation.
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Figure 19. Saturation variation profiles of (a) ISB and (b) TOC during the photodegradation of ISB
with SZHP, Sm2EuSbO7, ZnBiSbO5, or N-TO as the photocatalyst under VLTI.

Analysis of the data obtained from Figure 19a reveals that the use of SZHP as the
photocatalyst resulted in complete removal of ISB within pesticide wastewater, achieving
a reaction velocity of 2.76 × 10−9 mol·L−1·s−1 and PNE of 0.0580% after 150 min of
VLTI. The other photocatalysts were subjected to similar experimental conditions. When
Sm2EuSbO7 was utilized as the photocatalyst, it achieved a remarkable ISB removal rate of
87.2%, demonstrating a reaction velocity of 2.42 × 10−9 mol·L−1·s−1 and PNE of 0.0509%.
Likewise, in the case of ZnBiSbO5 as the photocatalyst, a significant ISB removal rate
of 81.2% was achieved in pesticide wastewater, accompanied by a reaction velocity of
2.26 × 10−9 mol·L−1·s−1 and PNE of 0.0474%. Lastly, N-TO exhibited an ISB removal rate
of 40.4%, indicating a reaction velocity of 1.12 × 10−9 mol·L−1·s−1 and PNE of 0.0236%.

As indicated by the above evidence, it can be inferred that SZHP demonstrated the
highest photodegradation efficiency for ISB compared with the other photocatalysts. Addi-
tionally, the photodegradation efficiency achieved using Sm2EuSbO7 as the photocatalyst
was superior to that of ZnBiSbO5 and N-TO. Furthermore, the photodegradation efficiency
obtained with ZnBiSbO5 as the photocatalyst surpassed that of N-TO. These findings in-
dicate that SZHP exhibits enhanced photocatalytic activity under VLTI compared with
individual Sm2EuSbO7, ZnBiSbO5, and N-TO materials.

Moreover, upon comparing the ISB degradation velocity achieved through 150 min
of VLTI, it becomes clear that the effectiveness of SZHP surpassed that of Sm2EuSbO7 by
1.15 times, ZnBiSbO5 by 1.23 times, and N-TO by 2.48 times.

The saturation variation profiles of TOC throughout the PDD of ISB in pesticide
effluent under VLTI using different photocatalysts are presented in Figure 19b. The investi-
gated photocatalysts include SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO. As illustrated in
Figure 17b, the TOC concentration exhibited reduction as the VLTI time increased.

Analysis of Figure 19b demonstrates that following a 150-min duration of VLTI, the
degradation rates of TOC within pesticide wastewater were found to be 98.04%, 88.13%,
77.09%, and 37.16% when employing SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO as photo-
catalysts, respectively, for the treatment of ISB.

Figure 20 exhibits the first-order kinetic schematics of ISB (Figure 20a) and TOC
(Figure 20b) during the photodegradation of ISB with various photocatalysts, including
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SZHP, Sm2EuSbO7, ZnBiSbO5, and N-TO, under VLTI. KC (the kinetic merical number
derived through the power mechanics profile of ISB saturation and VLTI time) were
0.0234 min−1, 0.0092 min−1, 0.0073 min−1, and 0.0026 min−1 for SZHP, Sm2EuSbO7,
ZnBiSbO5, and N-TO, respectively. Additionally, KTOC (the kinetic merical number derived
through the power mechanics profile of TOC saturation as a function of VLTI time) were
ascertained as 0.02005 min−1, 0.0076 min−1, 0.0063 min−1, and 0.0022 min−1 for SZHP,
Sm2EuSbO7, ZnBiSbO5, and N-TO, respectively. Notably, KTOC was lower than KC for all
the catalysts, indicating the formation of intermediate species during the PDD process.
SZHP displayed superior mineralization efficiency for ISB degradation in relation to other
catalysts being evaluated.
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Figure 20. Identified first-order kinetics charts for (a) ISB and (b) TOC during the photodegradation
of ISB with SZHP, Sm2EuSbO7, ZnBiSbO5, or N-TO as the photocatalyst under VLTI.

Photoluminescence (PL) spectroscopy is an invaluable method for examining the
migration, spatial segregation, and recombination kinetics of photoexcited carriers. Higher
PL intensities typically indicate faster recombination rates of the photogenerated carri-
ers, leading to reduced photocatalytic efficiency [112,113]. Figure 21 illustrates the PL
spectrum of SZHP, prepared via the solvothermal method, as well as Sm2EuSbO7 and
ZnBiSbO5 prepared through the solid-state calcination method. Based on Figure 21, it
is evident that the ZnBiSbO5 sample displays the highest emission intensity, suggesting
significant recombination of the photoexcited carriers. Comparatively, the Sm2EuSbO7
sample displays a lower emission intensity compared with ZnBiSbO5, while SZHP ex-
hibits an even lower emission intensity relative to both Sm2EuSbO7 and ZnBiSbO5. This
observation suggests a pronounced enhancement in the spatial isolation of photoexcited
carriers through the formation of the heterojunction. Furthermore, this provides further
evidence that SZHP showcases the superior photocatalytic efficiency among Sm2EuSbO7
and ZnBiSbO5 samples.

The electrochemical impedance spectroscopy (EIS) is a significant characterization
technique that provides insights into the migration process of photogenerated carriers at
the interfaces of two single-crystal photocatalysts forming a heterojunction [114,115]. In
this study, the impedance arc size observed in the Nyquist impedance plot was utilized to
evaluate the migration efficiency of the prepared photocatalysts, where a smaller arc radius
indicates superior efficiency. Figure 22 presents the EIS of Sm2EuSbO7 and ZnBiSbO5,
both synthesized through solid-phase sintering, along with SZHP, which was prepared
using the solvothermal method. Examination of Figure 18 reveals a distinct trend in the arc
radius diameter: ZnBiSbO5 > Sm2EuSbO7 > SZHP. This observation suggests that the SZHP
photocatalysts possess enhanced photocatalytic activity by separating photoexcited carriers
more efficiently and enhancing the interface charge mobility at the same time compared
with the Sm2EuSbO7 and ZnBiSbO5 photocatalysts. The results of this analysis are exactly
consistent with those of Figures 12, 13, 19 and 21 [116].
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Figure 21. PL spectrum of SZHP, Sm2EuSbO7, and ZnBiSbO5.
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Figure 22. Nyquist impedance plots of SZHP, Sm2EuSbO7, and ZnBiSbO5.

2.7. Analysis of Possible Degradation Mechanisms

Figure 23 showcases the Ultraviolet photoelectron spectrum (UPS) of Sm2EuSbO7 and
ZnBiSbO5. And the possible PDD mechanistic model of PM with SBHP under VLTI is
showcased in Figure 24. The potentials of the valence band (VB) and conductor band (CB)
for light-activated materials can be determined using Equations (3) and (4) [117]:

ECB = X − Ee − 0.5Eg (3)

EVB = ECB + Eg (4)

where, Eg was the band gap of catalyst, X was the electronegativity of the catalyst, and Ee

was the energies of the hydrogen-like scale of free electrons (close to the 4.5 eV mark). The
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VB potential or the CB potential for Sm2EuSbO7 was approximated as 2.879 eV or 0.149 eV
severally. For ZnBiSbO5, the VB potential or the CB potential was approximated as 1.983 eV
and −0.627 eV severally. Both Sm2EuSbO7 and ZnBiSbO5 exhibited light absorption in the
visible portion, leading to the generation of photoexcited carriers.
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Figure 23. Ultraviolet photoelectron spectrum (UPS) of (a) Sm2EuSbO7 and (b) ZnBiSbO5.
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Figure 24. Possible photodegradation mechanism of PM with SZHP as photocatalyst under VLTI.

To strengthen the credibility of the mechanistic model, ultraviolet photoelectron
spectroscopy (UPS) was conducted to assess the ionization potential of Sm2EuSbO7 and
ZnBiSbO5. The acquired UPS spectra exhibiting the onset (Ei) and cutoff (Ecutoff) binding
energies for both photocatalysts were featured in Figure 23, measuring at 1.351 eV and
19.674 eV for Sm2EuSbO7, and 0.235 eV and 19.451 eV for ZnBiSbO5. Calculating from
the excitation energy (approximately 21.2 eV), the ionization potential of Sm2EuSbO7 or
ZnBiSbO5 was determined to be 2.877 eV or 1.984 eV severally. Consequently, the CB po-
tential of Sm2EuSbO7 or ZnBiSbO5 was measured to be 0.147 eV or −0.626 eV, respectively,
which closely aligned with the numerical figures derived from Equations (3) and (4).

On account of the more negative redox potential status of the CB of ZnBiSbO5
(−0.627 eV) compared with that of the Sm2EuSbO7 (0.149 eV), light-induced carriers on the
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CB of ZnBiSbO5 could be transmitted to the CB of Sm2EuSbO7. Similarly, on account of the
elevated redox potential position of the VB of Sm2EuSbO7 (2.879 eV) compared with that of
ZnBiSbO5 (1.983 eV), light-induced carriers on the VB of Sm2EuSbO7 could be transmitted
to the VB of ZnBiSbO5. The integration of Sm2EuSbO7 and ZnBiSbO5 in SZHP successfully
mitigated the recombination velocity of photoinduced carriers. This reduction resulted
in decreased internal resistance, longer carrier lifetimes, and improved interfacial charge
transfer efficiency. Consequently, the production of active species such as ·OH or ·O2

− was
increased, leading to an improved degradation velocity of PM.

Additionally, this study speculated on the possible mechanisms for the generation
of ·OH and ·O2

− [118,119]. The CB potential of ZnBiSbO5 (−0.627 eV) was lower on
the negative scale than that of O2/·O2

− (−0.33 eV vs. NHE), signifying that the carriers
within the CB of ZnBiSbO5 could consume oxygen to generate ·O2

−, which can degrade
PM ( 1© in Figure 24) [120]. Similarly, the VB potential of Sm2EuSbO7 (2.879 eV) was
higher on the positive scale than the magnitude of OH−/·OH (2.38 eV vs. NHE), signaling
that the carriers in the VB of Sm2EuSbO7 could transform H2O or OH− into ·OH for PM
degradation ( 2© in Figure 24) [121,122]. Ultimately, the light-activated positive carriers in
the VB of ZnBiSbO5 or Sm2EuSbO7 could directly catalyze the oxidation and subsequent
degradation of particulate matter (PM) owing to their inherent robust oxidation efficiency
( 3© in Figure 24). Overall, the exceptional photocatalytic efficiency of SZHP in degrading
PM can be primarily attributed to its remarkable efficiency in separating carriers within the
photocatalytic material.

With the objective of analyzing the degradation mechanism of PM, the intermedi-
ates produced during PM degradation were examined using the LC-MS method. The
degradation of PM occurs through the following pathways, as shown in Figure 25. The
nitro-phenyl bond in PM (m/z = 263) is directly oxidized by a hydroxyl radical (·OH),
resulting in the formation of C6H4OPS(OCH3)2OH (m/z = 246) and nitrite ions (NO2·O2−).
Nitrogen enters the dissolving fluid in the form of nitrite ions (NO2·O2−) and is eventually
oxidized to more stable nitrate ions (NO3

−). The P-O bond connecting to the aromatic ring
is cleaved, producing the highly unstable intermediate PS(OCH3)2OH (m/z = 182), which
further transforms into dimethyl phosphate (DMPA), along with the formation of sulfate
ions (SO4

2−). DMPA (m/z = 190) continues to degrade under the strong oxidative power of
hydroxyl radicals (·OH), producing phosphate ions (PO4

3−) and carbon dioxide (CO2) as
the final products. Meanwhile, the degradation process generates and consumes hydro-
quinone (HQ) (m/z = 110) and 1,2,4-benzenetriol (BT) (m/z = 126). Under the action of
multiple active free radicals (h+, ·O2−, ·OH) aromatic compounds are degraded to produce
fatty acids, which further transform into aliphatic acid (AA) (m/z = 128). Subsequently,
AA is further decomposed into formic acid (FA) (m/z = 46), formate ions (m/z = 45), and
carbon dioxide (CO2) under the action of hydroxyl radicals.
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3. Experimental Section
3.1. Materials and Reagents

Ethylenediaminetetraacetic acid (EDTA, C10H16N2O8, purity level = 99.5%) and iso-
propyl alcohol (IPA, C3H8O, purity level ≥ 99.7%) were analytical grade. P-benzoquinone
(BQ, C6H4O2, purity level ≥ 98.0%) was laboratory grade. Absolute ethanol (C2H5OH, pu-
rity level ≥ 99.5%) and PM (C8H10NO5PS, purity level ≥ 99.0%) was gas chromatography
grade. The aforementioned chemical solutions were procured from Aladdin Group Chemi-
cal Reagent Co., Ltd. (Shanghai, China). Ultra-pure water with a resistivity of 18.25 MU cm
was utilized consistently from the beginning to the end of the experimental procedures.

3.2. Fabrication Method of ZnBiSbO5

ZnBiSbO5 was fabricated through the solid-state calcination method conducted at an
elevated temperature. ZnO (99.999%), Bi2O3 (99.999%), and Sb2O5 (99.995%) were used
as raw materials, obtained from Aladdin Group Chemical Reagent Co., Ltd. (Shanghai,
China). To determine the molar ratio of the raw oxides, volatility tests were conducted as
follows: 0.02 mol ZnO, 0.01 mol Bi2O3, and 0.01 mol Sb2O5 were individually measured and
pulverized for 3 h in an agate mortar. The ground oxides were individually positioned in an
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alumina crucible (Shenyang Crucible Co., Ltd., Shenyang, China) and calcined at 1300 ◦C for
25 h in a high-temperature electric furnace (KSL 1700X, Hefei Kejing Materials Technology
Co., Ltd., Hefei, China). After being scorified at 400 ◦C for 2 h, the untreated materials and
diminutive columns were removed from the electric stove. The mixed materials were then
ground and placed in a heat treatment furnace for calcination at 1300 ◦C for 20 h. After
naturally reaching room temperature, the mass of ZnO, Bi2O3, and Sb2O5 was measured
and converted back to moles. The results indicated that 0.02 mol ZnO and 0.01 mol Sb2O5
exhibited no variation, while 0.008 mol Bi2O3 was left, suggesting its volatility at 1300 ◦C.
Through multiple failed experiments, it was determined that 20% of Bi2O3 would volatilize,
and thus the practical mole quantity dispensing of Bi2O3 should have been 120% of the
planned dosage.

The fully mixed materials were quantified based on stoichiometry (n(ZnO): n(Bi2O3):
n(Sb2O5) = 2:1.2:1) and placed into a ball grinder to achieve a lattermost particle dimension
of 0.5–1.5 µm. In the cause of achieving a high level of purity, the powders underwent a
pre-synthesis drying step at 200 ◦C for 4 h. Subsequently, the dried dusty materials were
combined in an aluminum oxide crucible, compressed into a circular tray, and calcined
in a heat treatment furnace at 420 ◦C for 7.8 h. Following the process of pulverizing and
pasting, the mixture underwent additional sintering in a heat treatment furnace at 1300 ◦C
for a period of 20 h. Ultimately, the pure ZnBiSbO5 catalyst was acquired via the process of
thorough pulverizing.

Hydrothermal synthesis offers several advantages, including high purity, excellent
dispersion, and ease of controlling particle size. These attributes make it an ideal method for
controlling the size and morphology of the final product. In line with this, the present study
outlined the experimental procedures which were used for fabricating ZnBiSbO5 through
hydrothermal synthesis. For the synthesis of ZnBiSbO5, 0.11 mol/L Zn(NO3)2·5H2O,
0.11 mol/L Bi(NO3)3·5H2O, and 0.11 mol/L SbCl5 were combined and subjected to stirring
for 20 h. The dissolving fluid was then transferred to a Teflon-lined autoclave and heated
at 200 ◦C for 15 h. The resulting powder was further calcined at 780 ◦C for 10 h in a tube
furnace under an atmosphere of N2.

3.3. Fabrication Method of Sm2EuSbO7

The Sm2EuSbO7 photocatalytic material was fabricated using the solid-state calcina-
tion method. Sm2O3, Eu2O3, and Sb2O5 with purities of 99.999%, which were used as
ingredients, were attained from Aladdin Group Chemical Reagent Co., Ltd. (Shanghai,
China). The catalytic material was fabricated by drying ingredients at 200 ◦C for 2 h in
a ratio of n(Sm2O3):n(Eu2O3):n(Sb2O5) = 2:1:1. A stoichiometric blend of the precursor
was then prepared, which was compressed into a diminutive column and placed in an
alumina crucible from Shenyang Crucible Co., Ltd. (Shenyang, China). After heating at
500 ◦C for 3.5 h, the primary material and diminutive cylinder were extracted from the
heat treatment furnace. The ingredients were pulverized and subsequently positioned
in the electric furnace (KSL 1700X, Hefei Kejing Materials Technology Co., Ltd., Hefei,
China). Finally, the components were subjected to 1100 ◦C calcination for 25 h using an
electric smelter.

The experimental procedures for the fabrication of Sm2EuSbO7 using the hydrother-
mal fabricate method are described as follows: 0.22 mol/L Sm(NO3)3·6H2O, 0.11 mol/L
Eu(NO3)3·6H2O, and 0.11 mol/L SbCl5 were agitated and mixed for 20 h. The solvent
system was then transported over to a Teflon-lined autoclave, and the temperature was
raised to 400 ◦C for 8 h. The resulting catalytic material was thermally processed at 750 ◦C
for 11 h in the tube furnace with the atmosphere condition of N2.

3.4. Fabrication of N-Doped TiO2

In this study, N-TO catalytic material was synthesized using the solution-gel technique.
Tetrabutyl titanate was employed as the precursor and ethanol served as the solvent. The
experimental procedure was carried out in the following steps:
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Initially, a solution A was prepared by combining 15 mL of tetrabutyl titanate with
38 mL of absolute ethyl alcohol. Subsequently, a solution B was prepared by mixing 38 mL
of absolute ethyl alcohol, 8 mL of glacial acetic acid, and 3 mL of double distilled water.
The resultant solution α was then drip fed into solution β while vigorously stirring with a
magnetic stirrer, leading to the formation of a transparent colloidal suspension.

To introduce nitrogen into the system, an appropriate amount of N/Ti ratio of 8 mol%
ammonia was added to the gel solvent system with transparency and magnetic rotational
mixing was continued for 2 h. Following this, the mixture was allowed to age for 48 h,
resulting in the formation of aluminum hydroxide gel. The aluminum hydroxide gel was
subsequently ground into a fine powder and subjected to calcination at a temperature of
500 ◦C for a duration of 2 h. Finally, the resulting powder was further refined by passing it
through a vibrating screen, yielding the N-TO powder. This nitrogen-doped titania catalyst
was utilized for subsequent investigations.

3.5. Fabrication of Sm2EuSbO7/ZnBiSbO5 Heterojunction Photocatalyst

ZnBiSbO5 and Sm2EuSbO7 were fabricated via the solid-state calcination method, with
maximum calcination temperatures of 1300 ◦C and 1100 ◦C, respectively, and durations
of heat treatment of 20 h and 25 h, respectively. The hydrothermal fabricate method was
also utilized for the fabrication of ZnBiSbO5 and Sm2EuSbO7, with maximum calcination
temperatures of 880 ◦C and 750 ◦C, respectively, and a duration of 13 h for both samples.

It is important to consider that higher calcination temperatures lead to elevated power
energy consumption, which can potentially diminish the lifespan of the furnace instrument.
Additionally, longer insulated times and higher calcination temperatures led to larger
particle sizes, resulting in reduced specific surface areas and photocatalyst activity of
Sm2EuSbO7 and ZnBiSbO5.

To boost the photocatalyst’s efficiency, minimize energy wastage, and prolong the
lifespan of the high-temperature calcining furnace, the hydrothermal fabricate method was
chosen to fabricate Sm2EuSbO7 and ZnBiSbO5 in the heterojunction process.

The hydrothermal synthesis method involved the dissolving reformation process,
where Sm(NO3)3·6H2O, Eu(NO3)3·6H2O, SbCl5, Zn(NO3)2·5H2O, and Bi(NO3)3·5H2O
were completely dispersed in a hydrothermal medium. The resulting ion and molecular
groups were transported to the growth area with seed crystals due to strong convection
resulting from temperature variation in the autoclave. Ultimately, an oversaturated solution
was established and experienced crystallization.

For the synthesis of ZnBiSbO5, 0.11 mol/L Zn(NO3)2·5H2O, 0.11 mol/L Bi(NO3)3·5H2O,
and 0.11 mol/L SbCl5 were combined and subjected to stirring for 20 h. The dissolving fluid
was then transferred to a Teflon-lined autoclave and heated at 200 ◦C for 15 h. The resulting
powder was further calcined at 780 ◦C for 10 h in a tube furnace under an atmosphere of N2.
For the synthesis of Sm2EuSbO7, 0.22 mol/L Sm(NO3)3·6H2O, 0.11 mol/L Eu(NO3)3·6H2O,
and 0.11 mol/L SbCl5 were agitated and mixed for 20 h. The solution was then transferred
to a Teflon-lined autoclave and heated at 400 ◦C for 8 h. The resulting catalytic material was
calcined at 750 ◦C for 11 h in the tube furnace with the atmosphere condition of N2.

The solvothermal technique was employed to dissolve the powders of Sm2EuSbO7
and ZnBiSbO5 in an octanol organic solvent within an autoclave. Operating under the
conditions of liquid phase and supercriticality, the reactants became highly reactive and
dispersed, resulting in a gradual synthesis of the desired product.

The solvothermal method was employed to synthesize a novel SZHP by combining
ZnBiSbO5 and Sm2EuSbO7 in octanol. The mixture underwent ultrasonic treatment, fol-
lowed by heating and stirring conditions. This process aimed to facilitate the adhesion
of ZnBiSbO5 onto the surface of Sm2EuSbO7 nanoparticles, resulting in the emergence of
SZHP. The resulting product was purified, dried, and stored for further use.

Moreover, based on the above preparation method, the approximate costs of N-TO,
ZnBiSbO5, Sm2EuSbO7, and SZHP were about $365.82, $25.22, $20.61, and $22.48, respec-
tively. It is apparent that the cost of N-TO was 15.51 times higher than that of ZnBiSbO5,
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17.75 times higher than that of Sm2EuSbO7, and 16.27 times higher than that of SZHP. To
evaluate the potential toxicity of the ZnBiSbO5 photocatalyst, Sm2EuSbO7 photocatalyst,
and SZHP, phytotoxicity tests were conducted using wheat as a target plant. The tests
measured the germination rate of wheat after exposure to the aforementioned photocata-
lysts. The results indicated that wheat exhibited a 100% germination rate within a period of
9 days. Moreover, to investigate the potential toxicity of individual elements present in the
photocatalysts, a comprehensive assessment was carried out to detect the presence of toxic
metals, such as antimony, in the solution after pollutant degradation. The findings revealed
the absence of residual toxic metal elements in the solution, suggesting the highly efficient
elimination of toxic metals during the pollutant degradation process. This outcome further
supported the eco-friendly nature of ZnBiSbO5, Sm2EuSbO7, and SZHP photocatalysts,
underscoring their suitability for potential applications in pollutant remediation.

3.6. Characterization

In this article, various characterization technologies including XRD, TEM, XPS, FTIR
spectrometer, Raman spectrometer, fluorescence spectrophotometer, and UV-Vis diffuse
reflectance spectrophotometer (UV-VIS-DRS) were employed for elucidating the anatomical
features of pure-phase Sm2EuSbO7 and pure-phase ZnBiSbO5 which were fabricated utiliz-
ing the power-controlled solid-phase calcination method. Additionally, the decomposition
rate of PM under VLTI with pure-phase Sm2EuSbO7, pure-phase ZnBiSbO5, N-TO, or
SZHP as the presence of the catalyst was identified.

The diffraction patterns of the fabricated materials were analyzed by XRD (Shi-
madzu, XRD-6000, Cu Kα radiation, λ = 1.54184 Å, sampling pitch of 0.02◦, preset time of
0.3 s step−1, Kyoto, Japan). The external and microscopic characteristics of the fabricated
samples were determined using TEM (JEM—F200 FEI Tecnai G2 F20 FEI Talos F200s) and
the elemental constituents were measured by EDS. A diffuse reflectance spectrum of the
fabricated materials was acquired employing UV-VIS-DRS (Shimadzu, UV-3600, Kyoto,
Japan). The functional groups and chemical bonds were analyzed by FTIR (WQF-530A,
Beifen-Ruili Analytical Instrument (Group) Co., Ltd., Beijing, China). The interactions
among the various chemical bonds were analyzed with a Raman spectrometer (INVIA0919-
06, RENISHAW plx, Wotton-under-Edge, Gloucestershire, UK). The elemental constituents
and surface chemical states of the fabricated sample were assessed by XPS (Escalab 250Xi,
Thermo Fisher Scientific Corporation, Waltham, MA, USA) with an Al-kα X-ray source.

3.7. Photoelectrochemical Experiments

Electrochemical impedance spectroscopy (EIS) was acquired with the assistance of a
CHI660D electrochemical station (Chenhua Instruments Co., Ltd., Shanghai, China) with
a typical three-electrode configuration. The working electrode (as-fabricated materials),
counter electrode (platinum plate), and reference electrode (Ag/AgCl) formed three parts
of the three electrodes system, and the electrolyte fluid was an Na2SO4 watery solution
(0.5 mol/L). The light simulation for the experiment was conducted through a 500 W Xe
lamp with a 420 nm cut-off filter. The manufacture of the working electrode was as follows:
8 mg of fabricated materials was dispersed in a mixture of 640 µL of ethanol, 960 µL of
ultrapure water, and 32 µL Nafion solution and sonicated for 50 min. Then, 8 µL of the
suspension was taken and evenly dripped on the surface of the polished glass carbon
electrode, and put under the infrared light (that is, the working electrode) to dry.

3.8. Experimental Setup and Procedure

The PDD experiment was conducted using a photocatalytic reactor (CEL-LB70, China
Education Au-Light Technology Co., Ltd, Beijing, China) at a constant temperature of 20 ◦C,
which was regulated by recirculating cool water. Solar radiation simulation was supplied
by a 500 W xenon lamp with a 420 nm cut-off filter.

In each experiment, 12 quartz tubes were used, with a volume of 55 mL for a single
reaction solution. For chemical industry wastewater, the total experimental solution volume
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was 660 mL. The dosage of the catalysts (Sm2EuSbO7 or ZnBiSbO5 or SZHP) was 0.75 g/L.
The initial saturation of parathion methyl was 0.040 mmol/L, which represented the
remaining saturation after biodegradation of pesticide wastewater that originally contained
a parathion methyl concentration of 1.2 mmol/L.

Throughout the reaction time frame, a 3 mL dissolving fluid was extracted for analysis
at regular intervals, and a 27 mL dissolving fluid was retrieved after VLTI-150 min to
measure the saturation of residual PM. The catalyst was subsequently separated by filtration
employing a filter membrane made of 0.22 µm PES polyether sulfone. The remaining
saturation of PM in the solvent system was assessed using Agilent 200 high-performance
liquid chromatography (Agilent Technologies, Palo Alto, CA, USA) equipped with a UV
detector and a Zorbax 300SB-C18 column (4.6 mm × 150 mm, 5 µm) for analysis. A
mixture of 50% acetonitrile and 50% distilled water made up the moving phase, and the UV
measuring wavelength was set at 254 nm. The shot capacity of the PDD parathion methyl
solution was 10 µL and the current velocity was set at 1 mL/min−1.

To achieve adsorption/desorption equilibrium between the photocatalyst, PM, and
atmospheric oxygen, the dissolving fluid containing the photocatalyst and PM was stirred
under darkness through magnetic rotational mixing conditions for 45 min prior to exposure
to VLTI. The homogeneous mixture was stirred at a speed of 500 rpm.

The TOC analyzer (TOC-5000 A, Shimadzu Corporation, Kyoto, Japan) was employed
to quantify the mineralization experimental data of parathion methyl within the reaction
solution. To determine the saturation of TOC during the PDD of parathion methyl, potas-
sium acid phthalate (KHC8H4O4) was employed as a certified reference material. For
calibration purposes, a standard solvent system of potassium acid phthalate with varying
carbon content from 0 to 100 mg/L was prepared. The TOC saturation was measured in six
samples, with each sample consisting of 45 mL of the solvent system.

PM and its PDD products were analyzed and quantified using liquid chromatography–
mass spectrometry (LC–MS) on a Thermo Quest LCQ Duo system (Thermo Fisher Scientific
Corporation, Waltham, MA, USA). Separation was carried out on a Beta Basic-C18 HPLC
column (150 × 2.1 mm, 5 µm ID, Thermo Fisher Scientific Corporation, Waltham, MA,
USA). A 20 µL sample obtained from the PDD reaction was injected into the LC-MS system.
The flowing medium consisted of a 50% isopropanol and 50% ultrapure water mixture,
with a flow rate of 400 µL/min. The spray voltage was adjusted to 4000 V; the sheath
gas pressure was set at 30 psi; the auxiliary air flow rate was set to 10 units; the capillary
temperature was set to 350 ◦C; the Source CID cracking collision energy was set to 0 V; and
the collision pressure was set to 1.5 m Torr. The collision energy was set to −38 eV. The
specified syringe volume was set to 500 µL.

To assess the intensity of photons in the incident radiation, a 7 cm long and 5 cm wide
filter was selected for exposure to monochromatic visible light at a wavelength of 420 nm.
The mole number of cumulative photons passing over the complete area of the filter per
unit time was obtained using the formula υ = c/λ, where υ represents photonic frequency, λ
denotes incident light wavelength, and c is the light velocity. The Avogadro constant (NA)
and Planck constant (h) were used to calculate the energy of a photon (hv). The distance
between the photoreactor and the xenon arc lamp was adjusted to regulate the incident
photon flux on the photoreactor.

The incoming photon flux Io was quantified through a radiometer (Model FZ-A,
Photoelectric Instrument Factory Beijing Normal University, Beijing, China), and was
established as 4.76 × 10−6 Einstein L−1 s−1 under VLTI (wavelength range of 400–700 nm).
The incoming photon flux onto the photoreactor was modified by varying the distance
separating the photoreactor and the Xe arc lamp.

The PNE was calculated with the following Equation (5):

φ = R/Io (5)

where φ is the PNE (%), and R is the retrogradation velocity of ENR (mol L−1 s−1), and Io is
the incident photon flux (Einstein L−1 s−1).
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4. Conclusions

In this study, a novel highly efficient photocatalyst, Sm2EuSbO7, was synthesized for
the first time using the solid-state calcination method. The novel Sm2EuSbO7 photocatalytic
material was pure phase with a pyrochlore structure, cubic lattice, and space group Fd3m.
This was corroborated by various characterization techniques including XRD analysis, FTIR,
Raman, UV-vis, XPS, and TEM-EDS. In addition, SZHP was successfully fabricated for the
first time through the solvothermal method. The formation of the heterojunction between
Sm2EuSbO7 and ZnBiSbO5 played a vital role in elevating the photocatalytic functionality,
resulting in significant improvements in photocatalytic activity. The synthesized SZHP
photocatalyst exhibited outstanding performance in removing pollutants, particularly PM,
from wastewater. Within a duration of 150 min, the SZHP photocatalyst achieved remarkable
removal rates of PM concentration and TOC concentration, reaching up to 100% and 99.45%,
respectively. In comparison to Sm2EuSbO7, ZnBiSbO5, and N-TO, the PM removal rate
of SZHP was ascertained to be 1.09 times, 1.20 times, and 2.38 times higher, respectively,
demonstrating the superior performance of SZHP as a photocatalyst for PM degradation. The
reinforced PCP can be linked to the efficient dissociation and diminished reassociation of light-
excited charge carriers within SZHP. The heterojunction between Sm2EuSbO7 and ZnBiSbO5
facilitates efficient charge transfer and promotes the generation of reactive species, which
enhances the degradation of PM. Additionally, this study proposed a possible degradation
pathway and mechanism for PM, offering valuable insights into the photocatalytic process.

Overall, this research successfully synthesized the novel Sm2EuSbO7 photocatalyst
and constructed SZHP, providing a promising approach for treating wastewater contami-
nated by PM. The findings contribute to the advancement of photocatalytic technology and
provide valuable perspectives on the construction and enhancement of efficient photocata-
lysts for pollutant degradation.
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