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Abstract: Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or
treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic,
inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen
livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal,
or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive
and have a high band gap, making them more effective than traditional medications. Moreover,
due to some pathogen’s resistance to currently available medications, the antipathogen performance
of NMs is becoming crucial. Additionally, due to their prospective properties and administration
methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug
administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics
that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes
multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed
the challenges that need to be solved for the utilization of NMs as antipathogens.

Keywords: multifunctional nanomaterials; antipathogen application; mechanism; challenges

1. Introduction

Pathogens are microorganisms, including bacteria, viruses, fungi, and parasites, that
may induce acute and chronic infections in their hosts after entering the body through
ingestion, inhalation, or direct contact. These pathogens are directly responsible for mil-
lions of annual cases of infections and fatalities worldwide [1]. Nanomaterials (NMs) with
dimensions under 100 nm offer unique characteristics that are suitable for various applica-
tions [2]. Currently, NMs are attracting significant attention, transforming antipathogen
livelihoods. NMs can quickly enter bacterial, fungal, and protozoal cell walls and viral
particles to perform their antipathogenic activity, owing to their ultra-small size, improved
surface-to-volume ratio, greater reactivity, and high band gap [3,4]. Thus, researchers are
designing nanostructures with several antipathogenic advantages. Ultimately, silver NPs
(Ag-NPs) were among the first NPs with remarkable antipathogenic effects [5]. Transition
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metals (Ag, Cu, Zn), metal oxides (Fe2O3, TiO2, ZnO2), and carbon-based NMs also have
intrinsic antipathogenic effects [6]. Furthermore, because of some pathogen’s resistance to
currently available medications, the antibacterial, antiviral, antifungal, and antiparasitic
performances of NMs are becoming important [7,8].

Hence, NMs offer the potential for developing new therapeutic strategies, such as drug
administration and diagnostic tools for antipathogens [9]. Herein, NMs have significant
characteristics that facilitate the identification of pathogens and their elimination in real
time. For example, the utilization of NMs as drug carriers is an efficient way to fight against
several pathogens [10,11]. NMs as a novel drug delivery method allow drugs to cross
cell membranes and enter the cytoplasm, effectively killing intracellular infections and
improving drug effectiveness against pathogens while minimizing negative consequences
in humans and animals [12,13]. In brief, NMs, with their antimicrobial properties, are
promising for emerging applications, but their function, structural characteristics, and
therapeutic effectiveness remain unexplored, necessitating additional research for optimal
execution [14].

This mini review aims to provide a detailed analysis of the classification, production,
characterization, mode of action, and outcomes of NMs as antimicrobial agents. The main
objective of this study is to explore the potential of NMs in overcoming drug resistance
and enhancing the effectiveness of therapeutic interventions. In a more comprehensive ap-
proach, our study delved into the considerations pertaining to the long-term sustainability
and adaptability of NMs across various environments. This review also provides insights
and perspectives that will contribute to the understanding of the pathogens proliferation
mechanism as well as the potential for expanding nanotechnology-based techniques for
combating pathogens.

2. Overview of Nanomaterials
2.1. Classification of Nanomaterials

The classification of NMs is diverse. Based on their spatial features on the nanome-
ter scale, NMs can be divided into zero-dimensional NMs, one-dimensional NMs, two-
dimensional NMs, and nanostructured materials. Based on their morphology, NMs can be
classified into nano powder materials, nano-bulk materials, nanofiber materials, nanofilm
materials, and nano-liquid materials [15]. Based on their function, NMs can be categorized
into nano-magnetic materials, nano-biomaterials, nano-pharmaceutical materials, nano-
catalytic materials, nano-wave-absorbing materials, and so on. Based on their chemical
composition, NMs can be divided into organic NMs, inorganic NMs, and nanocompos-
ites [16,17].

2.1.1. Organic Nanomaterials

Organic NMs are carbon-based compounds with covalent bonds, which provide
mechanical strength, electrical conductivity, and thermal stability. They are suitable for
various applications, such as portable electronics and medication delivery systems. Some
examples are carbon nanotubes (CNTs), graphene, polymer NPs, and lipid-based NPs for
gene therapy [18–20].

2.1.2. Inorganic Nanomaterials

Inorganic NMs are non-carbon-based elements with unique physiochemical character-
istics that are used in various domains. Metals like Au, Ag, iron (Fe), and platinum (Pt) are
used in medication delivery, imaging, and biosensors. Metal oxide NMs (TiO2, Fe3O4, and
ZnO) are used in photocatalysis, while QDs and semiconductor NMs have size-dependent
optical features for next-generation technologies and photovoltaic panels [19,21,22].

2.1.3. Nanocomposites

Nanocomposite, also known as hybrid NMs that refers to the combination of two
or more distinct components such as polymer, metallic, or ceramic nanomaterials. These
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nanocomposites are used in numerous fields, such as automobiles, aerospace, and architec-
ture. For example, Mg/CNT offers a higher tensile strength, fatigue resistance, and wear
resistance, while thermoplastic/thermoset nanocomposites offer easy recycling, longevity,
and chemical resistance. The Al2O3/SiO2 nanocomposite is a popular electrical insulator in
electronics, aviation, and cars, superior to conventional polymer composites in the electric
and healthcare sectors [23–25].

2.2. Synthesis and Characterization of Nanomaterials

NMs are generally manufactured through two different approaches: top-down and
bottom-up methods. Top-down methods involve applying physical, chemical, or mechan-
ical treatments to reduce large-scale materials to the nanoscale level [26,27]. Examples
of top-down methods are ball milling, plasma arc synthesis, and lithography techniques.
On the other hand, in the bottom-up process, NMs are synthesized from smaller build-
ing blocks like atoms, molecules, or NPs; examples of bottom-up methods are chemical
synthesis, sol–gel synthesis, and vapor phase deposition approaches [28,29]. Material
characterization helps in the design of new materials by understanding their chemical,
mechanical, physical, and microstructural properties. Tools for characterization, include
structural characterization, surface characterization, elemental analysis, surface charge char-
acterization, crystallinity, pore structure characterization, and thermal stability. Moreover,
Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), UV-
Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy
(SEM), X-ray photoelectron spectroscopy (XPS), and X-ray crystallography (XRD) are the
most popular techniques to improve advanced, cutting-edge materials [20,30,31].

2.3. Multiple Functions of Nanomaterials

Significantly, NMs possess remarkable characteristics including their surface area,
porosity, pore volume, biocompatibility, non-toxicity, electromagnetic properties, and
biodegradability. These properties enable innovation in various domains, including biomed-
ical, agriculture, and industrial applications [32]. For example, NM-based diagnostic sys-
tems offer high specificity, low detection limits, and portability, making them valuable tools
for pathogen detection and surveillance [33]. They revolutionize medicine by enabling
targeted drug delivery, regenerative medicine, and biosensors [34]. NMs are known to
improve livestock efficiency, carcass characteristics, intestinal microbiota, and prevent
oxidative harm due to their growth-promoting, immune-stimulating, and antimicrobial
properties when added to animal feed [35]. In addition, NMs are essential for energy tech-
nologies, environmental remediation, electronics, and solar system manufacturing, enabling
miniaturization, higher computing power, and enhanced device performance [36–38]. In
short, NMs are expected to play a significant role in fostering future advancements as
shown in Figure 1.

2.4. Role of Nanomaterials as Delivery Systems That Enhance the Antimicrobial Activity of
Potential Agents

Nanomaterials hold great promise in drug delivery systems, biomedicine, and en-
vironmental protection due to their unique properties such as high surface area, large
pore volume, high porosity, and quantum effects. By establishing the optimal storage and
delivery conditions, they can significantly enhance the efficacy of antibacterial medicines.
Nanomaterials can encapsulate antimicrobial agents, enabling them to bypass cell walls,
enter cells, or attach directly to microbes. Their magnetic responsiveness and photothermal
properties regulate medication release, increase drug stability, and enhance efficacy. How-
ever, nanoparticles may have harmful effects on cells and microbes, and their interaction
may alter their pharmacokinetic features [39]
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Figure 1. Diagrammatic illustration depicting synthesis, classification, characterization techniques,
and applications of multifunctional nanomaterials.

3. Research Advances of Nanomaterials as Antipathogens

Recently, NMs have gained significant attention for their antimicrobial properties,
which have been shown to be effective in combating various pathogen-related diseases,
including those caused by bacteria, viruses, fungi, and parasites. These NMS provide
enhanced antimicrobial activity, reduced antibiotic resistance, controlled drug delivery, sur-
face disinfection, and rapid diagnostics [40]. Summary of nanomaterials for antimicrobial
activities is given below in Table 1.

Table 1. Summary of nanomaterials for antimicrobial activities.

NMs Nature Antipathogens Mode of Action Therapeutic Outcome Ref.

Polymeric micelles Organic S. aureus Membrane lipases
breakdown.

Multi-resistance drugs,
biofilms [41]

Chitosan HCL Organic
Gram-negative

and Gram-positive
bacteria

Depolarizing the cell
membrane. Multi-resistance drug [42]

Chitosan NPs Organic E. coli Generate ROS production. Antibacterial activity,
meat preservation [43]

Liposome Organic
Gram-negative

and Gram-positive
bacteria

Break down cell membrane. Antimicrobial activity,
meat preservatives [44]

Liposome Organic Salmonella enterica
Targeting viral cells; modified

liposomes impair cellular
processes.

Reduce microbial
contaminants in

poultry feed
[45]

Se-NPs Inorganic
Gram-negative

and Gram-positive
bacteria

Increase ROS production. Antimicrobial activity [46]
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Table 1. Cont.

NMs Nature Antipathogens Mode of Action Therapeutic Outcome Ref.

Pd-NPs Inorganic S. aureus, E. coli ROS induction via NIR. Photothermal activity [47]

ZnO-NPs Inorganic
Gram-negative

and Gram-positive
bacteria

Induce ROS to disrupt
essential proteins.

Multidrug-resistant
bacteria in the poultry

[48,
49]

Ag-NPs, Cu-NPs,
Au-NPs, Pt-NPs, and

Fe-NPs
Inorganic Treponema bacteria Oxidative stress damages

cellular components.
Combating hoof

disorders in cows
[50,
51]

Au-NPs Inorganic Bacillus anthracis Induce ROS to disrupt cell
membrane.

Diagnostic marker in
poultry and livestock [52]

QDs Inorganic
Gram positive and

Gram-negative
bacteria

The biochemical process is
disrupted by damage to the
plasma membrane and the

cell wall.

Drug-resistant topical
infections in livestock

[53,
54]

PEG-GO-AuNPs Hybrid E. coli,
S. typhimurium

Disrupt vital biomolecules by
inducing ROS.

Biosensor, antibacterial
agent [55]

Chitosan-AgIO3 Hybrid

P. aeruginosa,
K. pneumoniae,

S. saprophyticus,
E. coli, S. aureus

Oxidative stress damages
cellular components. Antibacterial activity [56]

Liposome-loaded
chitosan Hybrid Salmonella spp.

Activate reactive oxygen
species, causing membrane

breakdown when exposed to
UV light.

Livestock food
production [57]

Betanin nanoliposomes
(G/CH NF/ZnO NPs/B

NLPs)
Hybrid E. coli Cellular components are

damaged by oxidative stress.
Meat preservation,
antibacterial effects [58]

Liposomes Organic HSV-1
Modified liposomes target
viral cells, disrupt cellular

machinery.

Multi-resistance
drug/biofilms [59]

Dendrimers/PLL Organic H1N1, HIV, SARS,
Ebola, MERS-CoV

Dendrimers interact with
spike protein to inhibit DNA

synthesis.

Antiviral drug
delivery modulates

the immune response
[60]

Polymeric lipid NPs Organic MDV

Modified polymeric lipids
specifically target viral cells
and interfere with biological

processes.

Eliminate viral
re-emergence [61]

Polyanhydride-NPs Organic SwIAV

NPs enhance antigen
adsorption, uptake,

processing, maturation,
immune response regulation,
and are easily phagocytosed

by APCs.

Lymphocyte
proliferation, vaccines

for pigs
[62]

Graphene, fullerenes,
and CNTs Inorganic HSV-1, HIV, RSV

Electrostatic interactions with
viral proteins to generate

oxidative stress and immune
responses.

Inhibiting viral
replication,

photothermal activity
[63]

Ag-NPs Inorganic

H1N1, H3N2,
enterovirus 71,
HSV-1/HSV-2,
DENV, HIV

poliovirus

Plasma membrane rupturing
and cell wall disruption,
disturbs the biochemical

process.

Eradicate viral
replication [64]
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Table 1. Cont.

NMs Nature Antipathogens Mode of Action Therapeutic Outcome Ref.

Cu, Ag, TiO2,graphene Inorganic SARS-CoV-2
Release toxic ions and ROS
and UV-induced membrane

destruction.

PDT, PTT, PPE,
antiviral activity [65]

Ag-NPs Inorganic ASFV Damage to membranes due to
free radicals and ROS. Disinfectant [66]

ZnO-NPs, Ag-NPs Inorganic BoHV-1 Cellular damage from
oxidative stress Antiviral agents [67]

Mesoporous Si-NPs,
Au-NPs Inorganic FMDV

ROS from ions disrupt
homeostasis and permeate

cells.
Vaccines [68,

69]

GSH-ZnS NPs, Hybrid PRRSV

Oxidative stress damages
cellular components due to

glycosylation and
immunodominant decoy

epitopes.

Antiviral activity [70]

MES-coated tellurium
NPs (Te/BSA NPs) Hybrid PRRSV

Te/BSA nanostars inhibit
PRRSV proliferation and

prophylactic effect.
Antiviral activity [71]

Ca3(PO4)2
biomineralized core

immunogen shell NPs
Hybrid FMDV

The addition of polar amino
acids to VLPs can enhance
their stability in extreme

environments, potentially
improving their heat

resistance.

Vaccines [72]

Liposomes Organic A. flavus
Interact with the membrane,

causing destabilization,
cellular leakage.

Drug delivery,
antifungal agent [73]

Polymeric NPs Organic Streptomyces
hygroscopicus

Antifungal activity involves
cell membrane damage,

causing cell death.

Drug delivery. treating
allergies, autoimmune

diseases
[74]

Liposomes Organic A. fumigatus

Liposome binding affinity for
fungal cell walls ensuring
stability and preventing

toxicity.

Antimycotic infections,
drug delivery [75]

Si-NPs Inorganic C. auris
Ion’s release generates ROS

disrupt homeostasis cause cell
leakage.

Drug delivery, MDR [76]

Fe2O3, Fe3O4, ZnO NPs Inorganic A. flavus ROS induces mitochondrial
dysfunctional apoptosis. Antifungal activity [77,

78]

ZnO-CaO Hybrid C. auris
Zn2+ disrupts zinc-mediated

protein activity, generates
oxidative stress.

MDR [79]

Chol-PEG-SH,
PEG-Fluc-GNR Hybrid C. albicans

Opsonization and
phagocytosis inhibit

DNA/RNA synthesis.
Drug delivery [80]

TiO2-Cu2CuI Hybrid A. Niger,
C. parapsilosis

Restrict enzyme function,
release of Cu2+, alter NADPH

generation.
MDR [81]
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Table 1. Cont.

NMs Nature Antipathogens Mode of Action Therapeutic Outcome Ref.

Iron oxide and chitosan
NPs Hybrid

Candida albicans
and Candida

glabrata

ROS generation occurs when
antifungal NMs attach to

antifungal effect cells,
elaborating O2 and metal ions.

Antifungal activity [82]

Ag@Cu-NPs Hybrid Candida albicans
Release ions cause oxidative

stress, cell wall damage,
enzymatic activity inhibition.

Antifungal activity [83]

Liposomes Organic Plasmodium spp.
Liposomes interact with

ligands or antibodies and
release encapsulated drugs.

Antiparasitic activity,
drug delivery [84]

PEG-liposomes Organic P. falciparum

Preventing immune system
recognition and eliminating

parasites through drug
cellular uptake.

Conjugated therapy,
drug delivery, MDR [85]

Liposome Organic Toxoplasma gondii

Destabilizing membranes
through acidic pH, disulfide

bonding cleaving, and
degradation.

Vaccines [86]

Chitosan Organic Eimeria spp.

Chitosan destabilizes
hydrophobic scaffolds in

tertiary amines and degrades
in response to intracellular

environment.

Drug delivery [87]

Chitosan Organic Leishmania Chitosan destabilizes cellular
membrane.

Drug delivery,
antiparasitic activity [88]

Ag-NPs Inorganic P. falciparum Induce ROS causing cellular
contents leakage. Antiprotozoal activity [89]

Au, Ag, Cu-NPs Inorganic T. gondii, malaria,
leishmaniasis

Release ions, generate
oxidative stress to kill

parasites.
Biomarkers [90–

92]

Au, Ag, Pt NPs Inorganic T. gondii

Adsorption, permeation, and
cytotoxicity of NPs with

electrically charged
substances.

Antiparasitic activity [93]

Au-NPs Inorganic Echinococcus
granulosus

AuNPs on hydatid cyst
protoscoleces, assessing their

effects on cell wall and
caspase-3 activation.

Diagnostic marker [94]

Ag-NPs Inorganic
Haemonchus

contortus,
Leishmania

Free radicals induce oxidative
stress. Antiprotozoal activity [95]

ZnO and FeO-NPs Inorganic Toxocara vitulorum
Oxidative stress and ROS

generation increasing
antioxidant enzyme activity.

Antiprotozoal activity [96]

PLGA@chitosan Hybrid T. gondii
Acidic environment causes

PLGA degradation, releasing
drugs, and targeting parasites.

Vaccines [97]

TiO2/Zn-HY Hybrid L. amazonensis Oxidative stress inhibits
DNA/RNA synthesis.

PDT, photosensitizer,
and cutaneous

leishmaniasis therapy
[98]
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Table 1. Cont.

NMs Nature Antipathogens Mode of Action Therapeutic Outcome Ref.

CNC/ZnO/CuO Hybrid Anopheles stephensi
Generation of hydroxyl ions
and ROS leads to membrane

disruption.

Photodegradation and
larvicidal activities [99]

ZnO-CuO
nanocomposite Hybrid Culex

quinquefasciatus

Generation of ROS
antioxidant property of

enzymes.
Antiprotozoal activity [100]

3.1. Nanomaterials for Antibacterial Applications
3.1.1. Organic NMs

NMs are a promising method for combating bacteria and resistant microbes, offering
antibacterial properties in organic, inorganic, and hybrid forms. NMs diverse chemical
structures, particularly nanosized ones, are designed to combat highly antibiotic-resistant
biofilms. Moreover, NMs have improved antimicrobial medicine’s effectiveness by dis-
solving and dispersing biofilms, which pose a significant barrier in clinical settings. For
example, Liu and colleagues [41] demonstrated polymeric micelles as nanocarriers for hy-
drophobic antimicrobials such as Triclosan. Triclosan is a pH-responsive shell that targets
S. aureus biofilms, allowing bacterial lipases to break down biofilms and release encapsu-
lated medicines. Antibiotic-resistant bacteria demand innovative antibacterial medications,
with organic NMs gaining attention for their tailored size and large surface-to-volume
ratio [101]. In contrast, Costa et al. [102] explored rifampicin-containing poly-lactic acid
(PLA) NPs functionalized with poly-L-lysine (PLL), which reversed negative charges to
improve antibiotic delivery in S. aureus biofilms, enhancing carrier retention capacity and
treatment efficacy. Moreover, Hoque and colleagues [42] found that N-(2-hydroxypropyl)-
3-trimethylammonium chitosan chlorides effectively kill MDR bacteria by disrupting the
bacterial membrane and exhibiting minimal resistance. In vitro, results confirmed their
non-toxic behavior, low skin tissue inflammation, and reduced methicillin-resistant S.
aureus (MRSA) burden in superficial skin infections without adverse effects.

In addition, nanotechnology and NMs have significantly impacted the field of live-
stock antibacterial medicine [43]. Multiple studies have shown that ampicillin-loaded
chitosan NPs can suppress E. coli growth, prolong ampicillin release, and improve ani-
mal welfare. Liposomes, an amphiphilic delivery system, enhance meat preservation by
encapsulating active compounds, extending shelf life, and promoting antibacterial and
antioxidant effects [103]. For instance, Singh and coworkers [44] demonstrated that li-
posomes and solid-lipid NPs can improve meat ingredient surface quality, effectiveness,
stability, sensory quality, and bioavailability, while essential oil nano emulsions offer an-
tibacterial and antioxidant properties. Recently, Li and colleagues [45] discovered that
administering liposome-associated fimbriae antigens to chickens at 8 and 10 weeks of age
increased their IgA and IgG responses and reduced Salmonella enterica excretion. Addition-
ally, researchers have developed NPs for enhanced feed detection in poultry. They have
developed a nanomaterial-based technology for detecting nanoparticles in poultry feed.
This technology can improve the sensitivity and accuracy of detection, resulting in better
control of feed quality and safety. NPs with a polystyrene base, PEG linker, and mannose-
attracting biomolecule could potentially replace antibiotics and reduce antibiotic-resistant
bacteria [104].

3.1.2. Inorganic NMs

Inorganic NMs exhibit enhanced antibacterial activity, biosensing, broad spectrum,
and drug delivery capabilities against both Gram-positive and Gram-negative bacteria [105].
Biosensors use enzymes or antibodies to assess the effectiveness of sterile agents, enabling
real-time detection of drug-resistant strains for effective therapies and infection control.
Accordingly, Fouda and his research team [46] discovered selenium NPs (Se-NPs) as ver-
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satile therapeutic agents, biocides, antioxidants, catalysts, and photoreactive substances.
They offer broad-spectrum defense against bacteria, cancer, fungi, and pathogens, exhibit
photocatalytic performance, and can be recycled five times. Additionally, inorganic NMs
are photothermal candidates that convert light energy into heat to target bacteria, killing
germs without destroying healthy tissues [106]. Chen and colleagues [47] found that Y-4-
produced palladium NPs have broad NIR absorption, making microorganism eradication
easy, economical, and sustainable against Bacillus megaterium.These NPs improve disper-
sity, light utilization stability, biocompatibility, and photothermal efficacy against S. aureus
and E. coli.

In addition, Adegbeye and coworkers [107] demonstrated that inorganic NPs like Ag
and Cu can improve feed efficiency, prevent periodontal disease in horses, and address
issues like environmental pollution, antibiotic resistance, digestive disorders, and gut
health management. Additionally, ZnO-NPs have the potential to be used as antibiotic
and anticoccidial replacements due to their bioavailability, characteristics, and impact on
veterinary biological systems [108]. In this regard, Yusof and his team [48] highlighted the
effectiveness of ZnO-NPs as an alternative antibiotic against multidrug-resistant bacteria in
the poultry industry, inhibiting the growth of Salmonella spp., E. coli, and Staphylococcus au-
reus. Moreover, Hasssan et al. [49] reported that NMs, like ZnO, can improve animal health
by promoting development and reducing diarrhea in piglets and dairy cows with recessive
mastitis. Furthermore, Tsakmakidis et al. [50] study on FeO and Ag-NPs on ram sperm
found that Ag-NPs demonstrated superior antibacterial activity and cytotoxicity, indicating
potential for sperm therapy. Accordingly, Kot et al. [51] explored the effectiveness of metal
NPs (Ag-NPs, Cu-NPs, Au-NPs, Pt-NPs, and Fe-NPs) in combating digital dermatitis in
cows caused by Treponema bacteria, with Ag-NPs and Cu-NPs showing the most biocidal
effect. Interestingly, Au-NP-based diagnostics in veterinary science have significantly
improved the detection of pathogens and toxins in poultry and cattle, including bacterial
infections like anthrax and brucellosis, thereby enhancing the quality of veterinary care [52].
Moreover, quantum dots (QDs) are being used to study livestock gamete biology and repro-
ductive challenges. These biocompatible, photo-stable NPs can provide either targeted or
non-targeted imaging with higher signal intensity than organic fluorescent molecules [53].
Based on this, Chatterjee and coworkers [54] proposed QDs-NPs activated by light to create
superoxides as a treatment for drug-resistant bacterial infections, reducing viability by
seven times. Additionally, researchers have developed QDFM immunochromatography
for biological and chemical detection, offering a fast, efficient, specific, high-sensitivity, and
simple operation, making it a potential immunolabeling technology [109].

3.1.3. Hybrid NMs

Researchers have developed antibacterial drugs using NMs like graphene and poly-
mers as matrix materials for metal NMs (Au, Ag, ZnO, Cu, and TiO2), enhancing biosensing
and cell death [110,111]. Accordingly, Kaushal et al. [55] developed PEG@GO-decorated
hybrid antibody biosensors for fast, specific, and higher sensitivity detection of foodborne
bacteria like E. coli and Salmonella typhimurium, enabling faster NIR illumination and visual
detection. Ahghari and coworkers [56] study on the sustainable synthesis of silver iodate
NPs and chitosan (chitosan-AgIO3) showed high bacterial eradication rates against E. coli,
Klebsiella pneumoniae, Staphylococcus saprophyticus, Pseudomonas aeruginosa, and S. aureus,
indicating the potential of this green, inexpensive, and effective antibacterial agent for
biomedical and therapeutic applications. In addition, polymeric NPs offer advantages over
lipid-based NPs, including structural integrity, stability, and controlled release capabili-
ties for drug delivery [112]. A potential antibacterial agent for preventing biofilms and
intracellular bacterial growth and membrane formation was recently produced by Qiu and
colleagues [113] using phosphatidylcholine-chitosan hybrid NMs doped with gentamicin
antibiotics. Cui and colleagues [57] found that tea tree oil and liposome-loaded chitosan
electro-spun nanofilms effectively inhibited Salmonella in chicken meat, while also preserv-
ing the sensory properties of the chicken meat, demonstrating their antibacterial potential
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in livestock food production. In another instance, Cui et al. [114] developed a chitosan
edible film with liposome-encapsulated phage, enhancing phage stability and exhibiting
high antibacterial activity against E. coli O157:H7, making it a promising antibacterial
packaging for beef preservation. Pabast and colleagues [115] developed a biodegradable
coating of chitosan with nano-encapsulated Satureja khuzestanica essential oils (SKEO) to
improve food quality and extend shelf-life. The coatings effectively retarded microbial
growth, delayed SKEO release, and enhanced sensory attributes, making them a promis-
ing candidate for lamb meat shelf-life extension. Furthermore, Amjadi and his team [58]
developed betanin nanoliposomes (G/CH NF/ZnO NPs/B NLPs) using gelatin, chitosan
nanofiber, and ZnO-NPs in a bio-nanocomposite film for meat preservation. The film
effectively inhibited bacterial growth, lipid oxidation, pH changes, and color changes in
beef samples, demonstrating its potential for meat preservation. Additionally, Huang and
colleagues [116] manufactured chrysanthemum essential oil encapsulated with chitosan and
pectin, which reduced oil release and demonstrated sustained antibacterial activity against
Campylobacter jejuni in broilers through liposomal delivery.

3.2. Nanomaterials for Antiviral Applications
3.2.1. Organic NMs

Biomedicine is advancing with organic NPs like liposomes, dendrimers, polymer mi-
celles, and carbon-based NPs, promising antiviral candidates due to their viricidal activity,
drug carrier properties, selective administration, and regulated release [117]. Accordingly,
Bhattacharya and colleagues [59] used membrane-derived vesicles from human corneal
epithelial cells, Vero, and CHO cells to combat HSV-1. These liposomes have receptors and
neutralizing particles, but limitations in their drug carrier delivery require further research
for optimal evaluation and production. Moreover, polyamidoamine dendrimers, naturally
antiviral, prevent virus proteins from spreading, invading, and growing. They have the
potential to combat diseases like H1N1, HIV, SARS, and Ebola [118,119]. Kandeel et al. [60]
studied cationic and anionic dendrimers against MERS-CoV in vivo. The study found that
anionic dendrimers reduced MERS-CoV by 40%, while cationic dendrimers assassinated
Vero cells. Polyanionic dendrimers can improve targeted antiviral drug delivery.

According to recent studies, alternative treatments like early innate responses and Toll-
like receptor ligands have being explored to prevent viral diseases in poultry animals [120].
On this basis, Bavananthasivam et al. [61] found that encapsulating TLR ligands in PLGA-
NPs enhances IFN-γ and IL-1β expression, promoting prolonged innate responses and
systemic immune responses against Marek’s disease virus (MDV) in chickens. Additionally,
Singh and coworkers [121] found that PLGA-NPs effectively combat H9N2 virus in chickens,
with nonencapsulated formulations generating higher antibody and mucosal responses.
Moreover, Dhakal and colleagues [122] documented a new drug delivery platform using
mucoadhesive chitosan NPs. The inactivated swine influenza A virus (SwIAV) vaccine, encap-
sulated in chitosan NPs, elicited strong immune responses in pigs, reducing viral shedding
and lung virus titers, suggesting it as an ideal pig vaccine. Accordingly, Renukaradhya and
coworkers [62] demonstrated polyanhydride-NPs, encapsulated in killed SwIAV, being
effective as a vaccine in pigs, promoting virus-specific lymphocyte proliferation, fever
protection, and reduced viral antigens for pigs. Furthermore, Huang and his research
group [123] illustrated that mannosylated gelatin NPs (MnG-NPs) with inactivated Porcine
Reproductive and Respiratory Syndrome (PRRSV) in vitro induce T cell-mediated immunity,
enhancing monocyte dendritic cell uptake, cytokine expression, and cell activation, making
it a significant PRSV vaccine for piglets.

3.2.2. Inorganic NMs

Remarkably, Innocenzi et al. [63] identified that graphene, fullerenes, and carbon
dots are promising antiviral agents due to their unique physicochemical characteristics.
Graphene oxide has a large surface area and excellent sorption properties, while carbon
dots are suitable for viral therapies like HSV-1, HIV, and RSV due to their high aspect ratio
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and superior mechanical properties. Ag-NPs have been studied for their antiviral effects
on several viral infections, including respiratory syncytial virus (RSV), dengue virus (DENV),
influenza, hepatitis (HSV-1), poliovirus (PV), and coronaviruses (CoV) [64]. Fruitfully, Yoo and
coworkers [124] fabricated a heating filter membrane (HFM) decorated with plasmonic
Au-NPs to eliminate H1N1pdm09 virus infectivity. The HFM reduced virus titers by over
99.9% in 10 min, and SARS-CoV-2 virus infectivity by 99% using the photothermal method.
This meth by utilizing localized surface plasmon resonance, effectively inactivated the
virus, making it suitable for air quality control, viral particle capture, and qRT-PCR genetic
information extraction.

Additionally, inorganic NPs are widely used as antiviral agents in domestic ani-
mals [65]. Dung and his colleagues [66] found that Ag-NPs can effectively combat African
swine fever virus (ASFV) in piglets, thereby reducing viral contamination in pig houses,
indicating their potential as a disinfectant. Recently, Zeedan and colleagues [67] reported
the biosynthesis of ZnO-NPs and Ag-NPs as antiviral agents against bovine herpesvirus-1
(BoHV-1) in cattl, demonstrating safety in Madin-Darby canine kidney cell culture and
experimental animals with minimal cytotoxicity levels. Interestingly, Bai et al. [68] manu-
factured hollow mesoporous silica-NPs to induce persistent humoral immunity against foot
and mouth disease virus-like particles in guinea pigs, enhancing T-lymphocyte proliferation
and IFN-γ production, making them a promising nano-adjuvant for vaccines. On the other
hand, Fawzy and colleagues [69] found that Au-NPs conjugated with foot and mouth disease
virus (FMDV) capsid protein VP1 increased antibody production, IFN-γ production, and
macrophage activity in guinea pigs.

3.2.3. Hybrid NMs

Currently, hybrid NMs are progressively used in antiviral approaches due to their
integration of antiviral substances, physical barriers, and photothermal or photocatalytic
activity [125]. Recently, Ghaffari and his research team [126] investigated that ZnO-NPs
with PEGylated coatings effectively inhibited H1N1 by decreasing MDCK-SIAT cell toxicity
and improving antiviral activity. PEGylated ZnO-NPs showed 94.6% viral inhibition rates
and decreased fluorescence emission intensity. In an additional study, Hodek et al. [127]
fabricated a hybrid surface protection of Ag, Cu, and Zn on transparent glass or poly-
methylmethacrylate (PMMA) plates to combat viral transmission. The coating reduced
HIV-1 titers by 99.5–100% after 20 min, while PMMA plates showed 75–100% and 98–100%
inactivation after 120 min. The coating targets enveloped viruses, including SARS-CoV-2,
and is sterile, safe for Vero and HeLa cells, and minimally cytotoxic. Interestingly, NMs
provide targeted antiviral drug delivery with enhanced stability, controlled release, multi-
functionality, and biological barriers, enhancing treatment outcomes. Recently, Smith and
colleagues [128] developed hybrid poloxamer–lipid NPs to improve antiretroviral lamivu-
dine delivery against HIV-1. M23TC, a phosphoramidite pronucleotide, improved the
intracellular delivery and antiretroviral and pharmacokinetic profiles in MDM and CD4+
cells. Likewise, hybrid NMs improve antiviral delivery, clearance, and treatment strategies.
In this regard, Abdel-Bar and his research team [129] employed lipid polymer hybrid NPs
(LPH-NPs) in combination with piroxicam to administer azithromycin or niclosamide to
counter the Corona virus. This system showed entrapment efficiencies, a dose-dependent
cellular uptake, and enhanced antiviral efficacy.

Additionally, Zhou et al. [70] reported that GSH-ZnS NPs modified with zinc sulfide
demonstrated significant antiviral activity against PRRSV in pigs, indicating potential
for antiviral NM development and host restriction factor investigation. Interestingly,
Zhou et al. [71] documented that MES-coated tellurium NPs (Te/BSA NPs) inhibited
internalization, suppressing virus infection in PRRSV models and demonstrating higher
antiviral activity against cattle and pigs. Recently, Du and colleagues [72] developed a
method for fabricating virus-like particles using calcium phosphate-biomineralized core
immunogen shell NPs, which were used to produce FMDV VLPs, suggesting it as an
effective vaccine production method for cattle, sheep, and pigs. Likewise, Chen et al. [130]
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investigated the antiviral properties of graphene oxide sheets and GO sheets with Ag-NPs
against feline coronavirus and infectious bursal disease virus in chickens.

3.3. Nanomaterials for Antifungal Applications
3.3.1. Organic NMs

Organic NMs like micelles, dendrimers, liposomes, graphene, fullerene CNTs, and
chitosan offer potential for antifungal therapy due to their large surface area, biocompat-
ibility, targeted delivery, and biodegradability [131]. Leal and coworkers [73] confirmed
that itraconazole encapsulated with liposomes had a synergistic effect against Aspergillus
in vivo experiments. Adult female Wistar rats were exposed to A. flavus, and itraconazole
encapsulated with liposomes showed higher antifungal activity. This drug could be used
in clinical settings due to its cost-effectiveness and low cytotoxicity. For another illustration,
Helal and his colleagues [132] highlighted the use of organic NMs against fungus-resistant
strains and loaded antifungal drugs like nystatin and fluconazole. They found that the
biological conjugation and encapsulation of NMs with drugs reduces the toxicity risk and
offers promising antifungal therapy.

In addition, organic NPs such as polymeric NPs are being explored as potential antimi-
crobial drug delivery agents due to their efficient dissolving, entrapment, biocompatibility,
low toxicity, and synergistic therapy capabilities in livestock [133]. On this basis, Mal-
donado et al. [74] proposed synthetic polymeric NPs and rapamycin, which can induce
immune tolerance against Streptomyces hygroscopicus, potentially treating allergies, au-
toimmune diseases, and preventing antidrug antibodies in animal husbandry. Recently, the
therapeutic potential of liposomal amphotericin B against A. fumigatus-induced pulmonary
mycotic infections in livestock was reported by Siopi and coworkers [75]. Yet, Ahmed
et al. [134] found that chitosan NPs effectively inhibited the growth of fungal-like oomycetes
Aphanomyces invadans and Saprolegnia parasitica in fish, with the strongest concentration
inhibiting 90 % of visible mycelial growth.

3.3.2. Inorganic NMs

Inorganic NMs with a green synthesis approach have antibacterial, antifungal, and
antioxidant properties. Metal and metal oxide NMs exhibit potential antifungal activity
against Candida, Aspergillus, and dermatophytes. Amin et al. [135] prepared copper oxide
(CuO) using Aerva javanica leaf extract to combat fungal infections. In vitro studies of
CuO-NPs coupled with amphotericin B showed a higher MIC concentration (160µg/mL),
broad-spectrum activity, minimal toxicity, and a cost-effective approach. Inorganic NMs
are also useful for antifungal therapy due to their increased solubility, stability, regulated
release, and targeted administration to the infection site [136]. Significantly, these NMs
have the potential to overcome the drawbacks of traditional antifungal medicines, includ-
ing inadequate absorption and resistance to drugs. Recently, Gignone and his research
team [76] incorporated clotrimazole into mesoporous silica using theoretical and analytic
strategies, evaluating drug behavior through drug adsorption simulation and identifying
high-loading-capacity configurations.

On the other hand, Hassan et al. [137] demonstrated that metal NPs like Fe, Zn, Ag,
and Se have antimicrobial and antifungal properties, inhibiting mold growth and prevent-
ing mycotoxin production, and protecting against aflatoxins and mycotoxins in animals.
Recently, Tawab and colleagues [77] demonstrated the antifungal effect of Fe2O3 and Fe3O4
NPs on Aspergillus flavus, isolated from broiler feed. These NPs were synthesized using
the co-precipitate method, having a potent antifungal effect. In another study, Nabawy
and his team [78] reported that higher concentrations of ZnO and Fe2O3 NPs inhibited
A. flavus strains and decreased aflatoxin B1 production in cattle diseases, compared to
commercial feed additives. Additionally, Alagawany and colleagues [138] reported that
giving Japanese quail Se-NPs improved their growth, blood-related factors, corpse features,
state of antioxidant immunity, and gastrointestinal flora, reducing their consumption of
feed, as well as having antifungal activities.
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3.3.3. Hybrid NMs

Metal and metal oxide NMs such as Ag, Au, or ZnO can be combined with organic
molecules, polymers, or carbon-based materials to create hybrid NMs for antifungal activi-
ties [139]. For instance, Reda et al. [79] used a sol–gel technique to create calcium-doped
zinc oxide ceramic NPs (ZnO-CaO) for combating Candida auris. The ceramics showed
better bioactivity and effectiveness in combating multidrug-resistant C. auris, as they release
Zn2+, causing oxidative stress and DNA replication and ultimately killing the target mi-
crobe. Similarly, Hamad et al. [80] developed thiolated PEGylated cholesterol and PEG-SH
nanocomplexes with Au nanorods in a poloxamer 407 hydrogel with fluconazole. These
nanocomplexes reduced fungal proliferation (C. albicans) and improved cargo delivery
by 14-fold, with minimal cytotoxicity towards human dermal fibroblasts. Also, Hernan-
dez and his coworkers [81] developed titanium-doped copper dioxide/copper iodide
(TiO2-Cu2+/Cul) composite NMs using the sol–gel and co-precipitation methods, with
minimal inhibitory and fungicidal concentrations for Candida parapsilosis and Aspergillus
niger making them cost efficient, and facile for the environment for biomedicine and envi-
ronmental remediation. More specifically, hybrid NMs effectively disintegrate fungal cell
membranes due to their high surface area, reducing proliferation and improving antifungal
activity [140]. In this regard, Mohaptara and colleagues [141] prepared a green Ag-ZnO
nanocomposite against Schizosaccharomyces pombe, reducing cell proliferation with minimal
cytotoxicity, indicating potential antifungal activity in biomedicine and healthcare settings.

In addition, Masry and colleagues [142] found that nanobiotechnological applications
in mycotoxicology are promising due to their size-dependent properties. They demon-
strated that metal nanocomposites (Fe3O4/CuO/ZnO) can counteract ochratoxin residues
in broilers by decreasing body weight, immunological responses, and oxidative stress, while
enhancing kidney function. In another instance, Arias et al. [82] developed a miconazole
nanocarrier using iron oxide NPs and chitosan, which demonstrated superior antifungal
activity against C. albicans and Candida glabrata biofilms in veterinary applications, reducing
CFU and metabolism and preventing external magnetic field effects. Interestingly, Atef
et al. [143] found that ZnO-NPs and cinnamon oils effectively inhibited fungal growth in
cattle mastitis, demonstrating a synergistic effect on the significant inhibition of fungal
growth. Kalinska et al. [83] found that Ag-NPs, when combined with Cu-NPs, demon-
strated strong antifungal activity against Candida albicans in dairy cows and goats; notably,
Ag-NPs showed stronger activity than the Ag-Cu complex.

3.4. Nanomaterials for Antiparasitic Applications
3.4.1. Organic NMs

Recently, standard treatments for parasite infections are facing resistance and poor
functionality, prompting the development of organic nanomedicines as potential antipar-
asitic therapies. These materials reduce drug dosage and cytotoxicity and improve phar-
macological potency [144]. In this regard, Moles and colleagues [84] developed an im-
munoliposome with antibodies targeting RBC surface protein glycophorin A, targeting
naive and Plasmodium-infected RBCs. The liposomes loaded with chloroquinoline effec-
tively transferred the drugs, inhibiting parasite growth. Furthermore, combination therapy
encapsulates antiparasitic medications with immune modulators, improving treatment
outcomes and enhancing bioavailability and therapeutic value [145]. Accordingly, Moles
and his research group [85] confirmed immuno-PEG-liposomes for targeted drug delivery
in a murine malaria model, efficiently encapsulating amphiphilic drugs like chloroquine
and primaquine using a pH gradient. This method effectively inhibited parasite growth
and improved drug activity after 15 min of exposure. Sawicka et al. [86] documented
that liposome-based vaccines have strong immune responses against parasitic pathogens
like Toxoplasma gondii. This reported that the intramuscular injection of MIC3 plasmids
induced a significant and effective immune response against T. gondii, increasing serum
levels of IgG2 and IgG1. Additionally, Zhang and his research group [87] reported a new
approach to anti-coccidiosis drug formulation that involves using 3-carboxyphenylboronic
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acid-modified chitosan conjugates and diclazuril for site-specific drug release in chicken
intestinal tracts. In another instance, a self-nanoemulsifying system (SNEDDS) has been
developed to improve the solubilization capacity of buparvaquone (BPQ), a veterinary
drug, for treating visceral leishmaniasis. The system, adsorbable on chitosan polymers,
has shown enhanced oral bioavailability and potent in vitro efficacy in inhibiting parasite
replication in the spleen and liver [88].

3.4.2. Inorganic NMs

Moreover, artemisinin-based combination therapy (ACT) effectively treats mild malaria
by targeting molecular markers and studying resistance genetics for improved results [146].
On this basis, Foko et al. [89] optimized and characterized the green synthesis of Ag-NPs
using A. cordifolia leaves for potential medical uses. These polycrystalline, stable spheres
showed strong antiplasmodial action against P. falciparum strains, making them safe for
blood use. Green nanotechnology offers alternative malaria drug/insecticide development.
Likewise, inorganic NPs aid in detecting and diagnosing parasitic diseases by interacting
with receptors or biomarkers [147]. Additionally, inorganic NMs including mesoporous
silica, metals (Cu, Ag, and Au), and metal oxides (TiO2 and ZnO) are gaining attention
for their improved therapeutic efficacy against parasites like malaria, leishmaniasis, and
toxoplasmosis [90–92]. In this regard, Adeyemi et al. [93] found that Au, Ag, and platinum
(Pt) NPs have promising anti-Toxoplasma gondii therapeutic activity. Au-NPs and Ag-NPs
showed a 13-fold increase in parasite killing compared to host cells, while Pt-NPs showed a
75% reduction in parasite growth. Tsamesidis et al. [148] studied silica-based NPs (Si-NPs)
for improved drug delivery against malaria and leishmania parasites. They found that
Si-NPs reduced leishmania activity but increased resistance to certain antileishmanial drugs.
Furthermore, Jahani and colleagues [94] manufactured Au-NPs with labeled antigen B
that can detect antibodies against the hydatid cyst disease of domestic animals, which is
caused by Echinococcus granulosus, making it a simple, cost-effective, and selective early
detection method. Additionally, cattle and buffalo are susceptible to Toxocariasis due to
the gastrointestinal worm Toxocara vitulorum. Mohamed and colleagues [149] investigated
the anthelmintic effects of Ag-NPs on both male and female worms as a result of drug
resistance. Changes in body structure and the possible intake of drugs were identified.
Recently, Ag-NPs synthesized from Azadirachta indica showed potent anthelmintic prop-
erties against Haemonchus contortus, a common parasite of domestic animals [95]. Another
study by Aydin and colleagues [96] demonstrated that ZnO and FeO-NPs have anthelmintic
effects on Toxocara vitulorum in cattle; these NPs caused oxidative/nitrosative stress, leading
to the increased mortality of protozoans in the host.

3.4.3. Hybrid NMs

Significantly, hybrid NMs combine organic and inorganic components for enhanced
antiparasitic activity, drug delivery, stability, and bioavailability, improving treatment out-
comes and vaccine formulation [150]. Very recently, investigations have aimed to identify
immunogenic sites and reduce autoimmune and allergic reactions for effective parasitic
vaccines. Oxidoreductase is a promising target in the SDR family for Toxoplasma gondii
prevention [151]. In this regard, Yu et al. [97] developed TgSDRO-pVAX1, a DNA vaccine
combining SDR family oxidoreductase, chitosan NPs, and PLGA. The vaccine demonstrated
Th1/Th2 immunity, a transformed antibody production, dendritic cell development, and
CD4+ and CD8+ T cell development in immunized mice, and that photodynamic therapy
offers an alternative for treating localized lesions. Additionally, Sepúlveda et al. [98] syn-
thesized TiO2 doped with Zn using solution combustion and hypericin (HY) for enhanced
photodynamic activity against cutaneous leishmaniasis. The nanocomposite showed the
highest fluorescence intensity and in vivo effects on the parasite load.

Elfeky et al. [99] developed cellulose nanocrystal (CNC) and ZnO/CuO nanostruc-
tures using the sol–chemical and hydrolysis approaches. The CNC/ZnO/CuO nanos-
tructures showed better larvicidal efficacy towards Anopheles stephensi linked to CNC
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and ZnO/CuO nanostructures. Additionally, Shehu and coworkers [100] documented the
biosynthesis of ZnO-CuO nanoporous composites using gum arabic; this composite has
been efficaciously employed to control Culex quinquefasciatus, a vector of filariasis. Further-
more, Yang and colleagues [152] developed a magnetic field controllable and disposable
electrochemical immunosensor for the detection of clenbuterol in pork samples. These
sensors use graphene sheets, Nafion film, and Fe3O4@Au-NPs coated with bovine serum
albumin–CLB conjugates, is sensitive, rapid, low-sample-consumable, and disposable.

4. The Mechanism of Nanomaterials for Antipathogens

Pathogens like bacteria, viruses, fungi, and parasites pose a significant threat to
living organisms by causing infectious diseases and malignancies. While drugs are used
to combat these resistant pathogens, nanotechnology and NMs offer potential solutions
due to their antimicrobial properties [153]. Nonetheless, NM’s antimicrobial mechanisms
remain unclear; current theories suggest that those mechanisms may involve direct contact,
intracellular localization, and oxidative stress. NMs properties are influenced by physical,
chemical, and morphological characteristics, leading to distinct modes of action [154].
Several key antipathogenic mechanisms of NMs are briefly discussed below.

4.1. Mode of Action of Nanomaterials for Antibacterial Activity
4.1.1. Disruption to the Cell Membranes

The cell wall and membrane play a crucial role in maintaining the stability of the
substances in the bacteria and protect the bacteria from harm [155,156]. NPs with antibac-
terial properties can attach to the negatively charged cell membrane due to their positive
charge when they come into contact with bacteria [157]. The integrity of the cell membrane
is damaged, weakening the interaction between lipopolysaccharide layers on the outer
membrane. As a result, most lipopolysaccharides and proteins are released from bacte-
ria, enhancing cell permeability and affecting material exchange inside and outside the
cell [158]. In addition, NPs can penetrate the bacterial outer wall and accumulate in their
inner membrane, causing instability, damage, increased membrane permeability, cell con-
tents leakage, and death. For example, Au-NPs can continuously release ions that adhere to
cell walls and membranes, altering the membrane permeability and causing the destruction
of the bacterial envelope. Au-NPs can also cause damage through electrostatic attraction
with bacterial cell walls, resulting in cell wall rupture and bacterial death [159–161].

4.1.2. Production of Reactive Oxygen Species (ROS)

ROS are partially reduced oxygen derivatives with a strong oxidation capacity, in-
cluding superoxide anions (O2

−), hydrogen peroxide (H2O2), hydroxyl radicals (•OH),
and singlet oxygen (1O2) [162,163]. Maintaining ROS at an appropriate level positively
affects cells [164]. However, excessive ROS can have a negative effect and cause serious
damage to bacteria [165]. The overproduction of ROS causes oxidative stress, which affects
the structure and function of most biomolecules. For example, lipid peroxidation and
protein oxidation are significantly increased [166,167], causing plasma membrane damage
and cell apoptosis [168]. ROS mainly inactivate bacteria through two mechanisms: (i) the
bacterial cell wall is destroyed, resulting in the leakage of cell contents or damage to the
normal membrane transport system function, and the normal structure of related proteases
is damaged to inactivate them [169]; (ii) ROS damage the sugar components and bases in
genetic DNA, causing the double helix structure to be destroyed, causing normal bacterial
proliferation and metabolism [170]. For example, Karunakaran and colleagues [171] found
that positively charged 2H-MoS2 NPs can effectively attach to the surface of bacteria and
stimulate more ROS production within bacterial cells. Qing et al. [172] demonstrated that
Au-NPs can induce intracellular ROS production, potentially leading to bacterial death
through protein aggregation and DNA destruction.
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4.1.3. Interaction with Cell Contents and Damage to DNA

Due to the small particle size of NPs, the antibacterial metal ions released in the
solution, such as Ag+, Zn2+, etc., can enter and penetrate the cell, interacting with the cell
contents such as proteins, enzymes, and genetic material to inactivate the cell [173]. Studies
suggest that Ag+ reacts with protein sulfhydryl groups, inactivating proteins and inhibiting
the activity of bacterial respiratory chain dehydrogenase [174–176]. NPs can inhibit bacterial
replication and induce cell death by attaching to and binding to bacterial DNA, blocking
DNA unwinding during transcription and preventing pathogen proliferation [177]. Lee and
colleagues [178] confirmed that Au-NPs can induce DNA fragmentation and apoptotic-like
cell death, independent of intracellular ROS. The key methods for various NM functions
are summarized in Figure 2.
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4.2. Mode of Action of Nanomaterials for Antiviral Activity
4.2.1. NMs Directly Interact with the Viruses to Prevent Their Entry

The virus invades into the cell in three different stages: (i) the virus makes contact with
the cell membrane, then enters the intracellular space, and subsequently releases the viral
genome into the cell; (ii) the proliferation of the viral genome and its expression; (iii) the
assembly of new viruses and their release into the extracellular space. NMs can directly
influence virus replication, and they can also affect virus replication through immune
responses [179]. Ag-NPs effectively combat viruses like HIV-1 and monkeypox [180,181]
by binding to gp120 through electrostatic interactions. Additionally, two disulfide links
in the carboxyl half of the HIV-1 gp120 glycoprotein are linked by Ag-NPs involved with
sulfhydryl groups simultaneously, triggering protein denaturation by reducing disulfide
bonds in the CD4 binding zone and inhibiting virus attachment to the host cell mem-
brane [181]. Park and colleagues [182] synthesized a magnetic hybrid colloid loaded with
Ag-NPs of varying sizes and found that Ag ions can bind to the sulfhydryl protein on the
surface of the virus, thereby damaging the viral envelope and inhibiting the virus. Iron
oxide NPs (Fe2O3 and Fe3O4) with glycine have been shown to reduce biotoxicity and
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inhibit the H1N1 influenza virus. The NMs with smaller diameters and higher surface areas
demonstrated specific spatial resistance, effectively preventing virus attachment to host
receptors [183]. The research conducted by Abo-Zeid [184] revealed that IO-NPs (Fe2O3
and Fe3O4) successfully interact with the SARS-CoV-2 spike protein receptor binding do-
main and HCV glycoproteins. Notably, Fe3O4 forms a stable complex that disrupts the
adsorption of the virus with host receptors.

4.2.2. NMs Inhibit Viral Genome Replication

NMs can enter host cells, obstruct viral replication, and attach to viral genomes.
Capping agents like polymers and surfactants enhance NM’s effectiveness, with capped Ag-
NPs being highly efficient [185,186]. Ye and his research group [187] reported that graphene
oxide (GO) inhibited virus replication against pseudorabies and porcine epidemic diarrhea
in a cell culture. Negatively charged GO caused DNA damage and viral growth inhibition,
while, when conjugated with nonionic PVP, it blocked viral infection. Additionally, Ghaffari
and coworkers [126] demonstrated that surface-modified ZnO-NPs and PEGylated NPs
effectively suppressed the HSV-1 and H1N1 influenza virus replication at maximum non-
toxic concentrations. The release of Zn2+ ions from an aqueous dissolution leads to cell
apoptosis and potential oxidative stress and DNA damage in viruses.

4.2.3. NMs Prevent Viruses Assembly and Release

Research has shown that metal ions can form chemical bonds with viral nucleic acids or
proteins. This disrupts their structure or causes irreversible conformational changes in viral
proteins, thereby achieving the goal of inhibiting viral replication. There are two plausible
mechanisms that can account for the toxicity of Cu-NPs on viruses. The first mechanism
is dissolution-independent, involving Cu2+capture. The second mechanism involves NPs
instability, leading to the generation of large levels of Cu2+ [188]. Cu2+ ions can cause
capsid disintegration, protein inactivation, and damage to the viral genome, effectively
counteracting various viruses by impeding their entry into cells. Additionally, Cu-NPs can
deactivate viral proteins in HSV-1 through oxidation and genome destruction, releasing
them into the extracellular space [189]. The virus attaches to the host cell, transcribes its
genome, initiates replication, synthesizes mRNA and proteins, and aids in the reassembly
of progeny virions [190].

4.2.4. Activation of Immune System by Drugs That Can Hinder the Spread of Viruses

Upon entering a cellular environment, viruses undergo essential processes like un-
packing, replication, and translation, leading to the production of RNA/DNA molecules
and proteins [191]. The host immune system can be stimulated by two mechanisms with
respect to viral entrance into the host cell: (i) directly by NPs or (ii) by coating NPs to
the drugs. Azharuddin et al. [192] documented that Au-NPs can trigger immunological
responses, including humoral and cell-mediated responses, and produce M2e-specific IgG
serum antibodies to prevent the spread of influenza virus by regulating cytokine generation
and stimulating immune cells. On the other hand, NPs can stimulate the immune system
when combined with drugs, inhibiting viral replication and their spread [193]. Figure 3
provides a summary of the key methods for the various NM antiviral function mechanisms.

With this regard, Dungdung et al. [194] utilized the ZnS quantum point as a drug
carrier and loaded it with mycophenolic acid (MPA), an immunosuppressant against
dengue virus. The study revealed a higher neutralization rate, enhancing the inhibitory
effect and increasing the selective index by two-fold. Antiviral drugs can reduce virus
infection rates, but the blood–brain barrier limits the drug scope. In this regard, Nair
and coworkers [195] demonstrated the release of azidothymidine 5′-triphosphate, an anti-
human immunodeficiency virus drug decorated with CoFe2O4@BaTiO3. This triggered release
process is intrinsic, dissipation-free, and energy-efficient, achieving release at the intrinsic
level without intermediate materials that help to prevent the viral spread into the host cell.
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4.3. Mode of Action of NMs for Antifungal Activity

Metal-based NMs exhibit antifungal activity through three mechanisms: membrane
rupture, interference with functions, and surface-dependent interactions with fungal cells,
making them promising agents [196,197]. On this basis, Salah et al. [198] reported that
Co-NPs can inhibit antifungal activity by preventing copper ion invasion and membrane
degradation. However, they can also interfere with essential cellular functions, leading
to cell death and affecting cell division and protein synthesis. In a different study, Matras
and colleagues [199] found Ag-NPs potent antifungal properties in in vitro experiments on
F. avenaceum and F. equiseti by disrupting the cell membrane structure, hindering budding
activity, and preventing cytotoxicity. Munir and his research group [200] found that
titanium ions permeate cell membranes and bind with DNA, while Cu-, Cr-, and Ni-doped
TiO2 binds to fungal cells, enhancing its antifungal activity. Accordingly, Morsy and
colleagues [201] discovered that CuO-NPs significantly impact broiler chickens growth,
immune status, DNA status, and histological structures, with dose-dependent increases in
malondialdehyde levels, Cu contents, and the DNA fragmentation percent.

4.4. Mode of Action of NMs for Antiparasitic Activity

NMs are currently being investigated for their potential antiparasitic effectiveness
against various parasites by breaking down cell membranes, producing reactive oxygen
species, transporting medication, stopping responses, regulating neurotransmission and
enzyme activity, and activating the immune system [202]. In this regard, Villiers and his
colleagues [203] found that chloroquine deposits in parasites digestive vacuoles prevented
the detoxification of heme, leading to toxic hemozoin accumulation. Antiparasitic drugs can
impact vital parasitic functions, hindering enzymes, blocking metabolic routes, depleting
vital ions, and inhibiting immune defenses, ultimately causing parasite death. Khadragy
and colleagues [204] found that biosynthesized Ag-NPs effectively combat Leishmania
major infection, reducing cutaneous lesions and enhancing antioxidant enzyme activities
in animals. In another instance, Torres et al. [205] documented metronidazole and riluzole



Molecules 2023, 28, 7674 19 of 30

to treat Entamoeba histolytica, causing DNA degradation, neurotransmitter interference,
protozoan disintegration, nitric oxide generation, and parasitic cell death.

5. Issues and Challenges Need to Be Solved for the Utilizations of NMs
as Antipathogens

NMs are used to improve human and animal health through disease identification,
prognosis, prevention, and treatment. Still, Researchers are exploring NM-based an-
tipathogenic activity, which is crucial in medicine and agriculture. However, their use in
biomedical applications faces challenges due to their adverse effects on living organisms,
as shown in Figure 4.
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5.1. Biocompatibility and Toxicity

Biocompatibility and toxicity are important factors to consider while using NMs in
biomedical applications. Cytotoxicity is influenced by factors such as physicochemical
properties, concentration, and exposure duration [206]. Genotoxicity, on the other hand,
is affected by factors such as size, shape, surface charge, and composition, which can
impact host cell and tissue interactions [207]. Ag-NPs could potentially cause DNA damage
and chromosomal aberrations. Most specifically, NMs face challenges in blood contact,
including protein adsorption, interference, and nanotoxicity, which can compromise their
antimicrobial activity and cause adverse effects [208]. In vitro studies, using cell viability
assays can identify NMs potential toxicity and safe concentrations, while in vivo studies
evaluate their toxicological effects in complex biological systems using techniques like
histopathology, immunohistochemistry, and biochemical analysis [209].

5.2. Appropriate Selection of Nanomaterials

Pathogen identification is a complex process that is influenced by various factors such
as behaviors, strains, and genetic mutations. Understanding the target characteristics is
crucial for developing effective NPs, avoiding harmful microorganisms [210]. Remarkably,
an inappropriate selection of NPs can disrupt organelle distribution, affecting cellular
processes like metabolism, protein synthesis, and waste disposal. Small NMs like Au-NPs
and QDs have high stability and slow clearance rates, which increase the risk of long-term
toxicity or bioaccumulation [211,212].
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5.3. Surface Functionalization

The surface functionalization of NMs improves their stability, solubility, and antimi-
crobial properties, but precise control is challenging due to reaction conditions, surface
impurities, and aggregation [213]. Functionalized NMs can disrupt living organisms,
causing cytotoxicity, inflammation, and disrupting processes. For instance, Ag, Cu, TiO2,
and ZnO-NPs possess antimicrobial properties but can cause toxic effects on living or-
ganisms, depending on characteristics including functional groups, dosage, and exposure
duration [214,215].

5.4. Storage

Proper storage conditions are essential for NM’s stability and durability, as they are
sensitive to environmental factors like temperature, moisture, and light. Improper storage
can result in cytotoxicity, oxidative stress, inflammation, DNA damage, and potential health
effects, including cancer development. For instance, metal and metal oxide-based NMs are
prone to oxidation, while others are sensitive to air or humidity. Hence, understanding
material-specific factors and storage conditions is crucial for long-term stability [216,217].

5.5. Dose Optimization

The dose is a crucial factor in antipathogenic applications, particularly, for antimi-
crobial treatments. It determines the efficacy and safety of therapeutic interventions. The
optimal dosage is essential to balance antimicrobial activity and minimize negative effects,
including toxicity, immune response, and bioaccumulation [218]. For instance, Ag-NPs,
ZnO-NPs, TiO2-NPs, and CNTs have potential antimicrobial properties, but can cause
toxicity, inflammation, organ dysfunction, and lung toxicity [219–222].

5.6. Stability and Aggregation

During antipathogenic activity, hostile hosts encounter stability challenges with
nanoparticles, such as aggregation, precipitation, and dissolution. Aggregation reduces
NPs effectiveness, while precipitation disrupts suspension stability due to factors like pH,
temperature, or ionic strength, resulting in less effective particles, while the dissolution of
NPs can compromise structural integrity, release toxic ions, and disrupt cellular processes.

5.7. Drug resistance Development

Drug resistance in pathogenic microorganisms poses significant challenges to tra-
ditional antimicrobial therapies. Novel antipathogenic agents face various obstacles, in-
cluding evolution, biofilm resistance, cross-resistance, safety concerns, and environmental
impact, so adaptive resistance is crucial in combating these challenges [223,224]. Multiple
studies have revealed that bacteria can resist Ag-NPs through extracellular precipitation,
destruction, or modification, similar to drug modification [225], while Cu-NPs induce
antibiotic resistance by upregulating efflux pumps and membrane permeability [226]. Nev-
ertheless, a lack of understanding in designing NMs hinders the design of rational strategies
for drug resistance and antipathogenic activities, raises environmental concerns, and re-
quires stricter regulations for regulatory approval and large-scale production [227,228].

5.8. Recyclability

NMs are effective in combating microbial infections, but they also face potential
toxicity due to interactions with microorganisms, biological interactions, and aggregation.
These interactions can lead to increased toxicity, potentially due to factors like size and
shape. These interactions can result in the formation of a complex web of molecules that
can interact with and bind to microorganisms, posing significant risks to the effectiveness
of nanoparticles in treating microbial infections. Recyclability is crucial for utilizing NMs
for antipathogenic activities and sustainable development and environmental protection.
However, it can be challenging due to their small particle sizes, molecular penetration,
aggregation tendencies, and time-consuming recycling processes [229–231].
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6. Prospects

Antipathogenic activity based on NMs has immense potential for improving disease
prevention, diagnosis, and therapy. Researchers are exploring novel NMs that can transport
antimicrobial drugs directly to infected regions, improving localized infection treatment.
These NMs can encapsulate drugs, protect them from degradation, and enhance their
stability. Customization with ligands or antibodies can reduce dosage and improve drug
delivery specificity and therapeutic benefits by boosting solubility, cellular absorption,
or generating synergistic effects when coupled with drugs. In addition, nanofabrication
techniques like 3D printing and bottom-up self-assembly offer promising methods for
producing antipathogenic materials. These methods allow for precise control over their
structure, composition, and characteristics, reducing resistance development, aiding in
scalability, and enabling larger NM manufacturing for broader applications. In short,
advancements in NMs and antipathogenic strategies have the potential to improve human
and animal health and contribute to environmental remediation.

7. Conclusions

Nanotechnology and NMs offer customized tools for preventive and therapeutic
purposes, addressing challenges in traditional antipathogen pathophysiology. These multi-
functional NMs can overcome medicinal solubility, toxic exposures, uncontrolled pharma-
cokinetic issues, and biostability. Drug resistance occurs when high doses are insufficient to
rapidly kill microbes, leading to the widespread distribution of untargeted drugs. However,
nanocarriers offer molecular-level precision in targeting infected cells, allowing them to
deliver multiple antigens to immune cells, which further allows for the development of
better vaccines. In this respect, metal and metal oxide-based NMs and liposome-based
NMs have been proven effective in preventing pathogen activity. However, production
costs remain a significant concern, and clinicians must collaborate with the medical sector
to adapt the technology for effective therapy.
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