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Abstract: In this work, Cu thin films were experimentally fabricated at different target–substrate
distances by 2-inch and 4-inch circular planar magnetron targets. Meanwhile, the sputtering deposi-
tion of Cu thin films was investigated via an integrated multiscale simulation, where the magnetron
sputtering discharge was modeled using the Monte Carlo (MC) method, and the sputtered particle
transport was simulated using a coupled Monte Carlo (MC) and molecular dynamics (MD) method.
Experimental results indicated that, as the target–substrate distance increased from 30 to 120 mm,
the film thickness distribution of the 2-inch target sputtering changed from a bell-shaped curve to
a line-shaped curve, while that of the 4-inch target sputtering varied from a saddle-shaped curve
to a line-shaped curve. The simulation results were accordant with the experimental results. The
simulation results revealed that, at a target–substrate distance of 30 mm, the sputtering particle
flow from the 2-inch target overlapped strongly near the substrate center, leading to a bell-shaped
film thickness distribution, while the increased diameter of the erosion groove on the 4-inch target
reduced the superposition effect of the sputtering particle flow near the substrate center, resulting in
a saddle-shaped film thickness distribution. In addition, when the target–substrate distance ranged
from 30 to 120 mm, the film thickness uniformity of 4-inch target sputtering was superior to that of
2-inch target sputtering, and the underlying mechanism was discussed in detail.

Keywords: Monte Carlo method; molecular dynamics; magnetron sputtering; sputtered particle
transport; film thickness uniformity

1. Introduction

Due to the convenient process tuning and low coating temperature, magnetron sputter-
ing is widely employed in manufacturing semiconductor, photo-electronic, and thermoelec-
tric thin film devices [1–3]. The film thickness uniformity, as a critical index, significantly
determines the performance consistency of film devices [4]. The thickness uniformity of
the sputtered film is influenced by sputtering conditions, including the target–substrate
geometrical configuration, relative motions between the target and substrate, and the
target surface erosion. Investigating the interplay between sputtering conditions and
film thickness uniformity is of great significance to improving the performance of thin
film devices.

Currently, real-time monitoring for the sputtered film deposition cannot be realized
through experimental means. Improvements in the thickness uniformity of sputtered films
solely via empirical inference and posterior experiments are difficult, time-consuming, and
expensive [5]. Consequently, the analytical models for the deposition uniformity of the
circular planar single-target [6–10] and rectangular planar single-target [11,12] sputtering
systems were successively developed to reinforce the understanding of experimental results
and reveal the underlying mechanism. Then, extended analytical models were further pro-
posed for the circular planar dual-target [13] and circular planar triple-target [14] sputtering
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systems. During magnetron sputtering deposition, fast-moving particles undergo no colli-
sion before they reach the substrate surface, while slow-moving particles are transported
to the substrate surface by diffusion due to scattering collisions. However, the diffusion
transport of slow-moving particles is neglected in the analytical model [14], although it
significantly influences the film thickness distribution.

On the other hand, the sputtered particle transport can also be simulated by the MC
method, in which the free flight and scattering of sputtered particles are both taken into con-
sideration. Thus, a more precise distribution of deposited particles on the substrate can be
obtained through MC simulation. In most MC simulations, the post-collision flight angles
of colliding particles are approximately calculated based on the assumption that the argon
atom is at rest before the collision [15–22], since the accurate calculation of the scattering
angle requires complex coordinate transformations [23]. In this context, a coupled MC-MD
method was developed to simulate the transport processes of sputtered particles [24], in
which the velocities of colliding particles after collisions were calculated using the MD
method. Furthermore, the initial emission positions of sputtered particles are determined
by the ionization density distribution near the target surface during magnetron sputtering
discharge [25]. However, due to the disconnect between the magnetron sputtering dis-
charge research and sputtered particle transport research, the initial emission positions of
sputtered particles in existing MC simulations are approximately selected based on the
uniform distribution [16], Gauss distribution [17,26], or the measured surface profile of
the etched target [27]. Accordingly, a combined numerical investigation of the magnetron
sputtering discharge and sputtered particle transport is needed to precisely characterize
the non-uniform erosion of the target surface, which is critical to understanding the control
mechanism of sputtered film uniformity.

In the present work, a combined numerical investigation of the magnetron sputtering
discharge and sputtered particle transport was conducted. In this combined numerical
simulation, the magnetron sputtering discharge was modeled using the MC method, in
which the sputtering possibility distribution on the copper target surface was evaluated
based on the calculated ionization density distribution near the target surface. Then,
the transport processes of sputtered Cu atoms were further simulated by the coupled
MC-MD method, in which the initial emission positions of sputtered Cu atoms were
selected from the calculated sputtering possibility distribution. In particular, the thickness
distributions of sputtered films deposited from 2-inch and 4-inch targets were investigated
through simulation and experiments, respectively. The evolution mechanism of sputtered
film uniformity with the erosion groove size was skillfully explored by investigating the
deposition behavior of sputtered atoms ejected from fan-shaped sputtering sources. This
work attempted to bridge the gap between magnetron sputtering discharge research and
sputtered atom transport research in the DC magnetron sputtering field, such that the state
data of sputtered atoms arriving at the substrate surface can be calculated more realistically.

2. Results
2.1. The Radial Distributions of the Sputtering Possibility on the 2-Inch and 4-Inch Target Surface

Figure 1 shows distribution nephograms of ionization density for the 2-inch target
sputtering and 4-inch target sputtering, respectively. In Figure 1a,b, all the ionization
density values were normalized by the maximum ionization density value in the simulation
domain, and all the points in the simulation domain were colored based on the normalized
ionization density values. Figure 1 displays the typical ionization density distribution
nephograms of balanced magnetron sputtering discharge, which resembles those reported
in ref. [28]. As shown in Figure 1a,b, ionization points are concentrated in the region
approaching the target surface, since almost all the energetic electrons are trapped in this
region with the magnetic field almost parallel to the target surface [29]. As the target
diameter increases from 2 inches to 4 inches, the width and central diameter of the annular
ionization regime both increase due to the increase in the width of the magnetic field on
the target surface.
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Figure 1. Distribution nephograms of ionization density for (a) 2-inch sputtering and (b) 4-inch target
sputtering.

Argon ions, generated by the collision between energetic electrons and argon atoms,
are accelerated by the electrostatic field between ionization points and the target surface.
They almost impact perpendicularly onto the target surface, since the effect of the magnetic
field on argon ion trajectory is negligible. The bombardment of argon ions results in
the sputtering of near-surface target atoms. The sputtering yield is dependent on the
bombarding energy. Herein, the sputtering density is introduced and defined as the
number of sputtered atoms per unit area, which can be expressed by [30]

Sj =
∑n0

i=1 Y(Ei)

2πrj∆r
(1)

where Y is the energy-dependent sputtering yield, Ei is the bombarding energy of the i-th
argon ion, n0 is the total number of argon ions impinging the annular region with a radial
coordinate of rj on the target surface, ∆r is the radial width of the annular region, and
Sj is the sputtering density within the annular region. Based on Equation (1), the radial
distributions of the sputtering density for the 2-inch and 4-inch targets can be calculated,
respectively. Then, the sputtering possibility of a sputtered atom ejected from the j-th
annular region can be calculated by

Pj =
Sj

∑n1
1 Sk

(2)

where n1 is the total number of the annular regions divided on the target surface. The radial
distributions of the sputtering possibility on the target surface can be evaluated according
to Equation (2).

Figure 2 displays the radial distribution of the sputtering possibility for the 2-inch and
4-inch targets, respectively. As shown in Figure 2, the peaks of the sputtering possibility
distribution are situated at the radial coordinates of ±16 mm for the 2-inch target sputtering,
while the peaks of the sputtering possibility distribution are located at the radial coordinates
of ±30 mm for the 4-inch target sputtering. These radial coordinates correspond to the
points on the target surface where the vertical component of the magnetic field is zero [31].
Therefore, the initial emission position (rj) of a sputtered atom can be sampled from the
sputtering possibility distribution via the acceptance–rejection method. Then, the x and y
coordinates of the sputtered atom on the target surface can be determined by the random
number φ distributed uniformly in [0, 2π].

x = rjcos(φ) (3)

y = rjsin(φ) (4)
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2.2. Deposition Density Distribution of the 2-Inch Target Sputtering

Figure 3 displays the variation in the thickness distribution of the sputtered film
deposited from the 2-inch target with the target–substrate distance. In Figure 3, the experi-
mentally measured film thickness distributions are depicted by dotted curves, while the
calculated deposition density distributions are graphed by colored solid curves. Herein,
the deposition density is defined as the number of deposited Cu atoms on the substrate
per unit area. To evaluate the radial deposition density distribution on the substrate in the
simulation, the circular substrate plane was partitioned into 13 regions, including 1 circular
region and 12 concentric annular regions. The radius of the circular region and the radial
width of the annular regions were set to 1 and 2 mm, respectively. In each simulation, the
number of Cu atoms deposited in the j-th region was recorded and then divided by the area
of the j-th region. Accordingly, the relationship between the film thickness and deposition
density can be expressed as follows:

Tj =
mnj

ρAj
= k

nj

Aj
= kDj (5)

where Tj is the film thickness in the j-th region, m is the mass of Cu atom, nj is the number
of Cu atoms deposited in the j-th region, ρ is the coating density, Aj is the area of the
j-th region, k is the ratio of m and ρ, and Dj is the deposition density. Therefore, the film
thickness is proportional to the deposition rate. To intuitively represent the variation in the
film thickness uniformity, all the calculated deposition density values within the 13 regions
at various target–substrate distances were normalized by that in the circular region when
the target–substrate distance was set to 30 mm. Accordingly, Figure 3 represents the relative
film thickness distributions for the 2-inch target sputtering. To compare the experimentally
measured results with the simulated results, the measured film thickness values at various
target–substrate distances were normalized by that in the circular region when the target–
substrate distance was set to 30 mm. It is clear that the calculated distributions are consistent
with the experimentally measured distributions at all target–substrate distances. It can be
seen from Figure 3 that, when the target–substrate distance is 30 mm, the film thickness
distribution has a bell-shaped profile, where the film thickness at the substrate center is
much greater than that near the substrate margin. With the increase in the target–substrate
distance from 30 to 120 mm, the bell-shaped film thickness distribution gradually varies to
an arch-shaped one and, ultimately, to a line-shaped one. It can be found that the increase
in the target–substrate distance is beneficial for improvements in film thickness uniformity
but at the expense of the deposition rate.
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Figure 3. Relative film thickness distribution of Cu atoms sputtered from the 2-inch target under
different target-substrate distances.

2.3. Deposition Density Distribution of the 4-Inch Target Sputtering

Figure 4 displays the variation in the thickness distributions of sputtered Cu films
deposited from the 4-inch target with the target–substrate distance. In Figure 4, the experi-
mentally measured film thickness distributions are depicted by colored dotted curves, while
the calculated deposition density distributions are graphed by colored solid curves. To
compare the experimentally measured results with the simulated results, the measured film
thickness values and calculated deposition density values were normalized by the same
scheme mentioned in Section 2.2. Accordingly, Figure 4 plots the relative film thickness dis-
tribution. It is clear that the calculated distributions are accordant with the experimentally
measured distributions at all target–substrate distances. It can be found from Figure 4 that,
when the target–substrate distance is 30 mm, the distribution profile of the film thickness
is a saddle-shaped curve, where the film thickness at the substrate center is lower than
that near the substrate margin. With the increase in the target–substrate distance from
30 to 120 mm, the saddle-shaped film thickness distribution gradually transforms to an
arch-shaped one and, further, to a line-shaped one. It also can be seen that the increase in
the target–substrate distance leads to a reduction in the deposition rate.
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2.4. Film Thickness Uniformity of 2-Inch and 4-Inch Target Sputtering

The thickness uniformity of a sputtered film (U) can be evaluated using the following
equation [32]:

U = 100% − 2(H max − Hmin)

Hmax + Hmin
×100% (6)

where the Hmax and Hmin represent the maximum and minimum film thickness, respec-
tively. Figure 5 displays the thickness uniformity of sputtered films deposited by 2-inch
and 4-inch targets under different target–substrate distances. In Figure 5, variation curves
of film thickness uniformity for 2-inch and 4-inch target sputtering are depicted by red
and blue lines, respectively. It can be seen that, as the target distance increases from 30 to
120 mm, the film thickness uniformity of 2-inch target sputtering increases monotonically,
while the film thickness uniformity of 4-inch target sputtering decreases first and then
increases. The film thickness uniformity of 4-inch target sputtering is superior to that of
2-inch target sputtering. As the target–substrate distance increases from 60 to 120 mm, the
film thickness uniformity of 2-inch and 4-inch target sputtering gradually increases. It is
known that sputtered atoms have an anisotropic initial emission angular distribution [33].
As the sputtering pressure is 0.5 Pa, the mean free paths of sputtered atoms with 2 eV
and 30 eV kinetic energy are 41.6 mm and 113.7 mm, respectively, and the percentage of
these sputtered Cu atoms is around 70% [24]. This suggests that, at a target–substrate
distance of 30 mm, most of the sputtered atoms undergo no collision before they arrive
at the substrate surface. Accordingly, the anisotropic ejection of sputtered atoms results
in the bell-shaped and saddle-shaped film thickness profiles shown in Figures 3 and 4
under a target–substrate distance of 30 mm. When the target–substrate distance is set
to 120 mm, it exceeds the mean free path of sputtered atoms possessing energy of 30 eV.
Thus, most of the sputtered atoms will experience scattering collisions before they arrive
at the substrate surface. The flying angles of sputtered atoms gradually vary due to the
increase in the scattering collision frequency with the target–substrate distance, leading
to a quasi-isotropic incident angular distribution of sputtered atoms when they approach
the substrate surface [15,34]. Accordingly, since the anisotropy of the incident angular
distribution gradually decreases with the target–substrate distance, the arch-shaped or
saddle-shaped film thickness distribution is gradually transformed into the line-shaped
one shown in Figures 3 and 4, resulting in an improvement in the film thickness uniformity.
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3. Discussion

More interestingly, for the 2-inch target sputtering, sputtered Cu atoms were initially
emitted from the annular erosion region of the target surface in our simulation. However,
under a target–substrate distance of 30 mm, the film thickness distribution had a bell-
shaped profile, in which the maximum value of the film thickness appeared at the substrate
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center (R = 0 mm). As the target diameter increased from 2 to 4 inches, this bell-shaped
film thickness distribution was varied to a saddle-shaped one, leading to an improvement
in the film thickness uniformity. To understand the underlying mechanism, the deposition
behavior of Cu atoms sputtered from fan-shaped sputtering sources on 2-inch and 4-inch
targets was further studied via supplemental simulations, respectively.

Figure 6a–c show the deposition density distribution nephograms of a left fan-shaped
sputtering source, a right fan-shaped sputtering source, and two symmetrical fan-shaped
sputtering sources on the 2-inch target surface under a target–substrate distance of 30 mm.
Furthermore, Figure 6d displays the radial deposition density distributions of the three
kinds of sputtering sources, which are plotted by the green, blue, and red solid curves,
respectively. In Figure 6d, all the deposition density values are normalized by the maximum
value in the radial deposition density distribution of two symmetrical fan-shaped sputtering
sources. For the sputtering of the left (right) fan-shaped source, the radial deposition density
distribution is an arch-shaped curve, whose peak value appears at the projection on the
substrate of the point with the maximum sputtering possibility in the fan-shaped source.
It can be found that, as the number of fan-shaped sputtering sources increases from 1 to
2, the arch-shaped deposition density distribution is varied to a bell-shaped one, which
is analogous to the red solid curve shown in Figure 3. This suggests that the sputtered
particle flow from all infinitesimal fan-shaped sputtering sources of the erosion groove
overlaps near the substrate center. This strong superposition effect near the substrate center
accounts for the bell-shaped deposition density distribution of the 2-inch sputtering target
at a short target–substrate distance.
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(b) a right fan-shaped sputtering source, and (c) two symmetrical fan-shaped sputtering sources
on the 2-inch target, and (d) the radial deposition density distribution profiles of the three kinds of
sputtering sources.

Figure 7a–d display the deposition density distribution nephograms of a left fan-
shaped sputtering source, a right fan-shaped sputtering source, two symmetrical fan-
shaped sputtering sources, and four symmetrical fan-shaped sputtering sources on the
4-inch target surface under a target–substrate distance of 30 mm. Figure 7e shows the



Molecules 2023, 28, 7660 8 of 13

radial deposition density distributions of the four kinds of sputtering sources, which
are depicted by the green, blue, purple, and red solid curves, respectively. In Figure 7e,
all the deposition density values are normalized by the maximum value in the radial
deposition density distribution of four symmetrical fan-shaped sputtering sources. It can
be seen that, as the number of fan-shaped sputtering sources increases from 1 to 4, the
radial deposition density distribution gradually transforms from an arch-shaped curve to a
saddle-shaped curve, which resembles the red solid curve shown in Figure 4. Accordingly,
it can be concluded that, in the vicinity of the substrate center, the superposition of the
arch-shaped deposition density distributions of infinitesimal fan-shaped sources results
in the saddled-shape deposition density distribution of the 4-inch sputtering target when
the target–substrate distance is set to 30 mm. Furthermore, comparing Figure 7d with
Figure 7e, it can be found that, as the target diameter increases from 2 to 4 inches, both peak
points of the arch-shaped deposition density distributions of the left and right fan-shaped
sputtering sources move towards the substrate margin, which is mainly due to the increase
in the diameter of the annular erosion groove. The enlargement of the spacing distance
between these peak points weakens the superposition effect of deposition density near the
substrate center. Consequently, deposition density values near the substrate center are less
than those near the peak points of the deposition density distributions of left and right
fan-shaped sputtering sources, leading to a saddle-shaped deposition density distribution
of the 4-inch sputtering target at a short target–substrate distance.
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(d) four symmetrical fan-shaped sputtering sources on the 4-inch target, and (e) the radial deposition
density distribution profiles of the four kinds of sputtering sources.

Figure 8 presents a schematic diagram to explain the underlying mechanism for the
variation in film thickness distribution with the diameter of the erosion groove. Given
the central symmetry of the spatial distribution of sputter particle flow, for simplification,
Figure 8 only displays the superposition of sputtered particle streams on a cross-section.
In Figure 8, the deposition density distributions of left and right infinitesimal sputtering
sources are plotted with red and blue dash curves, respectively, while the entire deposited
density distributions on the substrate are depicted with green solid curves. The anisotropic
ejection of sputtered atoms eventuates an arch-shaped deposition density distribution
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of an infinitesimal sputtering source. The increase in the scattering collision frequency
with the target–substrate distance leads to a quasi-isotropic flying angle distribution of
sputtered atoms. Consequently, the uniformity of the entire film thickness distribution is
gradually improved. In addition, since the possibility of sputtered atoms moving outside
the substrate region increases with the collision frequency, the film deposition rate gradually
decreases with the target–substrate distance. For the sputtering of the target with a small
diameter, in the vicinity of the substrate center, the strong superposition of the sputtering
particle flow from infinitesimal sputtering sources results in a bell-shaped entire film
thickness distribution at a short target–substrate distance. This bell-shaped film thickness
distribution was also reported in ref. [35], in which the diameter of the sputtering target
was 50 mm. With the increase in the target–substrate distance, the superposition of more
uniform deposition density distributions of infinitesimal sputtering sources gives rise to
an increasingly flat entire film thickness distribution on the substrate, which is consistent
with the variations shown in Figure 3. Furthermore, as the diameter of the target increases,
the entire film thickness distribution might have a saddle-shaped profile at a short target–
substrate distance due to the reduction in the superposition effect of sputtering particle
flow near the substrate center. With the increase in the target–substrate distance, the film
thickness distribution becomes comparatively uniform owing to the enchantment in the
scattering effect, which coincides with the variations shown in Figure 4. The variation in
the film thickness profile with the target–substrate distance shown in Figure 8b was also
reported in Refs. [7,36].
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4. Materials and Methods
4.1. Experiment of Cu Film Deposition and Film Thickness Measurement

In the experiment, two copper targets with a purity of 99.99% were used as sputtering
sources, whose diameters were 50.8 and 101.6 mm, respectively. The (001) silicon wafer
with a diameter of 50.8 mm was chosen as the substrate. The substrate was placed in
acetone and cleaned via ultrasonication for 3 min. Then, it was washed using deionized
water. A multifunctional magnetron sputtering system, including 2-inch and 4-inch bal-
anced magnetron sputtering sources produced by Sky Technology Development Co., Ltd.
(Hunnan, Shenyang, China), was employed to prepare sputtered Cu films. The target
voltage was set to −400 V. The pressure of the background gas was maintained at 0.5 Pa.
The deposition time of the sputtered film was set to 10 min. The target–substrate distance
was varied from 30 mm to 120 mm.

Figure 9 shows the measurement scheme of the film thickness. Prior to the preparation
of Cu film, four rotational symmetrically arranged rectangular regions on the substrate
surface were masked by polyimide films with a width of 3 mm, such that eight steps in the
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sputtered Cu film can be formed. To qualify the Cu film thickness, the step height between
the masked and unmasked region of the substrate was measured using a Bruker DektakXT
surface profilometer (Billerica, MA, USA) [9,37]. Thirteen measurement points numbered
from 1 to 13 were chosen on each step. Therefore, the eight measurement points marked
by the same number i (1 ≤ i ≤ 13) on the eight steps were located on an identical circle
with a radius of Ri. Then, the mean value of the film thickness at these eight measurement
points was calculated and recorded as the film thickness value at Ri, such that the radial
film thickness distribution could be obtained.
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4.2. MC Simulation of Magnetron Sputtering Discharge

DC magnetron sputtering discharge was simulated using the MC method. In the MC
simulation, the target and substrate of the magnetron sputtering system are in a parallel and
coaxial configuration. The target voltage was set to −400 V. The pressure of the background
gas was maintained at 0.5 Pa. Since the effect of gas heating can be neglected during the
DC magnetron sputtering discharge under pressure of less than 1 Pa [38], the temperature
of the background gas was set to 300 K.

In this MC simulation of the DC magnetron sputtering discharge, the magnetic and
electric fields were assumed to be time-independent and location-dependent [39]. At the
beginning of the simulation, it was supposed that electrons were uniformly ejected from
the target surface with an initial energy of zero. Then, they underwent cycloidal spiral
oscillation under the action of electrostatic field force and Lorentz force in the non-uniform
electromagnetic field. Their motion equation can be expressed by

dv
dt

=
q
m
(E + v × B) (7)

where E and B represent the intensity of the electric field and magnetic field, respectively,
and v, m, and q denote the velocity, mass, and charge of the electron, respectively. It was
postulated that argon gas was in a thermal equilibrium state. Argon ions were generated
by the collisions between argon atoms and energetic electrons. In the present simulation,
elastic scattering, excitation, and ionization collisions were taken into consideration, whose
occurrences were determined by the corresponding momentum transfer cross-sections [40].
The energy loss of an electron in the excitation and ionization collisions was set to 11.6 eV
and 15.8 eV [30], respectively. The movement of primary and secondary electrons was
traced during the simulation, and the specific simulation procedure was previously de-
scribed in ref. [41]. In particular, the electric potential between the target and substrate was
assumed to obey the distribution introduced in ref. [41]. A Hall sensor was adopted to
measure the horizontal and vertical components of the magnetron field [42]. During the



Molecules 2023, 28, 7660 11 of 13

movement of the electron, if an ionization collision between the electron and argon atom
occurred, the coordinate of the collision point was recorded and further used to calculate
the ionization density distribution. The electron would be killed when it moved outside the
simulation domain or its energy was lower than the ionization threshold energy of 15.8 eV.

4.3. MC-MD Simulation Method of Sputtered Particle Transport

The initial emission positions of sputtered atoms were determined by the sputtering
possibility distribution on the target surface calculated based on the MC simulation results,
and the specific procedures were introduced in Section 2.1. The initial emission energy of
sputtered atoms was assumed to obey the Thompson distribution [43] and sampled via the
rejection algorithm [15,44]. Yamamura’s angular distribution [33] was used to choose the
initial emission polar angles of sputtered atoms. The emission azimuth angles of sputtered
atoms, due to symmetry, were supposed to be distributed uniformly between 0 and 2π.
After that, the transport processes of sputtered atoms could be modeled using the coupled
MC-MD method, whose simulation procedures were introduced in our previous paper [24].
Ultimately, the deposition density distributions of 2-inch target sputtering and 4-inch target
sputtering can be calculated, respectively.

5. Conclusions

In this work, 2-inch and 4-inch circular planar magnetron cooper targets were utilized
to prepare Cu thin films at different target–substrate distances, respectively. Simultaneously,
the MC method was used to simulate the magnetron sputtering discharge and calculate
the ionization density distribution near the target surface. Then, the transport processes
of sputtered atoms were modeled by a coupled MC-MD method based on the calculated
results of the MC simulation. Experimental results suggested that, with the increase in the
target–substrate distance, the film thickness uniformity was gradually improved, while
the deposition rate gradually decreased. In particular, as the target–substrate distance
increased from 30 to 120 mm, the bell-shaped film thickness distribution of the 2-inch
target sputtering was gradually changed to a line-shaped one, while the saddle-shaped
film thickness distribution of the 4-inch target sputtering was gradually varied to a line-
shaped one. The simulation results agreed well the with experimental results. The MC
simulation results suggested that the peak points of the V-shaped radial ionization density
distributions of the 2-inch and 4-inch target sputtering were located at radial coordinates of
16 and 30 mm, respectively. Then, the radial sputtering possibility distributions of the 2-inch
and 4-inch targets were obtained based on the calculated ionization density distributions.
The MC-MD simulation results revealed that, when the target–substrate distance was set to
30 mm, the strong superposition of the sputtering particle flow near the substrate center led
to a bell-shaped film thickness distribution of the 2-inch target sputtering, and the reduction
in this superposition effect of the sputtering particle flow, resulting from the increased
diameter of the erosion groove, resulted in a saddle-shaped film thickness distribution
of the 4-inch target sputtering. In addition, the scattering collision frequency increased
with the target–substrate distance, eventuating a quasi-isotropic incident angle distribution
of deposited atoms and, thus, a comparatively uniform film thickness profile. This work
proposed an integrated simulation scheme for the magnetron sputtering discharge and
sputtered particle transport, which facilitates studying the dependence of the sputtered
film uniformity on sputtering conditions.
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