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Abstract: A facile and efficient visible-light-mediated method for directly converting 1,4-naphthoquinones
into dihydrocyclo-buta[b]naphthalene-3,8-diones (DHCBNDOs) under mild and clean conditions
without using any photocatalysts is reported. This approach exhibited favorable compatibility with
functional groups and afforded a series of DHCBNDOs with excellent regioselectivity and high yields.
Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The
readily accessible, low-cost and ecofriendly nature of the developed strategy will endow it with
attractive applications in organic and medicinal chemistry.

Keywords: green chemistry; photocycloaddition; visible-light photocatalysis; [2+2] cycloaddition;
dihydrocyclobuta[b]naphthalene-3,8-diones

1. Introduction

The development of green, concise and mild synthetic methodologies for extensively
used organic compounds is one of the most essential tasks in the area of organic synthesis.
Fused cyclobutene is a type of unique and intriguing structural motif in organic chem-
istry, which has attracted considerable attention in recent years because it is luxuriant
in nature and shows multiple biological activities [1–9]. Furthermore, owing to the high
chemical reactivity from the inherent and high ring strain, the fused cyclobutenes expe-
rience diverse transformations, ring-opening and ring-expansion reactions in particular,
providing distinctive approaches to the construction of complex organic molecules [10–13].
Dihydrocyclobuta [b] naphthalene-3,8-diones (DHCBNDOs) containing fused cyclobutene
structures are highly valued scaffolds that occur in many bioactive compounds (Figure 1)
and, in particular, operate as lead compounds for SARS-CoV-19 management, [14] miR-1
inhibitors [15], and microRNAs activators [16]. A great deal of attention has been devoted
to developing better strategies for synthesizing DHCBNDOs and their analogs, of which
[2+2] cycloaddition is generally considered to be one of the most forthright and efficient
methods [17–21]. The DHCBNDOs, an interesting scaffold for developing new drugs for
SARS-CoV-19, coronary artery diseases, heart attacks and miRNA-based tumors, are under-
represented in medicinal chemistry [14–16], and this potentially results from deficiencies in
extant synthetic methodologies.
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Figure 1. Representative examples with the skeleton of DHCBNDO. 

As shown in Scheme 1, the DHCBNDO system has only recently been synthesized 
by formal [2+2] cycloaddition under reflux condition, as reported by Diederich, Morita 
and coworkers [22–24]. Some great improvements via [2+2] photocycloaddition have been 
made by Zhang’s (high-pressure mercury lamp) [15] and Shah’s (visible-light-mediated 
[2+2] cycloaddition) groups [25]. However, the reported methods severely relied on some 
unfriendly conditions, such as heating, high-pressure mercury lamp, acid catalyst and ox-
idants, which created some drawbacks in these strategies in terms of environmental pro-
tection, safety, economy, reaction selectivity and functional group tolerance. Although 
significant progress has been achieved in the synthesis of DHCBNDO systems over pre-
vious decades, the development of approaches for preparing DHCBNDOs in an efficient, 
green and facile way is an ongoing challenge that urgently needs to be addressed. 

To supplement our initial research in the synthesis of tricyclic or polycyclic fused 
organic compounds using photocatalytic reactions [26–29], we would like to report a 
green, facile and visible-light-mediated [2+2] cycloaddition reaction for DHCBNDOs syn-
thesis at ambient temperature. We believe this approach not only represents a mild, clean 
and economical method for the preparation of DHCBNDOs, but also exhibits promising 
prospects in synthetic chemistry, such as constructing organic molecules of complex struc-
tures. 

 
Scheme 1. [2+2] cycloaddition reaction for the synthesis of DHCBNDOs. 

Figure 1. Representative examples with the skeleton of DHCBNDO.

As shown in Scheme 1, the DHCBNDO system has only recently been synthesized
by formal [2+2] cycloaddition under reflux condition, as reported by Diederich, Morita
and coworkers [22–24]. Some great improvements via [2+2] photocycloaddition have been
made by Zhang’s (high-pressure mercury lamp) [15] and Shah’s (visible-light-mediated
[2+2] cycloaddition) groups [25]. However, the reported methods severely relied on some
unfriendly conditions, such as heating, high-pressure mercury lamp, acid catalyst and
oxidants, which created some drawbacks in these strategies in terms of environmental
protection, safety, economy, reaction selectivity and functional group tolerance. Although
significant progress has been achieved in the synthesis of DHCBNDO systems over previous
decades, the development of approaches for preparing DHCBNDOs in an efficient, green
and facile way is an ongoing challenge that urgently needs to be addressed.
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To supplement our initial research in the synthesis of tricyclic or polycyclic fused
organic compounds using photocatalytic reactions [26–29], we would like to report a green,
facile and visible-light-mediated [2+2] cycloaddition reaction for DHCBNDOs synthesis at
ambient temperature. We believe this approach not only represents a mild, clean and eco-
nomical method for the preparation of DHCBNDOs, but also exhibits promising prospects
in synthetic chemistry, such as constructing organic molecules of complex structures.

2. Results and Discussion

In our pilot experiment, menadione 1a (1 mmol) and phenylacetylene 2a (1 mmol)
were chosen as model substrates in solvet MeCN, which was irradiated under blue LEDs
(460 nm) for 3 h. The target tricyclic framework compound 8a-methyl-1-phenyl-2a,8a-
dihydrocyclobuta[b]naphthalene-3,8-dione 3aa was obtained in 81% yield without any
catalyst (Table 1, entry 1). Furthermore, the use of several different solvents, including
DCM, acetone, dioxane, chlorobenzene, MeOH, THF, toluene, and DCE, did not give a
better result than MeCN (Table 1, entries 220139, respectively). However, when a solvent of
MeCN was used with irradiation for 4 h, the yield of 3aa was improved to 86%. (Table 1,
entry 10). Increasing the reaction time to 5h or increasing the equivalent of 2a to 1.4eq
failed to give any better results (Table 1, entries 11–14, respectively). And the control
experiments of no light and different wavelength (365 nm) did not give better results
(Table 1, entries 15–16, respectively). Therefore, the optimized reaction conditions for this
[2+2] cycloaddition reaction turned out to be those obtained using MeCN as the solvent
(0.1 mmol/L) under blue LEDs (460 nm) irradiation for 4h.

Table 1. Optimization of the [2+2] cycloaddition reaction conditions a.
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1 MeCN 3 h 1.0 81%
2 DCM 3 h 1.0 59%
3 Acetone 3 h 1.0 67%
4 Dioxane 3 h 1.0 63%
5 Chlorobenzene 3 h 1.0 60%
6 MeOH 3 h 1.0 71%
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8 Toluene 3 h 1.0 68%
9 ClCH2CH2Cl 3 h 1.0 64%
10 MeCN 4 h 1.0 86%
11 MeCN 5 h 1.0 85%
12 MeCN 4 h 1.1 83%
13 MeCN 4 h 1.2 84%
14 MeCN 4 h 1.4 82%
15 MeCN 4 h 1.0 0% c

16 MeCN 4 h 1.0 65% d

a The reactions were carried out on a 1 mmol scale in 10 mL of solvent under blue LEDs (460 nm); irradiation
without any catalyst; b Isolated yields; c Without light; d Under irradiation of 365 nm.

With the optimized conditions in hand, a survey of the substrate scope was carried
out by varying 1,4-naphthoquinone and alkyne compounds (Scheme 2). Phenylacetylene
2a provided the corresponding product 3aa in very good yields under optimized reaction
conditions. And the variability of the phenylacetylene was checked using substituted
alkyne 2. The phenylacetylene 2 tethered with an electron-donating group, such as -OMe,
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3,5-OMe, -Et, -Pr, and -cyclohexyl, also underwent [2+2] cycloaddition reactions with very
good yields (3ab–3af). Similarly, 2 with electron-withdrawing groups, such as -Br, -NO2,
and -CN, also underwent [2+2] cycloaddition reactions with very good yields (3ag–3ai).
Alkyne derivatives with heterocycle substituents were also found to be suitable for this
[2+2] cycloaddition reaction (3aj and 3ak), and non-terminal alkynes with -CHO and -Ph
groups were also suitable substrates, giving 3al and 3am in very good yields. Similarly,
aliphatic alkynes also gave the corresponding [2+2] cycloaddition products (3an and 3ao)
in excellent yield, and 1,4-naphthoquinones bearing electron-withdrawing substituents (-H,
-Cl, and -2,3Cl) did the same for corresponding products (3ba–3da) in high yields (87–92%).
These different groups did not significantly affect the yields, probably due to the weak
influence of electronic effects. It is noteworthy that the reaction proceeded with excellent
regioselectivity due to the trans-product being hard to access because of the ring strain,
giving target cis-8a-methyl-1-phenyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-diones 3.
The proton NMR coupling signals (two doublets) from the two cyclobutene protons proved
that -Me and -Ph groups were adjacent to each other (Supplementary Figure S1). The single-
crystal X-ray diffraction (CCDC-2288747) further confirmed the cis-structure (Figure 2). As
a consequence, the NMR and X-ray analysis confirmed excellent regioselectivity of the
visible-light-mediated [2+2] cycloaddition reaction.
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To evaluate the synthetic utility of our visible light-mediated approach, the reaction
of 1a and 2a was carried out under sunlight irradiation (about 8 h per day), and the
product 3aa was given in 82% yield (Scheme 3A). In addition, a large-scale (8-mmol scale)
preparation of 3aa under sunlight irradiation was successful, with only a slightly decreased
yield (71%), which confirmed the practicability of this strategy (Scheme 3B).
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After exploring the substrate scope and utility of this reaction, we focused on the study
mechanism. In order to obtain full insight into this intermolecular [2+2]-cycloaddition reac-
tion, some control experiments (Scheme 4) and theoretical calculations (Scheme 5) were con-
ducted by using 1a and 2a as the model reactants. No reaction occurred in the dark environ-
ments (without blue LEDs) (Scheme 4B), which highlighted that the [2+2] cycloaddition re-
action need to be triggered by blue LEDs. In addition, 2,2,6,6-tetramethyl-1-piperidinyloxy
(with TEMPO as a radical scavenger) was added in the reaction of Scheme 4C, and only a
trace amount of compound 3aa was detected.
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Based on the control experimental results, DFT-calculated results (see the compu-
tational details section) and previous studies of the [2+2] cycloaddition reaction [31], a
possible mechanism for this visible-light-photocatalyzed [2+2] cycloaddition reaction was
proposed, as shown in Scheme 5. First, the 1a3,*s was populated by intersystem crossing
(ISC) of the singlet excited state 1a* that resulted from visible light irradiation of ground
state 1a. The excited state of 1a3,* reacted with 2a to deliver the cyclopropane intermediate
(IM1) through a transition-state structure TS (IRC scan results in ESI, Supplementary Figure
S40), and its free energy barrier was calculated as 13.4 kcal mol−1. The next step in the
mechanistic pathway is the reaction of the ring cleavage of the cyclopropane with the
possible formation of 1,4-biradical intermediate IM2. The intermediate IM2 subsequently
underwent intramolecular radical recombination, giving target ring-closure product 3aa.

3. Materials and Methods
3.1. General Information
3.1.1. Experimental Section

All chemical agents were purchased from chemical manufacturers (Bide and Energy
Chemical) and directly used without any further purification. Thin layer chromatography
was carried out on glass silica gel GF254 plates. Melting points were detected by a digital
melting point apparatus (XT-5A). The NMR tests (1D-NMR and 2D-NMR) were conducted
on a Bruker spectrometer (Avance 400). HRMS data were obtained from a Thermo Fisher
mass spectrometer (Q-Exactive) in ESI mode.

3.1.2. Computational Section

Geometrical optimization was carried out at the um062x 6-31g(d,p) theoretical level
using the SCRF model (MeCN as solvent) [32–34]. Frequency analysis and the thermody-
namic correctional data were obtained at the same level. In addition, the IRC pathways [35]
calculations were also performed for transition state (TS) to identify whether the transition
state can connect the reactants and the key intermediate (IM1). All of the computational
experiments were conducted by using the Gaussian 16 program package [36].

3.2. General Procedure for the Preparation of DHCBNDOs

In a 15 mL tube, 1.0 mmol 1,4-naphthoquinone derivatives 1 and 1.0 mmol alkyne
derivatives 2 were dissolved in 10 mL of MeCN. The solution was irradiated by blue
LEDs (460 nm) at room temperature for 4 h. After completion, the reaction solution
was evaporated in a vacuum which was purified by a Biotage Flash (medium-pressure
chromatography) using a mixed solvent of hexane (HEX) and ethyl acetate (EA) (5–30% EA).
The products 3 were characterized by proton NMR, carbon NMR and HRMS spectroscopy.

(2aS,8aS)-8a-methyl-1-phenyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione (3aa): Yel-
low solid, yield 86%, m.p. 154–156 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.83 (s, 3H,
CH3), 3.78 (d, 1H, J = 1.2 Hz, CH), 6.55 (d, 1H, J = 2.0 Hz, =CH), 7.27–7.34 (m, 3H, Ar-
H), 7.49–7.51 (m, 2H, Ar-H), 7.68–7.71 (m, 2H, Ar-H), 8.01–8.06 (m, 2H, Ar-H); 13C NMR
(100 MHz, CDCl3): δ (ppm) 19.8, 57.2, 57.5, 125.5, 127.0, 127.6, 128.0, 128.6, 129.1, 131.6,
133.7, 133.7, 134.4, 134.5, 153.4, 196.6, 198.4; HRMS (ESI), m/z calcd 275.1067 for C19H15O2
[M+H]+, found 275.1069.

(2aS,8aS)-1-(2-methoxyphenyl)-8a-methyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ab): Faint yellow solid, yield 85%, 152–154 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.74
(s, 3H, CH3), 3.69 (s, 3H, OCH3), 3.72 (d, 1H, J = 1.6 Hz, CH), 6.54 (d, 1H, J = 1.6 Hz, =CH),
6.72 (d, 1H, J = 8.0 Hz, Ar-H), 6.85–6.88 (m, 1H, Ar-H), 7.12–7.16 (m, 1H, Ar-H), 7.48–7.59
(m, 3H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 20.0, 55.0, 57.5, 59.0, 110.4, 120.5, 120.6,
126.9, 127.8, 127.9, 127.9, 129.8, 132.9, 133.7, 134.0, 134.2, 134.3, 149.9, 158.9, 196.9, 199.0;
HRMS (ESI), m/z calcd 305.1172 for C20H17O3 [M+H]+, found 305.1176.
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(2aS,8aS)-1-(3,5-dimethoxyphenyl)-8a-methyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ac): Faint yellow solid, yield 88%, 151–153 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.74
(s, 3H, CH3), 3.68 (d, 1H, J = 1.6 Hz, CH), 3.70 (s, 6H, OCH3), 6.31 (t, 1H, J = 2.0 Hz, Ar-H),
6.46 (d, 1H, J = 1.6 Hz, =CH), 6.58 (t, 2H, J = 2.0 Hz, Ar-H), 7.61–7.64 (m, 2H, Ar-H), 7.93–7.99
(m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 19.9, 55.4, 57.1, 57.4, 101.6, 103.4, 127.0,
127.6, 128.0, 128.1, 133.2, 133.6, 133.7, 134.4, 134.5, 153.3, 161.0, 196.6, 198.3; HRMS (ESI),
m/z calcd 335.1278 for C21H19O4 [M+H]+, found 335.1280.

(2aS,8aS)-1-(4-ethylphenyl)-8a-methyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ad): Yellow solid, yield 93%, 155–157 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.20 (t,
3H, J = 7.6 Hz, CH3), 1.83 (s, 3H, CH3), 2.61 (q, 2H, J = 7.6 Hz, CH2), 3.77 (d, 1H, J = 1.6 Hz,
CH), 6.49 (d, 1H, J = 1.6 Hz, =CH), 7.16 (d, 2H, J = 8.4 Hz, Ar-H), 7.42 (d, 2H, J = 8.4 Hz,
Ar-H), 7.69–7.72 (m, 2H, Ar-H), 8.02–8.06 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ
(ppm) 15.4, 19.8, 28.8, 57.1, 57.5, 125.6, 126.4, 127.0, 128.0, 128.1, 129.2, 133.7, 133.8, 134.3,
134.4, 145.6, 153.5, 196.9, 198.6; HRMS (ESI), m/z calcd 303.1380 for C21H19O2 [M+H]+,
found 303.1385.

(2aS,8aS)-8a-methyl-1-(4-propylphenyl)-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ae): Yellow solid, yield 90%, 154–156 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 0.84 (t, 3H,
J = 7.2 Hz, CH3), 1.53 (q, 2H, J = 7.6 Hz, CH2), 1.75 (s, 3H, CH3), 2.47 (t, 2H, CH2), 3.70 (d,
1H, J = 1.6 Hz, CH), 6.40 (d, 1H, J = 1.6 Hz, =CH), 7.06 (d, 2H, J = 8.0 Hz, Ar-H), 7.34 (d, 2H,
J = 8.4 Hz, Ar-H), 7.62–7.65 (m, 2H, Ar-H), 7.94–7.99 (m, 2H, Ar-H); 13C NMR (100 MHz,
CDCl3): δ (ppm) 13.8, 19.8, 24.4, 37.9, 57.1, 57.5, 125.5, 126.4, 127.0, 128.0, 128.7, 129.2, 133.7,
133.8, 134.3, 134.4, 144.0, 153.5, 196.9, 198.6; HRMS (ESI), m/z calcd 317.1536 for C22H21O2
[M+H]+, found 317.1539.

(2aS,8aS)-8a-methyl-1-(4-((1s,4S)-4-propylcyclohexyl)phenyl)-2a,8a-dihydrocyclobuta [b]naphthalene-3,8-dione
(3af): Yellow solid, yield 95%, 149–151 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 0.89 (t, 3H,
J = 7.2 Hz, CH3), 1.04–1.07 (m, 2H, CH2), 1.18–1.22 (m, 2H, CH2), 1.28–1.42 (m, 6H, CH2),
1.82 (s, 3H, CH3), 1.85 (s, 3H, CH3), 2.40–2.46 (m, 1H, CH), 3.76 (d, 1H, J = 1.6 Hz, CH),
6.48 (d, 1H, J = 1.6 Hz, =CH), 7.17 (d, 2H, J = 8.4 Hz, Ar-H), 7.42 (d, 2H, J = 8.4 Hz, Ar-H),
7.68–7.72 (m, 2H, Ar-H), 8.01–8.06 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm)
14.4, 19.9, 20.0, 33.5, 34.1, 37.0, 39.7, 44.6, 57.1, 57.5, 125.5, 126.4, 127.0, 128.0, 129.3, 133.7,
133.7, 134.3, 134.4, 149.2, 153.5, 196.8, 198.5; HRMS (ESI), m/z calcd 399.2319 for C28H31O2
[M+H]+, found 399.2323.

(2aS,8aS)-1-(4-bromophenyl)-8a-methyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ag): Yellow solid, yield 83%, 165–167 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.72 (s,
3H, CH3), 3.68 (d, 1H, J = 1.6 Hz, CH), 6.48 (d, 1H, J = 2.0 Hz, =CH), 7.28 (d, 2H, J=8.8 Hz,
Ar-H), 7.36 (d, 2H, J = 8.8 Hz, Ar-H), 7.62–7.65 (m, 2H, Ar-H), 7.94–7.98 (m, 2H, Ar-H); 13C
NMR (100 MHz, CDCl3): δ (ppm) 19.8, 57.1, 57.5, 123.3, 127.1, 127.1, 128.0, 128.3, 130.3,
131.9, 133.5, 133.6, 134.5, 134.6, 152.2, 196.2, 198.2; HRMS (ESI), m/z calcd 353.0172 for
C19H14BrO2 [M+H]+, found 353.0176.

(2aS,8aS)-8a-methyl-1-(4-nitrophenyl)-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ah): Yellow solid, yield 80%, 173–175 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.78 (s,
3H, CH3), 3.78 (d, 1H, J = 1.6 Hz, CH), 6.72 (d, 1H, J = 2.0 Hz, =CH), 7.62 (d, 2H, J = 8.8 Hz,
Ar-H), 7.68–7.71 (m, 2H, Ar-H), 7.99–8.03 (m, 2H, Ar-H), 8.11 (d, 2H, J = 8.8 Hz, Ar-H); 13C
NMR (100 MHz, CDCl3): δ (ppm) 19.9, 57.2, 57.7, 124.0, 126.4, 127.2, 128.2, 133.4, 133.6,
134.8, 134.8, 137.1, 147.6, 151.1, 195.4, 197.6; HRMS (ESI), m/z calcd 320.0917 for C19H14NO4
[M+H]+, found 320.0921.

4-((2aS,8aS)-8a-methyl-3,8-dioxo-2a,3,8,8a-tetrahydrocyclobuta[b]naphthalen-1-yl)benzonitrile
(3ai): Yellow solid, yield 82%, 170–172 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.75 (s,
3H, CH3), 3.75 (br s, 1H, CH), 6.66 (br s, 1H, =CH), 7.54 (br s, 4H, Ar-H), 7.66–7.68 (m, 2H,
Ar-H), 7.96–8.01 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 19.9, 57.2, 57.6, 112.3,
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118.5, 126.1, 127.2, 128.1, 131.7, 132.4, 133.4, 133.6, 134.7, 134.7, 135.3, 151.4, 195.5, 197.7;
HRMS (ESI), m/z calcd 300.1019 for C20H14NO2 [M+H]+, found 300.1022.

(2aS,8aS)-8a-methyl-1-(pyridin-3-yl)-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3aj): Yellow solid, yield 93%, 168–170 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.74 (s, 3H,
CH3), 3.74 (d, 1H, J = 1.6 Hz, CH), 6.59 (d, 1H, J = 2.0 Hz, =CH), 6.17 (dd, 1H, J = 8.0 Hz,
4.8 Hz, Ar-H), 7.63–7.66 (m, 2H, Ar-H), 7.74 (dt, 1H, J = 8.0 Hz, 2.0 Hz, Ar-H), 7.94–7.99
(m, 2H, Ar-H), 8.39 (dd, 1H, J = 4.8 Hz, 1.6 Hz, Ar-H), 8.65 (d, 1H, J = 2.0 Hz, Ar-H); 13C
NMR (100 MHz, CDCl3): δ (ppm) 19.8, 57.2, 57.7, 123.5, 127.1, 127.4, 128.0, 129.9, 132.7,
133.6, 134.6, 134.6, 147.0, 149.6, 150.5, 195.9, 197.8; HRMS (ESI), m/z calcd 276.1019 for
C18H14NO2 [M+H]+, found 276.1024.

(2aS,8aS)-8a-methyl-1-(thiophen-2-yl)-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3ak): Faint yellow solid, yield 91%, 164–166 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm)
1.72 (s, 3H, CH3), 3.71 (d, 1H, J = 1.6 Hz, CH), 6.17 (d, 1H, J = 1.6 Hz, =CH), 6.90 (dd, 1H,
J = 4.8 Hz, 3.6 Hz, Ar-H), 7.18–7.20 (m, 2H, Ar-H), 7.61–7.64 (m, 2H, Ar-H), 7.94–7.99 (m,
2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 19.7, 57.5, 57.8, 125.0, 126.7, 126.8, 127.2,
127.7, 128.0, 133.4, 133.8, 134.4, 134.5, 134.5, 147.6, 196.2, 197.5; HRMS (ESI), m/z calcd
281.0631 for C17H13O2S [M+H]+, found 281.0635.

(2aS,8aS)-2a-methyl-1,2-diphenyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3al): Yellow solid, yield 83%, 160–162 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.80 (s,
3H, CH3), 4.21 (s, 1H, CH), 7.28–7.37 (m, 6H, Ar-H), 7.51–7.55 (m, 4H, Ar-H), 7.68–7.77 (m,
2H, Ar-H), 7.93 (dd, 1H, J = 7.6 Hz, 1.2 Hz, Ar-H), 8.13 (dd, 1H, J = 7.6 Hz, 1.2 Hz, Ar-H);
13C NMR (100 MHz, CDCl3): δ (ppm) 19.3, 55.5, 58.5, 126.9, 127.0, 127.0, 127.9, 128.5, 128.7,
128.9, 128.9, 132.8, 132.8, 133.9, 134.0, 134.3, 134.5, 140.6, 145.0, 196.7, 198.6; HRMS (ESI),
m/z calcd 351.1380 for C25H19O2 [M+H]+, found 351.1385.

(2aS,8aS)-2a-methyl-3,8-dioxo-2-phenyl-2a,3,8,8a-tetrahydrocyclobuta[b]naphthalene-1-carbaldehyde
(3am): Faint yellow solid, yield 85%, 173–175 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.81
(s, 3H, CH3), 4.00 (s, 1H, CH), 7.33–7.39 (m, 3H, Ar-H), 7.63–7.68 (m, 2H, Ar-H), 7.84 (dd,
2H, J = 8.0 Hz, 2.0 Hz, Ar-H), 7.94 (d, 1H, J = 7.6 Hz, Ar-H), 9.85 (s, 1H, CHO); 13C NMR
(100 MHz, CDCl3): δ (ppm) 20.3, 56.2, 127.4, 128.0, 129.1, 129.3, 130.8, 132.0, 133.5, 133.8,
134.6, 134.9, 135.0, 161.1, 185.0, 194.4, 196.7; HRMS (ESI), m/z calcd 303.1016 for C20H15O3
[M+H]+, found 303.1020.

(2aS,8aS)-1-butyl-8a-methyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione (3an): Faint yellow
oil, yield 95%; 1H NMR (400 MHz, CDCl3): δ (ppm) 0.83 (t, 3H, J = 7.2 Hz, CH3), 1.21–1.39
(m, 4H, CH2), 1.59 (s, 3H, CH3), 1.92–2.08 (m, 2H, CH2), 3.62 (d, 1H, J = 1.2 Hz, CH), 6.01 (d,
1H, J = 1.2 Hz, =CH), 7.74–7.76 (m, 2H, Ar-H), 8.03–8.10 (m, 2H, Ar-H); 13C NMR (100 MHz,
CDCl3): δ (ppm) 13.7, 18.9, 22.3, 27.0, 27.5, 57.1, 58.0, 127.1, 127.6, 128.8, 133.4, 133.8,
134.3, 134.3, 159.1, 197.6, 198.1; HRMS (ESI), m/z calcd 255.1380 for C17H19O2 [M+H]+,
found 255.1385.

(2aS,8aS)-8a-methyl-1-pentyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione (3ao): Faint yel-
low oil, yield 96%; 1H NMR (400 MHz, CDCl3): δ (ppm) 0.82 (t, 3H, J = 7.2 Hz, CH3),
1.18–1.25 (m, 4H, CH2), 1.36–1.40 (m, 2H, CH2), 1.58 (s, 3H, CH3), 1.91–2.06 (m, 2H, CH2),
3.61 (d, 1H, J = 1.2 Hz, CH), 6.01 (d, 1H, J = 1.2 Hz, =CH), 7.74–7.76 (m, 2H, Ar-H), 8.03–8.10
(m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 13.9, 18.8, 22.3, 25.1, 27.3, 31.4, 57.1,
58.0, 127.1, 127.6, 128.8, 133.4, 133.7, 134.2, 134.3, 159.2, 197.5, 198.0; HRMS (ESI), m/z calcd
269.1536 for C18H21O2 [M+H]+, found 269.1539.

(2aS,8aS)-1-phenyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione (3ba): Yellow solid, yield
87%, 153–155 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 4.06 (dd, 1H, J = 4.0 Hz, 1.6 Hz, CH),
4.45 (d, 1H, J = 4.0 Hz, CH), 6.49 (d, 1H, J = 0.8 Hz, =CH), 7.22–7.29 (m, 3H, Ar-H), 7.47–7.49
(m, 2H, Ar-H), 7.64–7.68 (m, 2H, Ar-H), 7.94–8.03 (m, 2H, Ar-H); 13C NMR (100 MHz,
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CDCl3): δ (ppm) 49.1, 52.2, 125.5 127.6, 127.8, 128.6, 129.2, 132.0, 133.7, 134.0, 134.6, 149.2,
195.6; HRMS (ESI), m/z calcd 261.0910 for C18H13O2 [M+H]+, found 261.0915.

(2aR,8aR)-8a-chloro-1-phenyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione (3ca): Faint
yellow solid, yield 90%, 159–161 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 4.32 (d, 1H,
J = 1.6 Hz, CH), 6.74 (d, 1H, J = 1.6 Hz, =CH), 7.35–7.40 (m, 3H, Ar-H), 7.64–7.67 (m, 2H,
Ar-H), 7.74–7.82 (m, 2H, Ar-H), 8.06–8.14 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ
(ppm) 61.6, 68.3, 126.2, 127.4, 128.7, 129.0, 129.2, 130.0, 132.3, 133.1, 135.0, 149.6, 190.0, 193.8;
HRMS (ESI), m/z calcd 295.0520 for C18H12ClO2 [M+H]+, found 295.0525.

(2aS,8aR)-2a,8a-dichloro-1-phenyl-2a,8a-dihydrocyclobuta[b]naphthalene-3,8-dione
(3da): Faint yellow solid, yield 92%, 163–165 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 6.73
(s, 1H, =CH), 7.39–7.41 (m, 3H, Ar-H), 7.65–7.67 (m, 2H, Ar-H), 7.79–7.83 (m, 2H, Ar-H),
8.09–8.18 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 127.2, 127.4, 128.3, 128.4,
128.7, 128.9, 128.9, 131.2, 131.4, 131.7, 131.7, 135.4, 135.5, 152.6, 188.4, 188.6; HRMS (ESI),
m/z calcd 329.0131 for C18H10Cl2O2 [M+H]+, found 329.0131.

The results of the X-ray diffraction analysis for compound 3am were deposited with the
Cambridge Crystallographic Data Centre (CCDC 2288747).

4. Conclusions

In summary, a facile and efficient visible-light-mediated [2+2] cycloaddition reaction
strategy was developed for the synthesis of cyclobutane-containing DHCBNDOs under
mild and clean conditions. The strategy exhibited favorable compatibilities with functional
groups and afforded a library of DHCBNDOs in very good to excellent yields with excellent
regioselectivity. Control experiments revealed that the visible light played an important
role in the [2+2] cycloaddition reaction and clearly point to a radical pathway. Besides, DFT
calculations revealed that the structures of transition state (TS) and the key intermediate
(IM1) and its free energy barrier was calculated as 13.4 kcal mol−1. The readily accessible,
low-cost and eco-friendly nature of the developed strategy offers a range of attractive
applications in organic and medicinal chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28227654/s1, Figures S1–S40: including 1H, 13C NMR and OR-
TEP spectra of [2+2] cycloaddition products dihydrocyclobuta[b]naphthalene-3,8-diones (DHCBNDOs).
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