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Abstract: The adsorption of organic molecules on graphene surfaces is a crucial process in many
different research areas. Nano-sized carbon allotropes, such as graphene and carbon nanotubes,
have shown promise as fillers due to their exceptional properties, including their large surface area,
thermal and electrical conductivity, and potential for weight reduction. Surface modification methods,
such as the “pyrrole methodology”, have been explored to tailor the properties of carbon allotropes.
In this theoretical work, an ab initio study based on Density Functional Theory is performed to
investigate the adsorption process of small volatile organic molecules (such as pyrrole derivatives)
on graphene surface. The effects of substituents, and different molecular species are examined to
determine the influence of the aromatic ring or the substituent of pyrrole’s aromatic ring on the
adsorption energy. The number of atoms and presence of π electrons significantly influence the
corresponding adsorption energy. Interestingly, pyrroles and cyclopentadienes are 10 kJ mol−1 more
stable than the corresponding unsaturated ones. Pyrrole oxidized derivatives display more favorable
supramolecular interactions with graphene surface. Intermolecular interactions affect the first step
of the adsorption process and are important to better understand possible surface modifications for
carbon allotropes and to design novel nanofillers in polymer composites.

Keywords: adsorption; surface modification; DFT; nano-sized carbon allotropes; graphene; carbon
nanotubes; supramolecular interactions; pyrrole methodology

1. Introduction

The adsorption process on solid surfaces plays a critical role in numerous scientific dis-
ciplines, ranging from chemistry and physics to materials science and nanotechnology [1–8].
Many phenomena can occur when molecules adsorb on solid surface. The ability to
understand and manipulate the interactions between molecules and surfaces opens up
avenues for designing novel materials with tailored surface properties and optimizing the
performance of existing systems [9–15]. While experimental techniques provide valuable
information about surface adsorption, a deeper understanding at the atomic level requires
the use of numerical simulations that can help us study the possible mechanisms and
dynamics driving these processes [16–22].

Density Functional Theory (DFT) calculations together with molecular mechanics
(MM) and molecular dynamics (MD) methods can provide information that strongly
complements experimental studies [23–38]. MM and MD simulations are interesting tools
to describe both the bulk and surface properties of materials at the atomistic level [39–47].
The adsorption process of proteins, peptides, and small molecules can be investigated on
the external surfaces of graphite and carbon allotropes in general. The comparisons between
theoretical results and experimental data are interesting, such as those concerning favorable
van der Waals interactions between graphene allotropes and proteins, an important aspect
for biomaterials in contact with the blood [43]. The same favorable interactions explain
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the possible solubilization of carbon nanotubes synthesized in an amorphous phase due to
protein adsorption on the external surface. Their solubilization is an important technology
aspect to prepare aligned fibers in polymeric matrices of composite materials [47–49].

Considering the adsorption of a single molecule on a solid surface, Density Functional
Theory has emerged as an interesting tool for studying the ground-state properties of
condensed matter systems, particularly with regard to how surface interactions influence
the electronic distribution in the molecular orbitals of the volatile organic molecules near
a solid surface [50–53]. DFT offers a rigorous framework based on quantum mechanics,
enabling accurate predictions of adsorption sites, binding energies, and electronic properties
that closely align with experimental observations, allowing researchers to gain insights into
the structural, electronic, and energetic aspects of adsorption, thus helping to clarify the
fundamental principles that govern these phenomena [23,50–54].

In recent years, there has been a growing interest in surface modification techniques
aiming to improve the properties of fillers used in advanced technological applications [55].
One prominent area where surface modification has shown significant potential is in the
development of polymer composites for the tire industry [56–58]. By modifying the surfaces
of fillers, scientists can achieve substantial improvements in mechanical strength, thermal
stability, electrical conductivity, and other desired characteristics, thereby pushing the
boundaries of material performance [59–62]. In this context, nano-sized carbon allotropes,
such as graphene and carbon nanotubes, have emerged as promising candidates due to
their exceptional properties [63,64]. Carbon allotropes display a remarkable combination
of attributes that make them highly attractive as fillers in polymer composites [65–71].
Their large surface area provides an extended contact interface with the surrounding
polymer matrix, enabling efficient load transfer and reinforcing the mechanical properties
of the composite [66–68]. Additionally, carbon allotropes exhibit exceptional thermal and
electrical conductivity, facilitating heat dissipation and electrical conduction pathways
within the material. Furthermore, their incorporation into composites allows for a reduction
in the volume ratio of fillers compared to traditional alternatives, which can lead to lighter
and more cost-effective materials [53]. Given these advantages, tailoring the properties
of carbon allotropes has become a topic of considerable scientific interest, driving the
exploration of various surface modification methods [69–74].

Among the diverse approaches investigated, one particularly efficient and reliable
procedure is known as the “pyrrole methodology”, which involves the covalent modifica-
tion of carbon allotrope surfaces using N-substituted pyrrole molecules [75,76], a method
that enables the introduction of desirable functionalities onto the carbon allotrope surface.
The grafting process begins with the initial adsorption of N-substituted pyrrole molecules
onto the sp2 carbon surface, which then undergoes oxidation and subsequent Diels–Alder
cycloaddition, forming covalent bonds with the edges of the carbon allotrope plane. The
adsorption and grafting mechanisms of the pyrrole methodology are governed by a com-
plex interplay of supramolecular interactions, which dictate the stability, structure, and
properties of the modified surface [77]. This approach has been employed to produce novel
fillers in order to improve the mechanical properties of polymer nanocomposites [78,79].

Motivated by the potential of the pyrrole methodology and the need for a detailed
understanding of the adsorption process, our study employed ab initio simulations based
on DFT to gain deeper insights into the initial steps of the pyrrole methodology and
investigate the adsorption behaviors of various compounds on carbon allotropes. Our
objectives encompassed not only determining the optimal computational parameters for
the simulations but also exploring the interactions between pyrrole molecules and graphene
surfaces. Furthermore, we sought to examine the effects of substituents and oxidation on
the adsorption process, allowing us to understand how different modifications influence
the stability and reactivity of this system.

To broaden the scope of our investigation, we expanded our calculations to include
other compounds, including alkanes, cyclopentanes, pyrrolidines, and cyclopentadiene
derivatives. By exploring a broad range of molecular species, we aimed to uncover the
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underlying factors governing adsorption and shed light on the role of dispersion and π-
π interactions in stabilizing these systems on graphene surfaces, an approach that has
already been verified in the recent literature [80–83]. The structures of the systems were
studied by calculating their adsorption energies and generating charge difference density
plots. These detailed analyses allowed us to obtain a comprehensive understanding of
the supramolecular interactions at play and their influence on the adsorption phenomena
occurring on carbon allotrope surfaces. Table 1 shows a list of the compounds adsorbed on
the pristine graphene samples studied. The pyrrole compounds used to develop the “pyrrole
methodology” were obtained from the Paal Knorr reaction [84,85] of a primary amine with
2,5-hexanedione (HD). This synthetic pathway gave the chance to start from a biobased
chemical. Indeed, HD was prepared through the ring opening reaction of 2,5-dimethylfuran,
also by using a two-step one pot process [86,87]. The use of HD led to pyrrole molecules
with two methyl groups in the alpha positions of the ring. In Section 2.4, theoretical results
about 1,2,5-trimethylpyrrole and its oxidized derivatives on a pristine graphene surface will
be discussed. The use as reinforcing fillers of sp2 carbon allotropes, mainly carbon black,
functionalized by means of the “pyrrole methodology” with pyrrole compounds as the ones
studied in the research here reported, improved the properties of elastomeric composites for
a large-scale application such as the one in tyre compounds [87,88]. The development on an
industrial scale was announced by a major player in the tyre field [89]. This study is aimed
at giving a contribution to the development of the “pyrrole methodology”, elucidating its
first step.

Table 1. A list of the studied compounds adsorbed on pristine graphene.

Compound Structure Type Structure

Alkane Linear
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2. Results and Discussion

In this section, the results about the adsorption of the different aliphatic and aromatic
compounds reported in Table 1 on the pristine graphite surface are reported and discussed.

2.1. Adsorption of Linear Alkanes on the Pristine Graphene Surface

As described in the Materials and Methods section, linear alkane compounds such
as methane, ethane, propane, and butane were considered close to the pristine surface of
graphene. The optimized structures are shown to the left of all four panels in Figure 1,
while the adsorption distances and adsorption energies are listed in Table 2. As seen in the
latter, the adsorption distances ranged from 3.46 Å (methane) to 3.65 Å (ethane), and the
adsorption energies increased with increasing carbon atoms in the alkyl chain, indicating



Molecules 2023, 28, 7633 4 of 17

increased supramolecular interactions due to the forces of dispersion between the molecule
and the graphene surface.
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Figure 1. Optimized structures for the studied alkanes adsorbed on the pristine graphene surface (on
the left), and their charge density difference plots (iso-surface value: 0.0003) on the surface (on the
right). Methane adsorbed on graphene is reported in panel (a), ethane in panel (b), propane in panel
(c), butane in panel (d), respectively.

Table 2. Adsorption distances and energies for alkane compounds adsorbed on the pristine graphene surface.

Compound Distance, d (Å) Eads (kJ mol−1)

Methane 3.46 −13.2

Ethane 3.55 −18.7

Propane 3.65 −25.6

Butane 3.65 −32.7

The charge density difference iso-surfaces (value = 0.0003) shown to the right of
all four panels in Figure 1 indicate the regions where there is charge transfer, and this
information is useful for representing the nature of bonding between the elements present
in the simulation. The small red clouds present for all adsorbents indicate a slight increase
in charge density (charge per unit volume) pointing toward the graphene surface in the
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direction of the C–H bond. The red clouds are more evident for propane and butane in
Figure 1c,d, respectively.

Regarding the ground-state geometries studied, upon considering the plane defined
by all carbon atoms in the propane and butane chains, it can be gleaned that this plane is
parallel to the graphene plane. As regards the interaction energy, we can observe that as
the number of carbon atoms in the chain increases, the interactions with the solid surface
increase proportionally, indicating a stabilizing effect due, as mentioned previously, to the
favorable dispersion interactions between the C–H bonds and the graphene surface.

2.2. Adsorption of Saturated Cyclic Compounds on the Pristine Graphene Surface

The results relating to the saturated cyclic systems reported in Table 1 are presented
and discussed in this section, considering both cyclopentane and pyrrolidine compounds.

2.2.1. Adsorption of Cyclopentane Compounds on the Pristine Graphene Surface

As described in the Materials and Methods section, cyclopentane compounds were
considered adsorbed on the pristine graphene surface. The ground-state structures are
shown on the left in Figure 2, while the adsorption distances and the adsorption energies
are reported in Table 3.
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Figure 2. Optimized structures for the cyclopentane compounds adsorbed on the pristine graphene
surface (on the left), and the charge density difference plots (iso-surface value: 0.0003) of the alkane
compounds on the surface (on the right). 1,2,3-trimethylcyclopentane adsorbed on graphene is re-
ported in panel (a), 2-ethyl-1,3-dimethylcyclopentane in panel (b), 2-propyl-1,3-dimethylcyclopentane
in panel (c), 2-butyl-1,3-dimethylcyclopentane in panel (d), respectively.
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Table 3. Adsorption distances and energies for cyclopentane compounds adsorbed on the pristine
graphene surface.

Compound Distance, d (Å) Eads (kJ mol−1)

1,2,3-trimethylcyclopentane 3.74 −48.1

2-ethyl-1,3-dimethylcyclopentane 3.67 −53.2

2-propyl-1,3-dimethylcyclopentane 3.50 −58.5

2-butyl-1,3-dimethylcyclopentane 3.61 −64.1

Compared to the previous results, considering the structures in the ground-state rang-
ing from 1,2,3-trimethylcyclopentane to 2-butyl-1,3-dimethylcyclopentane, we observed a
different arrangement of the structure of the alkyl residue -R with respect to the graphene
plane: in fact, if we also consider for these structures the plane defined only by the carbon
atoms linked to carbon 2 of the cyclopentane, this plane is now arranged perpendicular to
the graphene surface, as reported in the panels on the left of Figure 2. The distances of car-
bon atoms closer to the graphene surface varied from 3.74 Å in 1,2,3-trimethylcyclopentane
to 3.50 Å in 2-propyl-1,3-dimethylcyclopentane.

Concerning the strength of the interactions, the adsorption energies were higher when
increasing the carbon atoms in linear chain, indicating, as with the alkane compounds,
increased supramolecular interactions due to dispersion forces between these cyclopentane
derivatives and the graphene surface.

Regarding the charge difference density plots (iso-surface value: 0.0003) shown on the
right in all panels in Figure 2, and regarding the linear alkanes, the red clouds present for all the
adsorbates indicate an increase in charge density that points toward the graphene surface.

As mentioned previously, regarding the geometry of the interactions in the calculated
ground state, the alkyl chains that start from the cyclopentane are perpendicular to the graphene
surface, and the adsorbate atoms that are close to the latter seem to contribute more to the
overall supramolecular interactions. Moreover, because cyclopentanes are sp3-hybridized, there
are no planar geometry constraints; thus, the molecules, after adsorption, adjust themselves to
maximize the interaction forces due to C–H bonds and the graphene surface.

2.2.2. Adsorption of Pyrrolidine Compounds on the Pristine Graphene Surface

As described in the Materials and Methods section, pyrrolidine derivatives adsorbed
on the pristine graphene surface were studied. The lowest total energy structures are
reported in the panels on the left in Figure 3, while the adsorption distances and their
adsorption energies are listed in Table 4. Compared to the previous results, the calculated
distances of pyrrolidine compounds in the calculated ground state were, on average,
smaller, ranging from 3.46 Å to 3.58 Å for 1-propyl-2,5-dimethylpyrrolidine and 1-ethyl-2,5-
dimethylpyrrolidine, respectively. Using the same methodologies for the analysis of the
theoretical results, the adsorption energies were calculated, and their values were found to
be lower, and therefore more stable in the system, for molecules with a greater number of
carbon atoms, which were comparable in size to compounds of cyclopentane.

Considering the graphs of the charge density differences for the pyrrolidines (see the
right side in all panels in Figure 3), one can see, as in the previous case, the positive (red)
contribution to the charge transfer between the carbon atoms and the surface of graphene.
Compared to saturated homoatomic systems (e.g., alkanes and cyclopentanes), however, the
nitrogen atom appeared to deplete the graphene surface, as can be gleaned from the blue
cloud under the pyrrolidine ring. This could be explained by the fact that nitrogen possesses a
lone pair of electrons, which, in addition to the dispersion forces between the C–H bonds and
the graphene surface, can interact with the graphene surface via a π-type bond.
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Figure 3. Optimized structures for pyrrolidine compounds adsorbed on the pristine graphene
surface (on the left), and the charge density difference plots (iso-surface value: 0.0003) of alkane
compounds on the surface (on the right). 1,2,5-trimethylpyrrolidine adsorbed on graphene is reported
in panel (a), 1-ethyl-2,5-dimethylpyrrolidine in panel (b), 1-propyl-2,5-dimethylpyrrolidine in panel
(c), 1-butyl-2,5-dimethylpyrrolidine in panel (d), respectively.

Table 4. Adsorption distances and energies for pyrrolidine compounds adsorbed on the pristine
graphene surface.

Compound Distance, d (Å) Eads (kJ mol−1)

1,2,5-trimethylpyrrolidine 3.57 −46.2

1-ethyl-2,5-dimethylpyrrolidine 3.58 −51.3

1-propyl-2,5-dimethylpyrrolidine 3.46 −56.5

1-butyl-2,5-dimethylpyrrolidine 3.54 −62.1

2.3. Adsorption of Unsaturated Cyclic Compounds on the Pristine Graphene Surface

The results regarding the unsaturated cyclic systems reported in Table 1 are presented
and discussed in this section, considering both cyclopentadiene and pyrrole compounds.

2.3.1. Adsorption of Cyclopentadiene Compounds on Pristine Graphene Surface

As described in the Materials and Methods section, cyclopentadiene derivatives were
adsorbed on the pristine graphene surface. The optimized structures are reported on the
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left in all panels in Figure 4, while the adsorption distances and calculated adsorption
energies are shown in Table 5.
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Figure 4. Optimized structures for cyclopentadiene compounds adsorbed on the pristine graphene surface
(on the left), and the charge density difference plots (iso-surface value: 0.0003) of alkane compounds on the
surface (on the right). 1,4,5-trimethylcyclopenta-1,3-diene adsorbed on graphene is reported in panel (a),
5-ethyl-1,4-dimethylcyclopenta-1,3-diene in panel (b), 5-propyl-1,4-dimethylcyclopenta-1,3-diene in panel
(c), 5-butyl-1,4-dimethylcyclopenta-1,3-diene in panel (d), respectively.

Table 5. Adsorption distances and energies for cyclopentadiene compounds adsorbed on the pristine
graphene surface.

Compound Distance, d (Å) Eads (kJ mol−1)

1,4,5-trimethylcyclopenta-1,3-diene 3.57 −46.2

5-ethyl -1,4-dimethylcyclopenta-1,3-diene 3.58 −51.3

5-propyl -1,4-dimethylcyclopenta-1,3-diene 3.46 −56.5

5-butyl-1,4-dimethylcyclopenta-1,3-diene 3.54 −62.1

We can observe that the studied cyclopentadiene compounds, due to sp2 hybridization,
have a planar ring that is positioned parallel to the graphene surface to maximize the
interaction area, with the distance d increasing as the number of atoms adsorbed increases.

Compared to the results for the previously reported saturated compounds, the cal-
culated adsorption energies are higher but still follow the same trend, ranging from
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−51.5 kJ mol−1 to −67.7 kJ mol−1 for 1,4,5-trimethylcyclopenta-1,3-diene and 5-butyl-
1,4-dimethylcyclopenta-1,3-diene, respectively.

In the charge density difference plots shown in all panels on the right in Figure 4,
we can observe that there are two contributions to the adsorption of cyclopentadiene
derivatives on the graphene surface. Initially, dispersion interactions are significant, such
as in alkane compounds, as indicated by the increase in charge density (red cloud) in the
direction of the C–H bonds toward the graphene surface. Furthermore, the contribution
of π interactions between the molecular π orbitals of the cyclopentadiene rings and the
delocalized π orbitals of the graphene surface is important, highlighted in this case by the
charge depletion (blue cloud) on the graphene surface.

2.3.2. Adsorption of Pyrrole Compounds on the Pristine Graphene Surface

As described in the Materials and Methods section, the theoretical results regarding
the pyrrole derivatives adsorbed on the pristine graphene surface are shown and discussed
in this section. The optimized structures can be seen in Figure 5, while the adsorption
distances and calculated adsorption energies are listed in Table 6.
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Figure 5. Optimized structures for pyrrole derivatives adsorbed on the pristine graphene surface
(on the left), and the charge density difference plots (iso-surface value: 0.0003) of alkane compounds
on the surface (on the right). 1,2,5-trimethylpyrrole adsorbed on graphene is reported in panel
(a), 1-ethyl-2,5-dimethylpyrrole in panel (b), 1-propyl-2,5-dimethylpyrrole in panel (c), 1-butyl-2,5-
dimethylpyrrole in panel (d), respectively.
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Table 6. Adsorption distances and energies for pyrrole compounds adsorbed on the pristine graphene surface.

Compound Distance, d (Å) Eads (kJ mol−1)

1,2,5-trimethylpyrrole 3.47 −55.3

1-ethyl-2,5-dimethylpyrrole 3.33 −54.9

1-propyl-2,5-dimethylpyrrole 3.33 −61.0

1-butyl-2,5-dimethylpyrrole 3.31 −66.3

Unlike unsaturated cyclopentadiene compounds, pyrroles are aromatic compounds,
so the delocalized molecular orbitals in the ring constraint fix the carbon attached to the
nitrogen in the same plane. This causes molecules that have a longer chain than that of
1,2,5-trimethylpyrrole to be slightly inclined and not perfectly parallel to the graphene
surface, thus resulting in shorter adsorption distances between the molecule and the latter.

Even for these systems, the adsorption energy (Eads) increases as the number of atoms
in the molecule increases, specifically in the substituent of the linear alkyl chain, with
values ranging from −55.4 kJ mol−1 to −66.3 kJ mol−1 for 1,2,5-trimethylpyrrole and
1-butyl-2,5-dimethylpyrrole, respectively.

In the graphs of the charge density differences reported on the right-hand panels in
Figure 5 (iso-surface values: 0.0003), specifically regarding the cyclopentadiene derivatives,
we can observe that two different contributions to the adsorption strength are important:
the first contribution increases the density of charge between carbon atoms facing the
direction of the C-H bond due to dispersion interactions, and the second contribution
induces a charge depletion on the graphene surface due to π–π interactions.

In Figure 6, the adsorption energy on the pristine graphene surface has been plotted as
a function of the number of atoms in the studied molecule. As expected, a linear correlation
was found when increasing the number of carbon atoms present (see Table 7). Since there
are no covalent or ionic bonds present between the molecule and the carbon substrate, the
only forces exerted between these two systems are, as previously mentioned, due partly to
dispersion and partly, if present in the case of adsorbates with free electron bonds in p-type
orbitals, to π–π interactions. Further theoretical studies based on molecular mechanics
and dynamics method on the role of the van der Waals contributions using a simulation
previously proposed protocol [90] are an ongoing work.
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Table 7. Information on the best linear fit with intercept equal to zero passing through the data
related to the adsorption energy as a function of the number of atoms in the single molecules studied
reported in Figure 6.

Compound Slope Standard Error R2

Alkanes −2.3522 0.0426 0.9990

Pyrrolidines −1.9616 0.0142 0.9998

Pyrroles −2.5122 0.1050 0.9948

Cyclopentanes −1.9371 0.0194 0.9997

Cyclopentadienes −2.4005 0.0624 0.9980

For alkane and cyclopentane compounds, which lack these mechanisms, a possible
adsorption mode is through the dispersion bond, while pyrrolidines, cyclopentadienes, and
pyrroles, which have π electrons, can interact with the surface through π–π interactions. At
the same number of atoms, cyclopentadiene and pyrrole compounds showed better stability
and a gain of about 10 kJ mol−1 compared to their saturated counterparts, cyclopentanes
and pyrrolidines, respectively. Interestingly, the pyrrole compounds, which interact better
with the graphene surface, show a negative and greater slope in the best linear fit as
reported in Table 7.

2.4. Adsorption of 1,2,5-Trimethylpyrrole and Its Oxidized Derivatives on Pristine Graphene Surface

To study the effect of oxidation, which, as described in the introduction, is a key step for
the cycloaddition of pyrrole molecules onto carbon allotropes [77,91], 1,2,5-trimethylpyrrole
and its oxidized derivatives were adsorbed on the pristine graphene surfaces and their
adsorption energies calculated. In Figure 7, ground-state energy structures for TMP, TMP-
CHO, and TMP-2CHO can be seen. For all the compounds, the value of the adsorption
distance was found to be 3.46 Å. Figure 8 shows the adsorption energies as a function of
the number of carbon atoms in the organic adsorbates. As can be seen from the Eads values,
the presence of an aldehyde group favors the adsorption process, with a decrease of about
3 kJ mol−1 per aldehyde. This means that the oxidation of pyrrole compounds enhances
the supramolecular interactions between the latter and the graphene surface, as the oxygen
increases the number of π interactions with the conjugated graphene system. Regarding
the effect of oxidation, we can conclude that the presence of aldehyde groups improved the
adsorption energy for 1,2,5-trimethylpyrrole on the pristine graphene surface.
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3. Materials and Methods

The specific initial geometries of volatile organic compounds near graphene layer were
obtained after molecular mechanics and molecular dynamics simulations using a simulation
protocol adopted in previous work [90] about the adsorption process on graphite, graphene
surface. These data will be published in a future paper related to the adsorption of single
volatile compounds on graphene surface and at larger concentration.

Optimal adsorption configurations were derived using pw.x software, part of the
Quantum ESPRESSO suite of codes [92]. This package is widely used to simulate the
behavior of materials and molecules, and pw.x software [93] specifically performs Density
Functional theory (DFT) calculations related to the electronic structures of materials. A
non-empirical generalized gradient approximation functional, namely, Perdew–Burke–
Ernzerhof (PBE), was used [94], and standard solid-state ultrasoft pseudopotentials were
employed to process the electron–ion interactions for all the atoms [95]. The kinetic energy
cutoff of the plane wave basis set was fixed at 60 Ryd. For pristine graphene systems, a 3 × 3
× 1 Monkhorst–Pack set was used to sample the Brillouin zones, while the other simulations
were performed at the Γ point. To account for dispersion (Van der Waals) interactions,
which, as mentioned in the introduction, are important in describing physisorption on
graphene-based systems, the “DFT-D of Grimme” algorithm was used [96].

To model the pristine graphene sheet, a periodic unit cell with dimensions of 6 × 5 × 1
was built. The unit cell contained 60 carbon atoms, and the lattice parameters were set
to 12.30 Å, 12.78 Å, and 20.33 Å in the a, b, and c directions, respectively. To prevent any
interaction that could introduce errors in the analysis, the c parameter (the height of the
box in which the calculation was carried out) was adjusted to 20 Å, ensuring a sufficient
separation between the graphene layers.

Regarding the different types of small organic molecules adsorbed on the surface of
graphene, the analyzed compounds and their chemical structures are listed in Table 1. For
the R group, linear alkyl chains were investigated by increasing the number of carbon
atoms from methane to butane; the other molecules were cyclic saturated with cyclopentane,
pyrrolidine, unsaturated cyclic cyclopentadiene, and pyrrole.

With regard to adsorption energy, it is important to highlight that to quantify the
interaction force between the adsorbate and the investigated surface, adsorption energy
(Eads) was calculated as follows:

Eads = E(S+A) − EA − ES
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Above, E(S+A) is the total energy of the adsorbate/surface system, EA is the total energy
of the molecule calculated with the same cell and electronic parameters of the whole system,
and ES is the total energy of the investigated surface. As a quantity strictly connected to the
thermodynamics of adsorption, the more negative the value, the more favorable the process.

Charge density difference plots were used to visualize the charge transfer and charge
disequilibria between atoms from the adsorbate, and surface charge density difference
(CDD) maps were calculated using the pp.x software contained in the Quantum ESPRESSO
Suite. ∆ρ was calculated using the following formula:

∆ρ = ρ(S+A) − ρA − ρS

Above, ρ(S+A) is the charge density of the adsorbate/surface system, ρA is the charge
density of the molecule (calculated with the same cell and electronic parameters of the
whole system), and ρS is the charge density of the investigated surface. Following this
methodology, ∆ρ (or, more specifically, its iso-surface) shows the variations in the charge
density of the graphene–adsorbate system. In the figures, a difference in charge density is
shown in red on an iso-surface on which the accumulation of charge is represented, while
blue indicates depletion [97,98].

4. Conclusions

The DFT study of pyrroles and pyrrole derivatives adsorbed on graphene surface
revealed that adsorption process is predominantly governed by dispersion forces and
π–π bonding interactions. The number of atoms in the molecules considered and the
presence of π electrons significantly influence the corresponding adsorption energy. A
linear dependence of the adsorption energy is found as a function of the number of atoms
in the adsorbed molecules. The pyrrole compounds display more favorable supramolecular
interactions with graphene surface. In particular, at the same number of atoms in contact
with the graphene surface pyrroles and cyclopentadienes are 10 kJ mol−1 more stable than
the corresponding unsaturated ones. Furthermore, the presence of aldehydic groups in
pyrrole derivatives improves the adsorption energy which is therefore more negative. This
study provides valuable insights into supramolecular interactions and their influence on
the first step of the adsorption process, contributing to the fundamental understanding of
surface modifications for carbon allotropes and their applications in polymer composites.

Overall, the findings of this study offer valuable insights into the complex mechanisms
governing adsorption on carbon allotrope surfaces. By elucidating the significant roles of
dispersion forces and π–π bonding interactions, this research study contributes to a com-
prehensive understanding of surface modifications for carbon allotropes and their potential
applications in the field of polymer composites. Further study on the adsorption process of
these molecules on the graphene surface as single molecules and at higher concentrations
will be performed using molecular mechanics and molecular dynamics methods to better
understand the contribution of van der Waals interactions in the adsorption process in a
more complex supramolecular structure as in previous work [90].
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