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Abstract: Epidermal growth factor EGFR is an important target for non-small cell lung (NSCL) cancer,
and inhibitors of the AKT protein have been used in many cancer treatments, including those for
NSCL cancer. Therefore, searching small molecular inhibitors which can target both EGFR and
AKT may help cancer treatment. In this study, we applied a ligand-based pharmacophore model,
molecular docking, and MD simulation methods to search for potential inhibitors of EGFR and
then studied dual-target inhibitors of EGFR and AKT by screening the immune-oncology Chinese
medicine (TCMIO) database and the human endogenous database (HMDB). It was found that
TCMIO89212, TCMIO90156, and TCMIO98874 had large binding free energies with EGFR and AKT,
and HMDB0012243 also has the ability to bind to EGFR and AKT. These results may provide valuable
information for further experimental study.

Keywords: small molecule inhibitors; EGFR; AKT; TCMIO; HMDB

1. Introduction

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein with
an extracellular EGF binding domain and an intracellular tyrosine kinase domain. It plays
a crucial role in regulating signaling pathways and controlling cellular proliferation. EGFR
has been found to be overexpressed in many cancer cells [1]. This overexpression leads to
autophosphorylation of its tyrosine residues, triggering a cascade of events that further
affect cell proliferation, differentiation, and apoptosis [2]. EGFR overexpression has been
observed in several types of cancer, including non-small cell lung cancer, pancreatic cancer,
glial cell carcinoma, and other tissues. The inhibition of EGFR overexpression is considered
a crucial strategy in current anti-cancer research [1]. Current studies on EGFR inhibitors
can be divided into two main categories: monoclonal antibodies (mAb) and small molecule
tyrosine kinase inhibitors (TKIs) [3]. EGFR inhibitors have emerged as a crucial class
of antitumor drugs. The discovery of highly effective EGFR inhibitors is of paramount
importance in the treatment of tumors, including lung cancer, cervical cancer, and breast
cancer [4,5]. At present, a large number of small molecule TKIs targeting EGFR have been
developed [6–10].

Gefitinib (IC50 = 23–79 nM) and Erlotinib (IC50 = 80 nM) have been clinically used as
first-generation representative EGFR-TKIs compared to standard chemotherapy [11]. These
drugs act as reversible competitive inhibitors of ATP to prevent EGFR autophosphoryla-
tion [12]. In the treatment of breast cancer, Afatinib (IC50 = 0.5 nM), a second-generation
EGFR-TKI, has gained significant popularity [13–15]. In addition, a third-generation TKI
called Osimertinib (IC50 = 12 nM) specifically targets EGFR-T790M resistance mutations
that occur due to the use of first-generation TKIs [16,17].
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In the field of natural product inhibitors of EGFR, research has shown that sesquiter-
pene lactones, chalcone, and phenolic compounds can be synergistically combined with
small molecule inhibitors to enhance drug sensitivity and improve therapeutic outcomes [18].
Abou-Zied HA et al. developed a novel xanthine derivative that incorporates the chal-
cone component for investigating potential EGFR inhibitors and successfully obtained
compound 11, which exhibited an IC50 value of 0.3 µM against the target enzyme [19].
Abdelgawad et al. developed innovative phenolic compounds as potential inhibitors of
EGFR and COX-2. Their research resulted in the identification of compounds C4 and G4,
which demonstrated impressive inhibitory activity with IC50 values of 0.9 and 0.5 µM,
respectively [20]. Furthermore, an interesting study conducted by N Nerdy et al. revealed
that sesquiterpene lactones derived from veronica amygdaline defile exhibited potential
anticarcinogenic effects through the inhibition of EGFR expression [21].

However, despite the potent activity demonstrated by these EGFR inhibitors, chal-
lenges such as drug resistance and weak efficacy in cells and in vivo settings persist [22].
Therefore, there is an urgent necessity for the development of novel EGFR inhibitors. This
urgency arises from the fact that the activation of EGFR profoundly impacts a multitude of
signaling mechanisms within cells. As the downstream protein of EGFR, AKT assumes
a crucial role in regulating cell proliferation and survival. Moreover, AKT acts as a con-
stitutively active kinase that promotes the survival of NSCLC cells [23]. Notably, the
heightened activity of AKT has been associated with the persistence of drug resistance
against first-generation EGFR TKIs [24,25].

The computational study of drugs plays an important role in the field of drug dis-
covery and has gained widespread usage in identifying potential new drug candidates.
The strategy of screening large virtual molecular libraries uses a series of methodolo-
gies, including molecular docking, the construction of pharmacodynamic groups, and the
application of quantitative structure–activity relationships (QSARs). These approaches
have been effectively employed in the quest for identifying inhibitors targeting EGFR
or AKT [26–28]. Currently, there is an increasing emphasis on the research of protein
inhibitors that target dual or even multiple targets. Alessia Bono et al. conducted a study
on a novel dual-target inhibitor for SARS-CoV-2 MPRO, resulting in the identification of
six potential compounds [29]. Similarly, Edgar et al. utilized the MD method to investigate
dual inhibitors for G9a and DNMT1, successfully indentifying compounds exhibiting dual
activity [30]. However, there have been very few computational studies for dual-target
inhibitors of EGFR and AKT. Tarozzi A et al. undertook the design and investigation of
several quinazoline derivatives to study EGFR and AKT dual inhibitors [31]. In this study,
our objective was to search for dual inhibitors targeting EGFR and AKT in the traditional
Chinese medicine on immune-oncology (TCMIO) and human endogenous library (HMDB)
databases [32,33] using a pharmacophore model, molecular docking, and molecular dynam-
ics (MD) simulation methods. The identified inhibitor candidates can potentially contribute
valuable insights for further experimental investigations on novel inhibitors targeting EGFR
and AKT.

2. Results and Discussion
2.1. Results of Pharmacophore and Molecular Docking Screening

A set of 20 inhibitor compounds, each possessing distinct active structures, was
employed to construct pharmacophore models. Finally, a pharmacophore model with two
aromatic rings, two hydrophobicity characteristics, and one H-bond donor characteristic
(Figure 1) was selected based on the overlap and accuracy values.

Using the developed pharmacophore model, a comprehensive screening process
was carried out on a total of 240,956 compounds from the TCMIO and HMDB datasets.
3252 compounds successfully passed the screening criteria, and, subsequently, the top 20%
of compounds (456 in TCMIO and 194 in HMDB) were selected baed on ranking the RMSD
(root mean square deviation) scores.
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Figure 1. Pharmacophore with the F1-F5 features constructed from 20 EGFR positive com-
pounds and its overlap with Erlotinib. Green: Hydrophobic centroid. Purple: H-bond donor.
Orange: Aromatic center.

In order to ascertain the accuracy and reliability of molecular docking, the receiver
operating characteristic (ROC) curve for the validation index was calculated based on the
true positive rate and false positive rate. The resulting area under the curve (AUC) value
was determined to be 0.707 (Figure 2). Furthermore, the docking result of protein inhibitors
showed that the RMSD value of Erlotinib was 1.35 Å, and its docking score of the best
conformation was −7.44 kcal/mol. Similarly, the AKT ligand, A-443654, demonstrated
an RMSD of 1.43 Å, with a corresponding docking score of −8.42 kcal/mol. The ROC
validation results and the docking results of the inhibitors from EGFR and AKT demon-
strated the reliability of the molecular docking method. Based on the analysis of docking
results, it was observed that the selected compounds were capable of effectively binding to
the ligand-binding sites of EGFR and AKT. Finally, a total of seven compounds with the
best docking scores were chosen for further analyses (Figure 3). Met769 is the key residue
of EGFR inhibitors (such as Erlotinib), contributing to protein structure stabilization or
functional regulation. It interacts with the hinge region of 4-aniline quinazoline scaffold
through specific binding interactions [34]. Table 1 shows that the compounds TCMIO89212,
TCMIO90156, TCMIO98874, HMDB0014570, and HMDB0037450 formed H-bond inter-
actions with the key residue Met769 of EGFR. Some of these compounds also formed
hydrogen bonds with the residues Asp831, Gln767, Asn818, Thr830, and Lys721 (Table 1).
A previous study by Yang et al. reported that the key residue Asp831 is involved in H-bond
interactions [35]. It was suggested that strong interactions between compounds and Asp831
played an important role in inhibiting EGFR activity [36]. The docking results shown
in Table 1 indicated that TCMIO5312, TCMIO98874, HMDB0012243, and HMDB0037450
formed H-bond interactions with Asp831. As depicted in Figure 4, the compounds were
successfully docked in the binding pocket of EGFR.

The docking scores of TCMIO98874, TCMIO90156, and TCMIO89212 with EGFR were
−7.96, −7.51, and −7.06 kcal/mol, respectively. Figure 4 shows the 3D docking structures
with EGFR for all compounds compared to Erlotinib. The 2D interactions of TCMIO98874,
TCMIO90156, TCMIO89212, and Erlotinib docking to the EGFR ligand-binding site are
shown in Figure 5, in which Erlotinib formed H-bond interactions with Met769, Leu768,
and Gln767. On the other hand, TCMIO89212, TCMIO98874, and TCMIO90156 also formed
H-bond interactions with Met769. Interestingly, in addition to its interactions with Met769,
TCMIO98874 also formed H-bond interactions with Asp831.
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Figure 2. ROC verification of molecular docking method.

(a) (b) (c)

(d)
(e) (f)

(g) (h)
(i)

Figure 3. Two-dimensional structures of (a) TCMIO5312, (b) TCMIO89212, (c) TCMIO90156,
(d) TCMIO98874, (e) HMDB0012243, (f) HMDB0014570, (g) HMDB0037450, (h) Erlotinib, and
(i) A-443654.

In addition, according to the docking results of the seven compounds with AKT
(Table 2), TCMIO90156, TCMIO89212, and TCMIO98874 exhibited docking scores of −8.28,
−8.24, and −8.00 kcal/mol, respectively. The docking score of inhibitor A-443654 was
calculated to be −8.42 kcal/mol. As indicated in Table 2, A-443654 demonstrated H-bond
interactions with Glu230, Asn280, Asp290, Ala232, and Lys181 at the AKT binding site.
Additionally, it exhibited an electrostatic interaction with Asp293. On the other hand,
TCMIO89212 formed H-bond interactions with Met229, Met282, and Ala332 (Figure 6).
TCMIO90156 primarily interacted with Glu236 at the AKT binding site, while TCMIO98874
predominantly interacted with Asp440. TCMIO90156 exhibited a predomonant interaction
with Glu236 in AKT, while TCMIO98874 primarily interacted with Asp440 in AKT.



Molecules 2023, 28, 7607 5 of 21

Table 1. GBVI/WSA dG docking scores of the EGFR–ligand complexes.

Compound ID Docking Score
(kcal/mol)

Interaction
Type

Key Amino
Acid

Ligand
Efficiency
(kcal/mol)

TCMIO5312 −7.72 H-donor Glu831, Met742,
Asp831 −0.276

H-acceptor Asp831

TCMIO89212 −7.06 H-acceptor Met769, Gln767 −0.252

TCMIO90156 −7.51 H-acceptor Met769, Lys721,
Gln767 −0.256

H-acceptor Met769

TCMIO98874 −7.96 H-donor Asp831 −0.221
H-acceptor Met769, Gln767

HMDB0012243 −7.29 H-donor Asp831 −0.270
HMDB0014570 −7.33 H-acceptor Met769 −0.318

HMDB0037450 −7.85
H-donor Asp776, Gln767 −0.231

H-acceptor Met769, Thr830,
Asp831, Lys721

Ionic Lys721

Erlotinib −7.37 H-acceptor Met769 −0.254

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4. Three-dimensional docking structures with EGFR of the candidate inhibitors (green)
(a) TCMIO5312, (b) TCMIO89212, (c) TCMIO90156, (d) TCMIO98874, (e) HMDB0012243,
(f) HMDB0014570, (g) HMDB0037450, and Erlotinib (red).
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(a) (b)

(c) (d)

Figure 5. Schematic 2D representations of the interactions between EGFR and (a) TCMIO89212,
(b) TCMIO90156, (c) TCMIO98874, and (d) Erlotinib, respectively.

(a) (b)

(c) (d)

Figure 6. Schematic 2D representations of the interactions between AKT and (a) TCMIO89212,
(b) TCMIO90156, (c) TCMIO98874, and (d) A-443654, respectively.
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Table 2. GBVI/WSA dG docking scores of the AKT–ligand complexes.

Compound ID Docking Score
(kcal/mol)

Interaction
Type

Key Amino
Acid

Ligand
Efficiency
(kcal/mol)

TCMIO5312 −8.08
H-donor Asn820, Glu236 −0.289

Ionic Glu279

TCMIO89212 −8.24
H-donor Met229, Met282 −0.294

H-acceptor Ala232

TCMIO90156 −8.28
H-donor Glu236 −0.285
H-donor Asp831

TCMIO98874 −8.00 H-donor Asp440 −0.222
Ionic Asp440

HMDB0012243 −8.17 H-donor Met229

H-acceptor Ala232, Asp293,
Lys181

HMDB0014570 −8.15 H-donor Glu230 −0.354
H-acceptor Asp293, Ala232

HMDB0037450 −9.32
H-donor Glu230, Gln236 −0.274

H-acceptor Lys181, Glu236,
Asp440

Ionic Lys181

A-443654 −8.42 H-donor Glu230, Asn280,
Asp290, Glu236 −0.280

H-acceptor Ala232, Lys181
Ionic Asp293

2.2. MD Simulation Results

Using Amber22, we performed MD simulations on the complexes of seven compounds
(TCMIO5312, TCMIO89212, TCMIO 90156, TCMIO98874, HMDB0012243, HMDB-0014570,
and HMDB0037450) and the inhibitors of Erlotinib and A-443654 with EGFR and AKT. The
analysis focused on the root mean square deviation (RMSD), root mean square fluctuation
(RMSF), rotation radius (Rg), and hydrogen bonds formed during the simulation [37].

During the MD simulations, the ligands were initially placed at the binding site of
the target protein based on molecular docking. Taking TCMIO90156 as an example, the
100 ns MD simulations were analyzed to observe the conformation changes of the ligand
and target protein. Figure S1 showed that the composite structure of the protein with
TCMIO90156 was gradually compacted during 100 ns. The protein structure underwent
a gradual tightening process within the initial <20 ns timeframe. After a 20 ns MD run,
the amplitude of protein structural changes appeared to be relatively small. Furthermore,
the conformational changes occurring at the ligand–protein binding site did not exhibit
noticeable variations during the 90 to 100 ns MD simulations, and TCMIO90156 became
stabilized within the binding pocket.

2.2.1. RMSD, RMSF, and Rg Analyses

RMSD values obtained during MD simulations serve as indicators of conformational
changes in receptor–ligand complexes [38]. As shown in Figure 7, it is apparent that the
RMSD values of all the EGFR–compound complexes increased rapidly at the beginning of
the MD simulations. Subsequently, the RMSD value for each complex in Figure 7 exhibited
fluctuations within the range of 0.50 to 2.50 nm, suggesting the stability of these complexes.
Notably, TCMIO90156, which possessed the most favorable binding free energy, achieved
stabilization after 75 ns of simulation.
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(a)

(b)

Figure 7. Backbone RMSD of the complexes of EGFR and inhibitor candidates screened from
(a) TCMIO and (b) HMDB databases.

Figure 8 shows the RMSD results of the complex structures of seven compounds
with AKT. In comparison to the control A-443654, the RMSD vaues for TCMIO90156,
TCMIO5312, and HMDB0037450 demonstrated significant fluctuations, while the remaining
compoounds exhibited minimal fluctuations and were stabilized below 0.50 nm. During
the 100 ns MD, the RMSD of TCMIO90156 experienced a rapid increase to 1 nm at 30 ns.
However, the RMSD of TCMIO5312 gradually stabilized after 75 ns. As for HMDB0037450,
its RMSD increased between 68 and 70 ns, reaching 0.7 nm, then decreased to 0.6 nm and
remained stable. These observations suggest that all seven complexes of AKT remained
stable throughout the MD simulations.

The RMSF values serve as indicators of the flexibility of complex structures. A higher
RMSF value indicates greater flexibility [39]. In general, the terminus regions of protein
structures exhibited higher flexibility as depicted in Figure 9. The majority of residues
demonstrated similar RMSF values within the EGFR complex structures, suggesting that
the binding of the compound to EGFR did not noticeably affect the stability of the pro-
tein structure.

It can be seen from Figure S2 that the RMSF values of the compounds bound to AKT
were comparable to those of the EGFR complexes. Most residues exhibited RMSF values
below 0.5 nm. Among the seven compounds, the average fluctuations of all compounds,
except for TCMIO89212 and TCMIO90156, were lower than those of the control A-443654.
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(a)

(b)

Figure 8. Backbone RMSD of the complexes of AKT and inhibitor candidates screened from
(a) TCMIO and (b) HMDB databases.

The radii of Gyration (Rg) values were employed to assess the folding rate and the
sizes of protein–compound complexes. Rg serves as a critical measure of protein compact-
ness, with higher Rg values indicating lower protein compactness [39]. During the MD
simulations, the Rg values were assessed. As depicted in Figure 10, it is evident that the
Rg values fluctuated due to the inherent dynamism of the complexes. However, all the
Rg values remained within the range of 2.0–2.80 nm, suggesting the absence of signifi-
cant conformational changes. The complexes formed with TCMIO90156, TCMIO89212,
TCMIO98874, TCMIO5312, HMDB0012243, and HMDB0037450 were observed to exhibit
tighter structures compared with the Erlotinib complex. This observation suggests that
these six compounds had a lesser impact on the tightness of the protein [40].

The AKT complexes analyzed in Figure S3 displayed Rg values ranging from 1.9 to
2.5 nm, suggesting the absence of noteworthy replaced conformational changes. Notably, all
the compounds, except for TCMIO89212 and TCMIO90156, exhibited fluctuations around
the 2 nm mark.
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(a)

(b)

Figure 9. RMSF of the complex structures of EGFR with the TCMIO (a) and HMDB (b) compounds.

(a)

Figure 10. Cont.
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(b)

Figure 10. Radii of gyration (Rg) of the complex structures of EGFR with the TCMIO (a) and HMDB
(b) compounds.

2.2.2. Analyses of H-Bonds

The H-bond module was utilized to determine the number of H-bonds formed between
the ligand and receptor throughout the course of the MD simulations [41]. In general, it is
expected that a ligand can establish at least two H-bonds with the receptor protein. Upon
analyzing the H-bond count for three compounds in relation to EGFR, it is observed that
the reference compound (Erlotinib) formed a maximum of four H-bonds during the 100 ns
simulations. However, TCMIO98874, TCMIO5312, TCMIO90156, and TCMIO89212 were
able to form a maximum of six, five, four, and three H-bonds with EGFR, respectively
(Figure 11). As H-bond interactions are crucial in intermolecular binding, it was anticipated
that TCMIO98874, TCMIO5312, and TCMIO90156 would exhibit efficient binding with
EGFR [42].

Figure S4 showed that TCMIO98874, TCMIO90156, and TCMIO89212 have the po-
tential to form a maximum of eight, six, and three H-bonds, respectively, with AKT. In
comparison, the control compound A-443654 formed five hydrogen bonds.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

Figure 11. Numbers of intermolecular hydrogen bonds of (a) TCMIO98874, (b) TCMIO5312,
(c) TCMIO90156, (d) TCMIO89212, (e) Erlotinib, and (f) EGFR-backbone binding to EGFR from
100 ns MD simulations.

2.2.3. Binding Free Energy Analyses

The MM-PBSA binding free energies were calculated using gmx_MMPBA [43]. The
energy components, including van der Waals, electrostatic, polar solvation, and solvent
accessible surface area (SASA) and total binding free energy, for the seven compounds are
provided in Table 3.

Table 3. MM-PBSA binding free energies and energy components (kcal/mol) of the complexes of
EGFR and screened TCMIO and HMDB compounds.

Ligands ∆Evander Waal ∆Eelectrostatic ∆Epolar Solvation SASA ∆Gbinding

TCMIO90156 −47.01 −131.48 147.32 −4.57 −35.74
TCMIO98874 −29.94 −243.41 247.05 −3.36 −29.66
TCMIO5312 −36.35 −146.94 160.09 −4.45 −27.65
TCMIO89212 −42.79 −149.06 169.92 −4.27 −26.20

HMDB0012243 −36.89 −49.90 70.77 −4.12 −20.14
HMDB0014570 −40.65 −16.51 45.41 −3.92 −15.67
HMDB0037450 −15.32 −49.39 54.12 −2.45 −13.05

Erlotinib −47.65 −146.57 167.75 −4.32 −30.79
EGFR-

backbone −33.10 −14.21 29.35 −3.60 −21.57
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From Table 3, it is evident that the binding free energies of TCMIO90156 were lower
than those of the control compound Erlotinib. The binding free energies of TCMIO90156,
TCMIO98874, TCMIO5312, and TCMIO89212 were all lower compared with the binding
free energy of EGFR-backbone. This suggests that these compounds may have positive ef-
fects on EGFR. Notably, the lowest binding energy observed for TCMIO90156 (−35.74 kcal/mol)
was nearly three times higher than that of HMDB0037450 (−13.05 kcal/mol). This significant
disparity in binding free energies might align with the substantial distinction in electro-
static energies between these two compounds. The results showed that TCMIO90156,
TCMIO98874, TCMIO5312, and TCMIO89212, especially TCMIO90156, could potentially
exhibit a potent inhibitory effect on EGFR.

According to the binding free energies of the complexes with AKT (Table 4), the bind-
ing free energy of the inhibitor A-443654 (−38.37 kcal/mol) was higher compared with those
of TCMIO98874 (−56.32 kcal/mol), TCMIO89212 (−33.18 kcal/mol), and TCMIO90156
(−29.83 kcal/mol). Based on the estimated binding free energies, TCMIO98874 appeared
to have a higher binding affinity for AKT compared with A-443654. Additionally, the
binding free energy of HMDB0012243 was observed to be −21.68 kcal/mol, which is
comparatively lower than those of the other HMDB compounds listed in Table 4. Conse-
quently, TCMIO98874, TCMIO89212, and TCMIO90156 have been identified as potential
dual inhibitors of EGFR and AKT, based on the aforementioned findings.

Table 4. MM-PBSA binding free energies and energy components (kcal/mol) of the complexes of
AKT and screened TCMIO and HMDB compounds.

Ligands ∆Evander Waal ∆Eelectrostatic ∆Epolar Solvation SASA ∆Gbinding

TCMIO98874 −52.28 −647.65 648.81 −5.20 −56.32
TCMIO89212 −52.31 −262.09 285.63 −4.41 −33.18
TCMIO90156 −31.11 −310.42 312.20 −3.50 −29.83
TCMIO5312 −29.42 −261.69 275.08 −3.88 −19.91

HMDB0012243 −35.02 −61.14 78.35 −3.87 −21.68
HMDB0014570 −42.16 −29.37 54.73 −3.88 −20.68
HMDB0037450 −36.89 −74.53 111.81 −4.39 −4.00

A-443654 −42.52 −270.18 278.73 −4.4 −38.37
AKT-backbone −42.98 −274.20 276.02 −4.43 −45.59

2.2.4. Analysis of the Interaction between Ligands and Proteins

Interaction energy decomposition analyses were performed for the protein–ligand
complexes involving TCMIO89212, TCMIO90156, and TCMIO98874 with both EGFR and
AKT. The results of these analyses can be observed in (Figures 12 and 13). Figure 12
demonstrates that Erlotinib exhibited robust interactions with the residues Val32 and
Leu150 of EGFR. On the other hand, in the case of TCMIO89212, TCMIO90156, and
TCMIO98874, the binding energies primarily relied on the contributions from different
residue pairs: Val32 and Leu150; Asn148 and Leu150; and Asp161 and Val32, respectively.
These findings shed light on the key residues involved in the binding interactions between
these ligands and EGFR.

Figures 14 and 15 illustrate the energy contributions of the crucial EGFR and AKT
residues throughout the MD simulation preocesses involving TCMIO89212, TCMIO90156,
and TCMIO98874. The MD simulations showed that key residues in the Erlotinib–EGFR
complex, Val32 and Leu150 with TCMIO89212, Asn148 and Leu150 with TCMIO90156, and
Asp161 and Val32 with TCMIO98874 maintained crutial interactions throughout the MD
simulation processes. This suggests that these residues are important for the molecular
recognition and binding of these ligands with EGFR. During the MD simulations of AKT,
it was observed that the key residue interactions of Asp148, Asn135, and Glu85 with the
positive drug A-443654, Glu91 with TCMIO89212, Glu91 with TCMIO90156, and Glu134
and Glu91 with TCMIO98874 were consistently maintained.
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(a) (b)

(c) (d)

Figure 12. MMPBSA energy residue decomposition analysis of (a) TCMIO89212, (b) TCMIO90156,
(c) TCMIO98874, and (d) Erlotinib with EGFR.

(a) (b)

(c) (d)

Figure 13. MMPBSA energy residue decomposition analysis of (a) TCMIO89212, (b) TCMIO90156,
(c) TCMIO98874, and (d) A-443654 with AKT.



Molecules 2023, 28, 7607 15 of 21

(a) (b)

(c)
(d)

Figure 14. Analysis of MMPBSA energy residue decomposition heatmaps of (a) TCMIO89212,
(b) TCMIO90156, (c) TCMIO98874, and (d) Erlotinib with EGFR. Different colors represent different
energy values, and the more negative energy values in each row, the stronger the interaction between
the corresponding residues of that rowand small molecules.

Figure 15 reveals that the positive drug A-443654 exhibited stronger interactions with
Asp148, Asn135, and Glu85 of AKT. As for TCMIO89212, TCMIO90156, and TCMIO98874,
the residues Val21, Phe18, and Glu91; Glu91; and Glu134 and Glu91, respectively, signifi-
cantly contributed to the binding energies.

(a) (b)

(c) (d)

Figure 15. Analysis of MMPBSA energy residue decomposition heatmaps of (a) TCMIO89212,
(b) TCMIO90156, (c) TCMIO98874, and (d) A-443654 with AKT. Different colors represent different
energy values, and the more negative energy values in each row, the stronger the interaction between
the corresponding residues of that rowand small molecules.
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2.2.5. ADMET Profiling

ADMET analyses were conducted for TCMIO90156, TCMIO89212, and TCMIO98874.
The pink region depicted in Figure 16 represents the optimal range for each characteris-
tic, with lipophiles (XLOGP3) spanning from −0.7 to +5.0. The size varied from 150 to
500 g/mol, the polar TPSA spanned from 20 to 130 Å2, the solubility (LogS) ranged from
−6 to 0, and the unsaturation fraction ranged from 0.25 to 1. The ADMET prediction results
(Figure 16) indicated that all three compounds satisfied the restriction criteria of ADMET,
suggesting a lower potential for toxicity risk.

(a) (b)

(c) (d)

Figure 16. ADMET analyses of (a) TCMIO90156, (b) TCMIO89212, (c) TCMIO98874, and (d) Erlotinib.
The color area is the suitable physicochemical space for oral bioavailability. The line represent the
various parameter values predicted by the platform for compounds.

3. Screening Methods
3.1. Pharmacophore and Molecular Docking

MOE 2022 was used to construct a pharmacophore model with an active coverage
of 0.9, query spacing of 0.6, query cluster of 1.25, feature number of 5, and default values
for the remaining parameters. For the generation of pharmacophore models, a training
set consisting of 20 known EGFR inhibitors with diverse structures was obtained from
the BindingDB database [44], and the IC50 values of these inhibitors ranged between
0.13 nmol/L and 1000 nmol/L. Finally, a pharmacophore model containing three char-
acteristics, aromatics (AROs), an H-bond donor (Don2), and hydrophobicity (Hyd), was
constructed (Figure 1). Virtual screenings using the pharmacophore model were performed
to search for inhibitor candidates in the TCMIO database (126,973 compounds) and HMDB
database (113,983 compounds). The pharmacophore model successfully filtered out a total
of 3252 compounds.

Subsequently, molecular docking screenings were conducted using MOE 2022 with
the application of an Amber10: ETH force field. During the molecular docking process, the
receptor was set as rigid, and for each compound docking, a total of 5 optimal compound
conformations were generated; the GBVI/WSA dG method [45] was used to score com-
pound postures. The structures of EGFR (PDB 1M17) and AKT (PDB 2JDR) were employed
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in this study, and were prepared by retaining the protein conformations, simultaneously
using Homology Builder in MOE 2022 to complete missing protein residues and adding
hydrogens. Following the pharmacophore screening, the 3252 compounds obtained were
sorted based on the RMSD values, and 650 compounds of top 20% were chosen for molec-
ular docking at the ligand-binding site of EGFR. In order to verify the docking method’s
effectiveness, both the test set and decoy set were subjected to the pharmacophore screen-
ing and docking with EGFR. A receiver operating characteristic ROC curve analysis was
employed to assess the docking screening’s capability to distinguish active compounds.
Models with an area under the curve AUC value > 0.7 or greater were considered to be
possibly reliable [46].

The test set comprised 32 active compounds specifically targeting EGFR. This set
included 20 carefully chosen inhibitors sourced from the BindingDB database. Its purpose
was to assess the predictive ability of molecular docking. Additionally, a decoy set con-
sisting of 218 inactive compounds was generated using Dude (http://dude.docking.org/
(accessed on 16 December 2022)) in order to evaluate the efficacy of the molecular dock-
ing [47]. The decoy set was carefully assembled to consist of the compounds that share
similar physical and chemical properties with the active set but no pharmacological activ-
ity [48,49]. The primary objectives was to develop a pharmacophore model which will be
able to detect compounds within an active/test set, while effectively minimizing the inclu-
sion of decoy compounds. The validation process of molecular docking screening involved
the utilization of both the test and decoy sets. This validation was conducted by calculating
the cumulative area under the curve (AUC) of the receiver operating characteristic (ROC)
using various statistical indicators. The compounds exhibiting superior docking scores,
which were lower than those of the inhibitors, were carefully chosen. Furthermore, the
compounds selected based on the pharmacophore model and molecular docking of EGFR
were subjected to further docking analysis within the AKT ligand-binding site. In this
analysis, an AKT inhibitor was used as a reference.

3.2. Molecular Dynamics (MD) Simulations

All MD simulations were conducted employing Amber22 [50], an ff19SB force field
was utilized for protein parameterization [51], and a GAFF2 force field was applied to
handle compound interactions [52]. All MD simulations were run with a TIP3P water
model [53,54]. The solvation simulation of receptor–ligand complex was conducted under
the periodic boundary condition using a dodecahedron periodic box. The TIP3P water
model was employed for solvation.To maintain charge balance in the system, Na+ and
Cl− ions were added. Subsequently, the equilibrium phase, production simulation, and
MMPBSA calculations were performed using the AmberMDrun command [55]. The ten-
step simulation preparation scheme is a widely-accepted equilibrium method for solvated
biomolecules. It is applicable to various types of systems and allows for simple tests
based on system density to ensure simulation stability. This simulation approach has been
extensively validated and has shown to be effective and versatile, having been successfully
applied to diverse protein and nucleic acid systems [56]. Constant temperature was con-
trolled with a velocity rescaling thermostat [57], and constant pressure was controlled with
a Berendsen barostat [58].The system was initially equilibrated at 300 K through 100 ps
NVT and NPT simulations, respectively, and the reference pressure for the NPT ensemble
was set to 1 bar.

The 100 ns MD simulations with a time step of 2 fs were performed for the complexes
of the selected compounds with EGFR and AKT added. The gmx_MMPBSA tool was
utilized to estimate the binding energy of each complex by analyzing the MD trajectory [59].
This tool calculates the binding energy based on a total of 100 frames extracted from the
100 ns production simulation trajectory.

http://dude.docking.org/
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3.3. ADMET Evaluation

The structures of the compounds were converted into the simplified molecular in-
put line input system (SMILES) format. Subsequently, the documents were submitted
to http://www.swissadme.ch/ (accessed on 7 March 2023) SwissADME [60] to eval-
uate the metabolism, excretion, distribution, toxicity, and absorption characteristics of
small molecules.

4. Conclusions

We employed a ligand-based pharmacophore filtration and molecular docking screen-
ing approach to identify potential natural compound inhibitors within the TCMIO database,
as well as endogenous compounds in the HMDB. These compounds were targed to si-
multaneously inhibit both EGFR and AKT. A total of seven compounds were discovered,
demonstrating a strong alignment with the pharmacophore model and exhibiting favorable
docking scores. Among them, TCMIO90156 demonstrated the lowest binding free energy
when compared with the control compound Erlotinib for EGFR. Additional, the binding
free energies of TCMIO98874, TCMIO5312, and TCMIO89212 were in close proximity
to the binding free energy of Erlotinib. The results obtained from the MD simulation
indicated that the binding free energy of TCMIO98874 with AKT was lower compared
with the control compound A-443654. On the other hand, the binding free energies of
TCMIO90156 and TCMIO89212 were slightly higher than that of A-443654. The analysis
of their interactions with EGFR showed that these compounds exhibited similar interac-
tion patterns with the reference drugs of EGFR. Furthermore, MD simulations indicated
that TCMIO90156, TCMIO89212, and TCMIO98874 displayed relatively low binding free
energies and formed crucial bindings with the essential residues of both EGFR and AKT.
These findings suggest that these compounds have the potential to function as dual-target
inhibitors, simultaneously targeting both EGFR and AKT. The findings of this study offer
valuable insights for further experimental inverstigations. The goal moving forward is
develop a web-based platform that provides a user-friendly dataset of EGFR inhibitors, as
described in article [61]. This will serve as a valuable resource for researchers in the field.
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