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1. Chemicals and materials 

N,N-dimethylformamide (DMF) was purchased from Energy Chemical Co., Ltd. 

Carboxylated single-walled carbon nanotubes (SWCNTs) (1~2 nm in diameter, 5~30 

μm in length) were obtained from XFNANO Materials Tech Co. Ltd. Zirconium (IV) 

tetrachloride, 3-aminobenzoic acid, 2-nitroterephthalic acid and 1-nitroanthraquinone 

were purchased from Shanghai Macklin Biochemical Co., Ltd. All the chemicals were 

used directly without further purification.  

 

2. Materials characterizations 

X-ray diffraction (XRD) patterns were recorded on Bruker D8 Advance X-ray 

diffractometer using Cu Ka radiation (λ≈1.54 Å) at 40 kV and 40 mA. Fourier 

Transform Infrared (FT-IR) transmission spectra were collected from a BRUKER-

EQUINOX-55 IR spectrophotometer. Scanning electron microscopy (SEM) was 

performed on a FEI quanta 400 FEG. Transmission electron microscopy (TEM) was 

performed on a JEM F2100F. High resolution transmission electron microscopy (HR-

TEM) was performed on a FEI Talos F200S. The thermogravimetric analysis (TGA) 

was operated on TA Instruments SDTA851e with the heating rate of 10°C min-1 in the 

range 50-800 °C under nitrogen atmosphere. The electric conductivity data was 

obtained from a RTS-8 four-probe tester. X-Ray photoelectron spectroscopy (XPS) 

measurements were performed with a Thermo ESCALAB 250 X-ray photonelectron 

spectrometer using Al Kα radiation (hν ≈1486.7 eV) as the excitation source. Prior to 

the BET measurements, the samples were outgassed for 10 hours at 100 °C. 
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Adsorption isotherms were calculated for nitrogen adsorption at 77 K and pressures 

up to 1 bar, measured by Brunauer-Emmet-Teller (BET) surface analyzer 

(Micromeritics, ASAP 2020).  

 

3. Electrochemical measurements 

All the electrochemical measurements were carried out on a CHI760D 

electrochemical workstation (Shanghai, China). The electrochemical performance of 

as-prepared electrodes was first evaluated in a three-electrode cell using aqueous 1 M 

H2SO4 electrolyte, platinum foil as the counter electrode and Ag/AgCl as the 

reference electrode. The working electrodes were prepared by mixing active material 

(UiO-66-NO2 or UiO-66-AQ), acetylene black, and poly(tetrafiuoroethylene) (PTFE) 

with a weight ratio of 80:10:10 and pressing onto carbon cloth as the current collector. 

The as-prepared composite membrane with 1 cm × 1 cm size was used as self-

standing working electrode. 

The areal capacitance (CA) was calculated from GCD curves using the following 

equation: CA = I × Δt / (S × ΔV)                                 (1) 

where I is the current density, ∆t is the discharge time, ∆V is the voltage range, and 

S is the area of the entire electrode. 

Energy density (E) and power density (P) of the symmetrical supercapacitor are 

calculated according to the following equations:  

E = CA × (∆V)2/(2×3600)                                 (2) 

P = E × 3600/∆t                                         (3) 
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where CA is the areal capacitance, ∆V is the voltage window and ∆t is the discharge 

time. 

 

4. FT-IR and XPS spectra 

 

 

 

Figure S1. (a) FT-IR spectra of AQ-NO2 and MOFs. (b) FT-IR spectra of CNT, 

CNT@UiO-66-NO2 and CNT@UiO-66-AQ. 

 

 

 

 

Figure S2. The comparison of (a) C 1s spectra and (b) Zr 3d spectra for CNT@UiO-

66-NO2 and CNT@ UiO-66-AQ. 
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Figure S3. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) O 1s and (d) Zr 3d 

for UiO-66-NO2 and UiO-66-AQ powders. 

 

 

 

 

 

5. SEM and elemental mapping for MOFs 

 

 

Figure S4. SEM image and the corresponding elemental (ca. C, Zr, N, and O) 

mapping images for (a-e) UiO-66-NO2 and (f-j) UiO-66-AQ. 
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6. HRTEM, HAADF and elemental mapping for CNTs@MOFs 

 

 

Figure S5. HRTEM images of (a,b) CNT@UiO-66-NO2. (e) HAADF image of 

CNT@UiO-66-NO2 and (d-g) corresponding element mapping of C, Zr, N and O, 

respectively.   

 

 

 

 

7. TGA analysis 

 

 

Figure S6. Comparison of TGA curves for MOFs and their hybrids with CNTs.  
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8. CV and GCD curves for MOFs and their hybrids with CNTs 

 

 

Figure S7. Electrochemical performance of powder electrodes UiO-66-NO2 and UiO-

66-AQ powders in a three-electrode configuration using 1 M H2SO4 aqueous solution 

as electrolyte. (a) Cyclic voltammetry (CV) curves at the same scan rate of 30 mV s-1. 

(b) Galvanostatic charge/discharge (GCD) curves at a current density of 0.5 A g-1. 

 

 

 

 
Figure S8. (a) CV curves and (b) GCD curves of CNT@UiO-66-NO2. (c) CV curves 

and (d) GCD curves of CNT@UiO-66-AQ.  
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Figure S9. GCD curves of CNT@UiO-66-NO2 and CNT@UiO-66-AQ at 1 mA cm-2. 

 

 

9. Cycling performance of SSC 

 

 

Figure S10. Cycling performance of CNT@UiO-66-AQ symmetric supercapacitor 

measured at 5 mA cm-2 over 10000 cycles with corresponding coulombic efficiency. 
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This can be attributed to the extended voltage window and 

improved specific capacitance of CNT@UiO-66-AQ electrode. 

Representative device data (P, E) for the high-performance SSCs  

are listed as follows for comparison: NiCo-MOF/MWCNT (0.499 

mW cm-2, 0.027 mWh cm−2) [39], CFs@UiO-66/PPy (0.26275 mW 

cm-2, 0.0128 mWh cm−2) [42], PET/MOF-1/rGO/PPy (0.03 mW 

cm-2, 0.0029 mWh cm−2) [43] , ZIF-PPy (0.12 mW cm-2, 0.0113 

mWh cm−2) [44], CNTs@Mn-MOF (0.12260 mW cm-2, 0.00699 

mWh cm−2) [45], PANI-ZIF-67-CC (0.82 mW cm-2, 0.3396 mWh 

cm−2) [46],  PANI/UiO-66 (0.05 mW cm-2, 0.0197 mWh cm−2) [47], 

Cu-CAT-NWAs/PPy (0.4 mW cm-2, 0.0224 mWh cm−2) [48]. 

 

 


