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Abstract: Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but
its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is
providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis
of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this compre-
hensive review, recent developments of MS-based metabolomics in MDD research are summarized
from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS,
supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted
metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.),
and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-
phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate
further advances in MS-based metabolomics in the field of MDD research.
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1. Introduction

Major depressive disorder (MDD) is a debilitating and widespread psychiatric illness
characterized by enduring and substantial feelings of sadness, inferiority, and despair [1].
Notably, the World Health Organization has listed depression as the third leading cause
of disease burden across the world and has predicted that the disease will rank first by
2030 [2]. However, due to the complicated pathogenesis of depression and the lack of
pathophysiological biomarkers, the diagnosis and treatment of MDD using subjective
evaluation and “trial-and-error” approaches often involve considerable error rates [3].

Metabolites are the downstream products of transcription and translation, and changes
in those closest to a given phenotype can reflect many pathological or internal changes in
biochemical pathways [4]. Metabolic disorders are considered to be an etiological factor
in MDD, and metabolite analysis can certainly improve our understanding of the many
pathological processes involved in MDD [5,6]. Metabolomics is the culmination of the
cascade of “omics” technologies. It combines advanced analytical instrumentations with
pattern recognition algorithms to reveal and monitor changes in metabolite profiles in
subjects based on their disease status or response to medical or other interventions [7].
Advances in metabolomics have opened new avenues for exploring mechanisms related
to MDD.

The main analytical platforms in metabolomics are nuclear magnetic resonance (NMR)
and mass spectrometry (MS) [8]. NMR enables non-invasive analysis and relatively fast
and straightforward metabolite annotation, but is less sensitive than MS. In-depth expla-
nations and discussions of NMR-based metabolomics can be found in various excellent
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studies and reviews [9–11]. MS is widely used in metabolomics analyses. It combines
rapidly developing separation technologies—primarily liquid chromatography (LC) and
gas chromatography (GC)—to allow qualitative and quantitative analysis of multiple or-
ganic molecules in complex biological matrices (serum, plasma, urine, tissue, etc.) with
high specificity, sensitivity, and throughput, and low sample consumption [12]. Given these
advantages, the applications of MS in metabolomics research have grown exponentially in
recent years.

This review focuses on advances in research into MDD using MS-based metabolomics.
Common analytical procedures and key metabolic changes during pathogenesis and treat-
ment are described, and current challenges and prospects are discussed with a view to
enhancing research into this condition.

A search of electronic literature bases from 2020 to August 2023 (PubMed [n = 170] and
Web of Science [n = 192]) was conducted using the keywords “depression”, “metabolomics”,
and “mass spectrometry”. After a preliminary review of these studies, articles in which the
disease studied was not depression or the research method was not metabolomics were
excluded. In addition, the reference lists of all identified studies were manually searched to
identify any additional studies. Finally, 142 studies that met our criteria were identified,
and these reports were reviewed. Figure 1 summarizes the numbers of studies in our
review for the different MS-based analytical platforms and metabolomics strategies.
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2. MS-Based Metabolomics Platforms in Depression Research
2.1. MS Platforms in Depression Research

Current state-of-the-art metabolomics technologies are mostly based on MS. Due to
the need for measurement of isomers, isobars, and structurally similar analogs, chromato-
graphic MS is preferred for metabolite profiling. LC-MS and GC-MS are the two primary
platforms used in metabolomics research into depression, although other platforms, such
as supercritical fluid chromatography-MS (SFC-MS) and capillary electrophoresis-MS (CE-
MS), also play significant roles (Figure 1a).

2.1.1. LC-MS

LC-MS is capable of detecting most compounds, including non-volatile and thermally
labile metabolites, with or without derivatization and is, thus, the most frequently used
platform in metabolomics analysis of depression. LC-MS analysis uses various types of
columns, including reverse phase (RP-LC-MS; e.g., C18, C8, and C30 columns), normal
phase (NP-LC-MS), and hydrophilic interaction (HILIC-LC-MS). RP and HILIC are mainly
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used for separation of weakly polar and polar compounds, respectively. Recently, an
all-in-one-injection HILIC-MS/MS method was developed for the simultaneous deter-
mination of 20 purine and pyrimidine metabolites and used to show greatly disturbed
purine metabolism in the serum and hippocampus of depressed mice [13]. Our group
established a convenient LC-MS/MS method for the simultaneous measurement of 18
amino acid enantiomers using a conventional octadecylsilane RP column and chiral deriva-
tization reagent. Significant differences in glycine, L-threonine, and D-methionine between
late-life depression patients and controls were revealed by this method [14]. Sensitive Pro-
filing ChemoSelective Derivatization Carboxylomics (SPCSDCarboxyl) was proposed by
Zhou’s group in 2023 for the analysis of carboxylic acids using 5-(diisopropylamino) amy-
lamine derivatization and ultra-performance LC-quadrupole time-of-flight MS (UHPLC-
Q-TOF/MS) [15]. Two hundred and eight metabolites were identified in the serum of
depressed patients using SPCSDCarboxyl, and a combination of proline, 1-pyrroline-5-
carboxylate, and glutamic acid could distinguish between patients and healthy controls.
Mocking et al. measured 399 metabolites in patients with recurrent MDD using an estab-
lished LC-MS/MS platform, and 80% of the recurring metabolic predictors belonged to
the phospholipid, sphingomyelin, glycosphingolipid, eicosanoid, microbiome, or purine
pathways [16].

2.1.2. GC-MS

GC-MS is suitable for the analysis of volatile organic compounds (VOCs), although
derivatization is required to increase the thermal stability and volatility of non-volatile
compounds and to reduce their polarity. Due to the high reproducibility of electron
ionization in MS, GC-MS can utilize many mass spectra libraries, which enables relatively
easy identification of peaks. Several studies have shown that urinary metabolite biomarkers
identified by GC-MS can identify post-stroke depression (PSD) in stroke survivors [17].
A biomarker panel consisting of glyceric acid, tyrosine, and azelaic acid was identified
in middle-aged and elderly patients with PSD [18,19]. Solid-phase microextraction and
GC-MS were used to analyze urinary VOCs and semi-VOCs in patients with late-life major
depressive and anxiety disorders. The combined indicators dimethylsulfone, phenethyl
isothiocyanate, hexanoic acid, texanol, and texanol isomers showed excellent performance
in evaluating MDD and/or agoraphobia in the elderly [20].

2.1.3. Other Chromatography-MS Platforms

Interest in SFC-MS in depression research has grown in recent years due to its excellent
separation capabilities and environmental friendliness. It shows remarkable performance
in the analysis of lipids. In-line supercritical fluid extraction coupled with SFC-MS/MS
method was used to rapidly separate 23 inflammation-related lipids in brain tissue of
depressed rats within 15 min. Six pro-inflammatory lipids increased in depressed rats,
while six anti-inflammatory lipids decreased [21]. Analysis of VOCs in exhaled breath using
proton-transfer-reaction MS (PTR-MS) is a hot topic in the field of depression research, given
its advantageous real-time, in-line, and non-invasive attributes. Lueno et al. conducted
the first PTR-MS study of the differences in VOCs in exhaled breath in MDD patients and
healthy controls. There were significant differences in several masses between the groups,
with m/z = 69, 74, 93, and 94 being identified as potential high-accuracy biomarkers [22].
This group then applied breathomics (one of the newest branches of metabolomics) using
untargeted PTR-MS to explore changes in biochemical patterns and metabolic pathways
related to MDD. A total of 23 differential exhaled metabolites were significantly altered
in MDD patients, and these were mapped to five metabolic pathways [23]. Recently, an
interesting study from Frodl’s group used PTR-MS to analyze gut–brain axis VOCs and
distinguish between schizophrenia, MDD, and healthy controls [24]. CE-MS is a powerful
tool that combines the high separation capability and low sample consumption of CE with
the identification capabilities of MS. Okamoto et al. used CE and Fourier transform MS
to identify differential patterns of serum metabolites in MDD patients with and without
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type 2 diabetes mellitus, indicating that this comorbidity can affect metabolic pathways
and alter the distribution of serum metabolites in MDD patients [25].

2.1.4. Combined Chromatography-MS Platforms

A single analytical technique cannot encompass all metabolites, given their wide-
ranging physicochemical properties and broad concentration ranges. For example, Xie’s
group used GC-MS to characterize differential metabolites in the olfactory bulb (OB) of rats
with chronic unpredictable mild stress (CUMS). Disruption of lipid and purine metabolisms
was demonstrated, which may be related to dysfunction of the OB [26]. Subsequently,
Zhou’s group used LC-MS to investigate metabolic changes in the OB of mice and, in
contrast to the previous GC-MS results, demonstrated disruption of the tryptophan-5-
hydroxytryptamine pathway [27]. These findings show that different analytical tech-
niques can highlight different metabolic perspectives, and it is necessary to adopt multiple
chromatography-MS platforms in the search for new depression biomarkers and molecular
mechanisms. A combination of GC-MS and LC-MS/MS was used to analyze metabolite
profiles in plasma, urine, and cerebrospinal fluid (CSF) of patients with treatment-refractory
depression and suicidal behavior [28]. A significant proportion of patients showed treatable
abnormalities, while no healthy controls exhibited metabolic abnormalities. A metabolome-
wide association study using two separate UHPLC-MS/MS injections and one GC/MS
injection of each sample found that the level of lauroylcarnitine in serum was decreased in
patients with depression, which may indicate fatty acid oxidation and/or mitochondrial
dysfunction in depression [29].

2.2. Metabolomics Strategies in Depression Research

Metabolomics is a branch of “omics” technology focusing on high-throughput iden-
tification and quantification of small molecule metabolites (<1500 Da). It can describe
specific multi-parameter characteristics of the heterogeneous pathophysiological mecha-
nisms underlying depression. There are three main MS-based metabolomics approaches in
depression research: untargeted, targeted, and pseudotargeted analyses (Figure 1b).

2.2.1. Untargeted Metabolomics

Untargeted methods are typically used in metabolomics studies for the detection and
discovery of small organic compounds, with high-resolution MS (HRMS) using Orbitrap
or Q-TOF instruments providing full-scan information, accurate masses, and tandem
MS details of the metabolites. Although untargeted metabolomics suffers from high
complexity, poor repeatability, and limited linear range, it remains the first choice for
the metabolite discovery stage because it is unbiased and has high coverage. Jiao et al.
used the classic untargeted metabolomics technique (UHPLC-Q-TOF-MS) to investigate the
antidepressant-like effects of Jiaotaiwan on rats [30]. Changes in the metabolite profile of rat
serum before and after administration were analyzed using multiple statistical approaches.
The most important biomarkers associated with depression were identified via principal
component analysis, partial least squares discriminant analysis, and heatmap analysis.
Pathway analysis then revealed that the therapeutic effect of Jiaotaiwan on depression
may involve the regulation of amino acid, glycerophospholipid, and energy metabolisms.
Untargeted metabolomics was also used to identify O-acetyl-L-carnitine, L-aspartic acid,
fumarate, and alanine as peripheral biomarkers in patients with MDD [31]. To clarify the
metabolites involved in specific pathways, a stable isotope-resolved metabolomics method
was developed and applied in depression research for the first time by Qin’s group [32].
The stable isotope tracer 13C6-glucose was prepared and introduced into a CUMS rat model,
and labeled metabolites were detected by LC-MS using HILIC and T3 chromatography
columns. Twenty-eight of the 78 labeled metabolites related to energy metabolism in the
model group differed significantly from the control group.
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2.2.2. Targeted Metabolomics

Targeted metabolomics based on triple-quadrupole MS (TQMS) is generally used in the
verification phase to confirm the identity of, and to quantify, compounds of interest. When
using multiple reaction monitoring (MRM) mode, targeted analysis is characterized by high
sensitivity, strong specificity, good repeatability, and wide linear range, but it is limited by its
relatively narrow coverage of metabolites. However, continuous development of ionization
efficiency, scanning rate, and other parameters has enabled the simultaneous analysis
of dozens to hundreds of metabolites by TQMS. Energy-related metabolites, carnitine,
amino acids, and biogenic amines were quantified in the ventral hippocampus of rats
with chronic mild stress (CMS) using LC-MS/MS. Glycolysis and the tricarboxylic acid
cycle were particularly involved in defining vulnerability to stress [33]. To avoid the
addition of internal standards and corresponding analogs, Chen et al. developed a targeted
metabolomics method involving relative quantification based on HILIC-MS/MS and the
quality control-based random forest signal correction algorithm [34]. Nineteen metabolites
were simultaneously determined in the serum of MDD patients, the changes in urocanic
acid being reported for the first time.

2.2.3. Pseudotargeted Metabolomics

The recently developed pseudotargeted metabolomics approach combines the bene-
fits of targeted and untargeted analyses. By extracting MRM transitions from biological
samples, pseudotargeted profiling offers higher coverage of metabolites than targeted pro-
filing. Furthermore, the use of selected ion monitoring (SRM) mode gives pseudotargeted
profiling a wider linear range and better data quality than untargeted profiling. However,
some limitations of pseudotargeted metabolomics still need to be addressed. For exam-
ple, a combination of HRMS and TQMS is usually required, some detected metabolites
cannot be identified, and it is only semi-quantitative [35]. There are many applications of
targeted and untargeted metabolomics in studies of depression, but only a few studies have
used pseudotargeted methods. In 2020, Yang et al. described a segment data-dependent
acquisition (SDDA)-based pseudotargeted approach for analysis of depressed rats treated
with liquiritin [36]. A total of 502 MRM transitions were detected, and five metabolic
pathways were found to be related to depression. This same research group subsequently
developed comprehensive pseudotargeted lipidomics methods based on SDDA and two-
or three-phase liquid extraction to elucidate the differential lipids related to depression.
Broadening the lipid coverage and addressing analyte co-elution enabled 53 and 61 dif-
ferential variables to be identified in the plasma of depressed rats in these studies [37,38].
Yang et al. also described a green and efficient ultra-high performance supercritical fluid
chromatography-MS (UHPSFC-MS/MS)-based pseudotargeted lipidomics method that de-
tected 758 lipids within 8 min [39]. This method had a shorter analytical runtime, narrower
peaks, higher sensitivity, and better separation of lipid isomers than the UHPLC-MS/MS-
based pseudotargeted method. Applications of the pseudotargeted metabolomics approach
in depression research are still in their infancy but show great potential.

2.2.4. Combined Metabolomics Strategies

Increasing attempts are being made to determine the complete metabolite profile
for depression by combining multiple MS-based metabolomic approaches. Untargeted
methods are often used as an initial screening assay in clinical biomarker discovery studies,
with only those metabolites showing significant differences being confirmed using targeted,
quantitative assays. Lee et al. profiled serum metabolites using an untargeted method,
identifying 14 metabolites with differences between MDD and control groups [40]. The
efficacy of endogenous acetylcarnitine for the diagnosis of depression and determination of
remission status was then confirmed using a targeted SRM approach. Similarly, Wang et al.
used untargeted serum metabolomics and pathway analysis to show that abnormal amino
acid metabolism in mice with chronic social defeat stress (CSDS) is related to their abnormal
behavior, and the reduction in leucine revealed by targeted metabolomics is specifically
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and positively related to the social interaction rate [41]. The antidepressant mechanism of
the Chaihu–Baishao herb pair was investigated using combined untargeted and targeted
analyses [42]. Twenty-one metabolic pathways that were synergistically regulated by
Chaihu–Baishao were identified via cortex metabolomics based on UPLC-Q-Orbitrap/MS,
and the crucial impact on the purine metabolism pathway was quantitatively confirmed by
UPLC-MS/MS in MRM mode.

3. Key Metabolic Changes in Depression

Advances in MS-based metabolomics techniques have been crucial in driving the
progress of research into depression. Recent applications of MS-based metabolomics in
depression biomarker discovery and elucidation of pathogenic mechanisms are summa-
rized below.

3.1. Monoamine Neurotransmitters

The “monoamine hypothesis” is important in the study of depression, and the devel-
opment of the majority of clinical antidepressants has been based on monoamine neu-
rotransmitters [43]. Although considerable progress has been made in this area, the
underlying mechanisms remain unclear and treatments are increasingly controversial.
Monoamine neurotransmitters can interact with other metabolic pathways in depression.
The “monoamine (5-HT)-Glutamate/GABA long neural circuit”, proposed by Li, holds
the view that monoaminergic and non-monoaminergic mechanisms form a long neural
circuit that mediates rapid antidepressant effects [44]. Li et al., using LC-MS/MS, studied
changes in neurotransmitters and their related metabolites in GABAergic, serotonergic, and
catecholaminergic pathways in the nucleus accumbens of CUMS-induced anhedonia-like
rats [45]. The level of 5-hydroxytryptamine in anhedonia-susceptible rats increased, while
dopamine did not change significantly. Xu et al. found that gut microbiota (GM) can activate
monoamines via stimulating the enteroendocrine cells to produce 5-hydroxytryptamine,
dopamine, and norepinephrine, which can affect the central nervous system. The brain
in turn can regulate gastrointestinal functions through the neuro-immune-endocrine sys-
tem [46]. Using LC-MS/MS, Zhong’s group showed that Morinda officinalis oligosaccha-
rides alleviated depression via the tryptophan-5-hydroxytryptophan-serotonin metabolic
pathway in the GM [47]. In addition, monoamine neurotransmitters are intertwined with
numerous new depression pathways, such as inflammation, oxidative stress, neurotrophins,
and neurogenesis. In-depth explanation and discussion can refer to some excellent works
and reviews [5,43].

3.2. Amino Acids

Amino acids and their metabolites are fundamental substrates and regulators in
many metabolic pathways and some have been identified as biomarkers of depression.
Untargeted GC-MS identified significant changes in L-alanine, L-glutamic acid, glycine,
L-methionine, L-phenylalanine, L-valine, L-isoleucine, and L-norleucine in the main stress-
targeted tissues of CUMS-induced mice [48]. High levels of glutamic acid, aspartic acid, and
glycine and low levels of 3-hydroxykynurenine were quantified by LC-MS in serum of MDD
patients, and the levels of glutamic acid and phenylalanine correlated with the severity of
depression [49]. Significant negative associations of the branched-chain amino acids valine
and leucine with depression were identified using untargeted metabolomics [50]. Increased
glutamate, decreased dopamine, and altered trends in γ-aminobutyric acid in the habenula
of CUMS-susceptible and -resilient rats were identified using LC-MS/MS [51].

Disruption of the tryptophan pathway plays a crucial role in MDD. Tryptophan is me-
tabolized alongside the kynurenine, serotonin, and microbial pathways. Brum et al. found
that levels of all tryptophan catabolites were reduced in the plasma of patients with MDD,
bipolar depression (BD), and schizophrenia (SCZ), but these metabolites could not be used
to distinguish between the disorders [52]. A similar conclusion was also reached by Liu
et al. [53]. Yun et al. studied the relationship between the tryptophan–kynurenine pathway
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and the painful physical symptoms of MDD [54]. Patients with such symptoms exhibited
higher kynurenine, quinolinic acid, and kynurenine/tryptophan ratios than those without.
Tryptophan metabolism is central to communication between the GM and the brain in de-
pression [55]. LC-MS/MS showed that kynurenine and 3-hydroxycaninuric acid increased
significantly along the gut–brain axis of depressive-like rats subjected to chronic restraint
stress (CRS) [56]. The tryptophan–kynurenine pathway is also linked to the inflammatory
state of patients with MDD [57]. Haroon et al. analyzed kynurenine pathway metabolites
and inflammatory markers in the plasma and CSF of depressed patients [58]. Kynurenine
and kynurenine/tryptophan in plasma, and kynurenine, kynurenic acid, and quinolinic
acid in CSF were closely related to plasma tumor necrosis factor. Pau et al. replicated
and expanded upon these findings by evaluating more metabolites and suggesting that
the levels of some peripheral kynurenine pathway metabolites might serve as proxies for
central kynurenine pathway metabolites in patients with MDD [59]. Zheng et al. also found
that C-reactive protein and kynurenic acid/quinolinic acid are independently associated
with white matter integrity in MDD [60]. Some studies indicate that therapy can affect
tryptophan metabolism. Tateishi et al. reported that levels of kynurenine, kynurenic acid,
and kynurenine/tryptophan ratio in plasma of patients with treatment-resistant depression
were unchanged after repetitive transcranial magnetic stimulation treatment [61]; however,
Ryan et al. reported that the kynurenic acid pathway was mobilized by electroconvulsive
therapy [62].

3.3. Lipids

Lipids are a broad class of biomolecules with essential roles in many cellular processes,
including molecular signal transduction, energy storage, and cell membrane formation. Ad-
vanced MS-based lipidomics methods have deepened our understanding of the lipidome
in the central and peripheral nervous systems and its associations with depression [6].
Miao et al. identified lipid networks associated with the risk of depression using un-
targeted LC-MS lipid analysis [63]. For example, lower levels of sphingomyelins and
glycerophospholipids and higher levels of lysophospholipids were associated with the
incidence and/or prevalence of depression. An LC-MS lipidomics study identified 13 dif-
ferentially expressed lipids in the plasma of adult female MDD and BD patients and could
distinguish between these conditions with medium confidence (area under the curve [AUC]
was 0.860) [64]. Similarly, a panel of 111 lipid species was capable of distinguishing SCZ
from MDD (AUC = 0.920) [65]. Glycerophospholipids are critical components of neuronal
membranes and eukaryote cellular membranes. LC-MS lipid metabolite profiling in the
hippocampus of PSD rats showed 50 key metabolites were reduced, and these were mainly
involved in glycerophospholipid metabolism (particularly cardiolipin metabolism) [66].
Glycerophospholipid metabolism was also associated with the pathogenesis of PSD in
humans [67,68]. Various lipidomics studies have confirmed that peripheral and central
glycerophospholipid metabolism disorders are involved in the pathogenesis of depres-
sion via the microbiome–gut–brain axis [69–72]. Jiang et al. used UHPLC-Q-TOF-MS to
investigate plasma metabolite biomarkers in young MDD patients and identified phos-
phatidylcholine as a female-specific biomarker (AUC = 0.957) [73]. Schumacher et al. found
that ceramide concentration in the plasma of MDD patients correlated with the severity
of MDD, and neutralization of ceramides abrogated depressive behavior in mice [74].
Untargeted UHPLC-MS metabolomics revealed that phosphatidylserine (16:0/16:1) and
phosphatidic acid (18:1/18:0) were significantly increased in plasma of MDD patients [75].

3.4. Energy Metabolism

Many studies have shown that energy metabolism is impaired in patients with depres-
sion. This may point towards new treatments for the condition. Most of the body’s energy
comes from the tricarboxylic acid cycle, oxidative phosphorylation, and glycolysis [76].
Wang et al. demonstrated, using metabolomics, that the tricarboxylic acid cycle was inhib-
ited in mice exposed to CSDS and in patients with first-episode depression [77]. The altered
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metabolism of acylcarnitines may link mitochondrial dysfunction to depression via impair-
ment of fatty acid β-oxidation [78]. Lower levels of acetyl-L-carnitine and medium- and
long-chain acylcarnitines and higher levels of L-carnitine and L-carnitine/acetyl-L-carnitine
ratio were found in the plasma of depressed patients, but these differences disappeared
after treatment [79,80]. Acylcarnitine profiles also help to distinguish different phenotypic
subtypes of MDD, such as core depression, anxious depression, and neurovegetative symp-
toms of melancholia [81]. Given that glycogen is the main energy source for most higher
organisms, Qin’s group used stable isotope-resolved metabolomics with a 13C6-glucose
tracer to reveal the blockage of the tricarboxylic acid cycle and abnormal activation of
gluconeogenesis in rats with CUMS and in corticosteroid-induced PC12 cells [82–86].

3.5. Gut Microbiota and Metabolomics

The relationship between the GM and depression is a particular focus of psychobiology
research, but the underlying molecular mechanisms remain unclear [87]. A combination
of 16S rRNA gene sequencing and MS-based metabolomics is often used to investigate
these GM mechanisms in patients with depression and in CUMS, CSDS, and CRS mouse
models [88]. Growing evidence from this toolkit of clinical studies and animal models
suggests that GM compositions (e.g., the phylum Firmicutes and genera Bacteroides and Lac-
tobacillus) and related metabolites (e.g., short-chain fatty acids and tryptophan metabolism)
are disordered in depression along the brain–gut–microbiota axis. For example, Xie et al.
found that two crucial tryptophan metabolism-related metabolites (tryptophan and 5-
hydroxytryptophan) were reduced in the feces of CSDS mice, and these compounds were
associated with Lactobacillus [89]. Zhang et al. showed that Bacteroides species enriched
in the GM of MDD patients had differing effects on the susceptibility to depressive be-
haviors [90]. This was partly explained by the different changes in tryptophan pathway
metabolites and neurotransmitters along the gut–brain axis. The relationship between
microbial metabolites in feces and neurotransmitters in the prefrontal cortex of depressed
mice was also explored using targeted metabolomics [91]. This suggested that the disrup-
tion of microbial metabolites may affect prefrontal cortex neurotransmitter levels, leading
to depressive episodes. This same phenomenon—simultaneous changes in brain and
gut metabolism in CUMS rats—was also observed by Hu et al. [92]. Our group used
whole-genome shotgun metagenomic and untargeted metabolomic methods to identify
disturbed microbial genes (in Bacteroides, Blautia, and Eubacterium) and fecal metabolites
(γ-aminobutyrate, phenylalanine, and tryptophan) in MDD patients [93]. The antidepres-
sant effect of chenodeoxycholic acid regulated by Blautia and Eubacterium has also been
studied [94]. Table 1 summarizes the GM-related metabolites that have been reported to be
associated with depression.

Table 1. Examples of metabolites associated with gut microbiota that have been reported to be
associated with depression.

Gut Microbiome
Profiling Method Gut Microbiota Metabolomics Method Metabolic Pathway Subject/Sample Type Reference

16S rRNA gene
sequencing

Phylum Firmicutes and
genus Lactobacillus

Targeted
metabolomics/UHPLC-

MS/MS
Tryptophan metabolism Mice (CSDS)/feces and

hippocampus [89]

16S rRNA gene
sequencing and
metagenomic

analysis

Lachnospiraceae

Untargeted
metabolomics/UPLC-Q-

TOF-MS and targeted
metabolomics/UPLC-

MS/MS

Glycerophospholipid metabolism
and γ-aminobutyric acid

Mice (CUMS)/feces, liver,
and hippocampus [72]

16S rRNA gene
sequencing and
metagenomic

analysis

Phylum Firmicutes

Untargeted
metabolomics/UPLC-Q-

TOF-MS and targeted
metabolomics/UPLC-

MS/MS

Glycerophospholipid
metabolism, tryptophan pathway,

and short-chain fatty acids

Mice (CRS)/feces, serum,
and hippocampus [71]
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Table 1. Cont.

Gut Microbiome
Profiling Method Gut Microbiota Metabolomics Method Metabolic Pathway Subject/Sample Type Reference

16S rRNA gene
sequencing Phylum Firmicutes

Untargeted
metabolomics/UPLC-Q-

TOF-MS
Inflammation-related metabolites MDD patients/serum and

feces [95]

16S rRNA gene
sequencing Phylum Firmicutes

Untargeted
metabolomics/GC-MS

and LC-MS
Glycerophospholipid metabolism

Cynomolgus macaque of
depression/feces,

peripheral, and brain
tissue

[69]

16S rRNA gene
sequencing

Genus Allobaculum and
family Ruminococcaceae

Targeted
metabolomics/LC-

MS/MS and
GC-MS

Acetic acid, propionic acid,
pentanoic acid, norepinephrine,

5-hydroxy indole acetic acid, and
5-hydroxy tryptamine

Mice (CRS)/feces and
hypothalamus [96]

16S rRNA gene
sequencing

Ten genera (most of them
belonged to phylum

Firmicutes)

Targeted
metabolomics/GC-MS

and untargeted
metabolomics/LC-Q-

Orbitrap/MS

Short chain fatty acids Rats (PSD)/feces and
prefrontal cortex [97]

16S rRNA gene
sequencing

Phylum Firmicutes, genus
Blautia, and Streptococcus

Untargeted
metabolomics/GC-MS Lipid metabolism Rats (PSD)/feces [98]

16S rRNA gene
sequencing

Actinobacteria and
Bacteroidetes

Untargeted
metabolomics/LC-Q-

Orbitrap/MS and
GC-MS

Glycerophospholipids Mice (CSDS)/feces and
prefrontal cortex [70]

Whole-genome
shotgun

metagenomic

Genus Bacteroides, genera
Blautia, and Eubacterium

Untargeted
metabolomics/GC-MS

Amino acid metabolism
(γ-aminobutyrate, phenylalanine,

and tryptophan)
MDD patients/feces [93]

Viral metagenomics Microviridae, Podoviridae,
and Siphoviridae

Targeted
metabolomics/UPLC-

MS/MS
Tryptophan metabolism Mice (CRS)/feces [99]

16S rDNA
amplification
sequencing

Deferribacteres,
Proteobacteria,

Verrucomicrobia,
Actinobacteria,
Desulfovibrio,

Clostridium_IV,
Helicobacter,

Pseudoflavonifractor, and
Akkermansia

Untargeted
metabolomics/LC-

MS/MS

Lipid metabolites,
glycerophospholipid metabolism

Pathway, and the retrograde
endocannabinoid signaling

pathway

Atherosclerosis
co-depression mice/feces [100]

16S rRNA gene
sequencing

Turicibacteraceae,
Turicibacterales, and

Turicibacter

Targeted
metabolomics/UPLC-

MS/MS
Bile acids metabolism MDD patients/blood and

feces [101]

Metagenomics
sequencing

Ruminococcus bromii,
Lactococcus chungangensis,

and Streptococcus
gallolyticus

Targeted
metabolomics/HPLC-

MS/MS

Lipid, vitamin,
and carbohydrate metabolism

MDD patients/blood and
feces [102]

16S rRNA gene
sequencing Bacteroides

Untargeted
metabolomics/UPLC-Q-

TOF-MS and targeted
metabolomics/UPLC-

MS/MS

Tryptophan pathway metabolites
and neurotransmitters

MDD patients/feces,
serum, and tissue samples [90]

16S rRNA gene
sequencing

Phylum Firmicute,
Bacteroidetes, genus

Faecalibacterium, Roseburia,
Subdoligranulum, and

Agathobacter

Untargeted
metabolomics/UPLC-Q-

TOF-MS

Alpha-linolenic acid metabolism,
biosynthesis of unsaturated

fatty acids, ATP-binding
cassette transporters, and bile

secretion

Systemic lupus
erythematosus
patients with

depression/feces

[103]

16S rRNA gene
sequencing

Streptococcus,
Phascolarctobacterium,

Akkermansia, Coprococcus,
and Streptococcus

Targeted
metabolomics/LC-

MS/MS

Indole-3-
carboxyaldehyde MDD patients/feces [104]

16S ribosomal RNA
gene sequencing

Family Lachnospiraceae,
Muribaculaceae, and

Oscillospiraceae

Untargeted
metabolomics/LC-Q-

Orbitrap/MS
Lipid and amino acid metabolism Rats (CUMS, CRS, SD, and

LH)/feces [88]

16S rRNA gene
sequencing

Alistipes indistinctus,
Bacteroides ovatus, and
Alistipes senegalensis

Untargeted
metabolomics/LC-Q-

Orbitrap/MS

D-pinitol, indoxyl sulfate,
trimethylaminen-oxide, and 3
alpha, 7 alpha-dihydroxy-12-

oxocholanoic
acid

Rats (CUMS)/feces [105]

Abbreviations: major depressive disorder (MDD), chronic social-defeat stress (CSDS), chronic unpredictable
mild stress (CUMS), chronic restraint stress (CRS), post-stroke depression (PSD), social defeat (SD), and learned
helplessness (LH).
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4. Metabolomics in Antidepressant Treatment Response

Given the phenotypic complexity of patients’ responses to antidepressants, clinical
symptoms and “trial-and-error” approaches are insufficient to guide treatment selection
for individual patients. Pharmacotherapy is generally the first-choice treatment for MDD.
Crucially, the metabolic status of MDD patients exhibiting a response to pharmacother-
apy (including remission) appears to differ from non-responsive patients [106]. Pharma-
cometabolomics (the application of metabolomics in the study of drug effects) has been
used to map the effects of antidepressants on metabolite profiles and has provided new
insights into the mechanisms of action of various therapies. Some of the studies that have
evaluated metabolite changes in animal models and clinical patients following antidepres-
sant treatment are summarized in Table 2. Pharmacological medications have alleviated
abnormalities of amino acid, energy, and lipid metabolisms and GM-derived metabolites
induced by depression.

Table 2. Applications of metabolomics in the analysis of treatments for depressive disorders.

Treatment Subject/Sample Type Analytical Platform Metabolic Pathway Reference

Western medicine

Citalopram,
escitalopram MDD patients/plasma

Targeted
metabolomics/LC-MS/MS and
flow-injection analysis-MS/MS

Mitochondrial energetics
(acylcarnitine metabolism,

transport, and β-oxidation)
and lipid

membrane remodeling

[107]

Escitalopram MDD patients/plasma Targeted
metabolomics/LC-MS/MS Oxysterols [108]

Escitalopram MDD patients/plasma and
feces

Untargeted
metabolomics/GC-MS Amino acids and fatty acids [109]

Clomipramine
Rats with ultrasound model
of depression/frontal cortex

and hippocampus

Targeted
metabolomics/LC-MS/MS

Alanine, aspartate, and
glutamate pathways [110]

Fluoxetine
hydrochloride Depression patients/serum Untargeted

metabolomics/UPLC-Q-TOF-MS

Amino acid metabolism,
energy metabolism, and lipid

metabolism
[111]

Ketamine Treatment-resistant
depression patients/plasma

Targeted
metabolomics/LC-MS/MS and
flow injection analysis-MS/MS

Lipid metabolism [112]

Ketamine Mice (CVS)/hippocampus
and prefrontal cortex

Untargeted
Metabolomics/UPLC-Q-

Orbitrap/MS

Sphingolipids, glycerolipids,
and

fatty acyls
[113]

Ketamine Humans/plasma and CSF,
mice/plasma and brain

Targeted
metabolomics/LC-MS/MS

LAT1, IDO1, NAD+, the nitric
oxide (NO) signaling pathway,

and sphingolipid rheostat
[114]

Traditional Chinese
medicine

Bupleurum
Chinense

DC-Paeonia
Lactiflora Pall Herb

Pair

Rats (CUMS)/cortex

Untargeted
metabolomics/UPLC-Q-

Orbitrap/MS and targeted
metabolomics/UPLC-MS/MS

Purine metabolism [42]

Chaigui Granules Rats (CUMS)/peripheral
blood mononuclear cell

Untargeted
metabolomics/UPLC-Q-

Orbitrap/MS

Purine
metabolism [115]

Xiaoyao San Rats (CUMS)/hippocampus Untargeted metabolomics/UPLC-
Q-Orbitrap/MS Glucose catabolism [116]

Xiaoyao San Rats (CUMS)/hippocampus Untargeted metabolomics/GC-MS

D-glutamine and D-glutamate
metabolism, arginine

biosynthesis and alanine,
aspartate, and glutamate

metabolism

[117]

Xiaoyao San Depressed patients/plasma Untargeted metabolomics/GC-MS Oxalic and stearic acids [118]

Xiaoyao San Rats (CUMS)/liver Untargeted metabolomics/UHPLC-
Q-Orbitrap/MS

Glutamine, glutamate, and
energy metabolism [119]

Xiaoyao Pills Rats (CUMS)/feces, brain,
and plasma Untargeted metabolomics/GC-MS

Metabolites from gut
microbiota (benzoic acid,

liquiritigenin, glycyrrhetinic
acid, and saikogenin D) and
fatty acids amide Hydrolase

[120]
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Table 2. Cont.

Treatment Subject/Sample Type Analytical Platform Metabolic Pathway Reference

Traditional Chinese
medicine

Jia Wei Xiao Yao
San Mice (CRS)/brain

Untargeted
metabolomics/LC-TOF-MS and

GC-MS
Purine metabolism [121]

Crocetin Mice (CUMS)/serum,
tissues, and feces

Targeted
metabolomics/UPLC-Q-TOF/MS

Intestinal flora and tryptophan
metabolism [122]

Schisandrin Mice (LPS)/feces Targeted metabolomics/GC-MS/MS Short chain fatty acid [123]

Tongxieyaofang
polysaccharide

Mice (CUS)/colon
microflora

Untargeted
metabolomics/UPLC-Q-TOF-MS

Bacterial
community and bile acid

metabolism
[124]

Morinda
officinalis

oligosaccharides

Rats (CUMS)/plasma, brain,
and feces

Targeted
metabolomics/HPLC-MS/MS

Gut microbiota, serotonin, and
5-hydroxytryptophan [47]

Chaihu-Shugan-
San

Mice (CUMS)/serum and
liver

Targeted metabolomics/UHPLC-
MS/MS

Gut microbiota, bile acids
hyocholic acid, and

7-ketodeoxycholic acid
[125]

Zhi-Zi-Chi
decoctions

Rats (CUMS)/cecal contents,
ileum, and hippocampus

Targeted metabolomics/LC-MS/MS
and UHPLC-Q-TOF/MS Butyrate [126]

Banxia Xiexin
decoction

Atherosclerosis
co-depression

Mice/hippocampus and
prefrontal cortex tissues

Untargeted
metabolomics/UPLC-Q-Orbitrap/MS

Glycerophospholipid
metabolism,

lysophosphatidylcholine, and
LPC (20:4) (rep)

[127]

Paeoniflorin Rats (CUMS)/urine Untargeted
metabolomics/UPLC-Q-Orbitrap/MS Citrate cycle [128]

Jiaotaiwan Rats (CUMS)/serum Untargeted
Metabolomics/UPLC-Q-TOF/MS

Amino acid,
glycerophospholipid, and

energy
metabolism

[30]

Albiflorin Mice (CUMS, OBX, and
LPS)/hippocampus

Targeted
metabolomics/UPLC-MS/MS

Phospholipid and tryptophan
metabolism [129]

Xiang-Su
Volatile Oil

Menopausal rats by
ovariectomy

(CUMS)/plasma

Untargeted
metabolomics/GC-MS

Phenylalanine, tyrosine, and
tryptophan

biosynthesis, tyrosine, and
tryptophan metabolism

[130]

Huang-lian
Jie-du Decoction

Mice (CUMS)/hippocampus,
cortex, striatum, and

amygdala

Targeted
metabolomics/LC-MS/MS

Tryptophan
metabolism [131]

Berberine
Mice (CUMS)/hippocampus,

prefrontal cortex, striatum,
and amygdala tissues

Untargeted
metabolomics/UPLC-Q-TOF/MS and

targeted metabolomics/LC-MS/MS
Tryptophan metabolism [132]

Berberine Rats (CUMS)/feces Targeted metabolomics/GC-MS Short chain fatty acids and
monoamine neurotransmitters [133]

Quercetin Rats (CUMS)/liver Untargeted
metabolomics/UPLC-MS

Methionine metabolism,
bile acid metabolism, and

phosphatidylcholine
biosynthesis

[134]

Acanthopanax
senticosus Mice (CUMS)/liver Untargeted

metabolomics/GC-MS

Glycine, serine, threonine,
starch, and sucrose

metabolism
[135]

Radix
Bupleuri-Radix
Paeoniae Alba

Rats (CUMS)/serum Untargeted
metabolomics/UPLC-Q-Orbitrap/MS

Energy, amino acid,
and lipid metabolism [136]

Bupleurum
chinense

DC-Paeonia
lactiflora Pall

Rats (CUMS)/serum Untargeted
metabolomics/UPLC-Q-Orbitrap/MS Saikogenin F and benzoic acid [137]

Baihe-Dihuang
Tang Rats (CUMS)/brain

Untargeted
metabolomics/UPLC-Q-TOF/MS and

targeted metabolomics/LC-MS/MS

L-glutamate, xanthine, and
adenine [138]
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Table 2. Cont.

Treatment Subject/Sample Type Analytical Platform Metabolic Pathway Reference

Other

L-Theanine Rats (CUMS)/serum
and hippocampal

Untargeted
metabolomics/UPLC-Q-TOF-MS and

targeted
metabolomics/HILC-MS/MS

Amino acid metabolism and
lipid metabolism [139]

Ferulic acid and
feruloylated

oligosaccharides
Mice (LPS)/serum Untargeted

metabolomics/UPLC-Q-Orbitrap/MS

Phenylalanine, tyrosine, and
tryptophan biosynthesis,

phenylalanine, and caffeine
metabolism

[140]

Dl-3-n-
butylphthalide Mice (CSDS)/brain Targeted

metabolomics/LC-MS/MS
Energy

metabolism [141]

Edaravone
Mice (CSDS)/hippocampal

and medial
prefrontal cortex

Targeted
metabolomics/LC-MS/MS

Energy
metabolism [142]

Bifid triple viable
capsule

Rats (CUMS)/serum
and hippocampal

Untargeted
metabolomics/UPLC-Q-TOF-MS

Biosynthesis of unsaturated
fatty acids,

glycerophospholipid,
linoleic acid, and arachidonic

acid metabolism

[143]

Bifidobacterium
breve CCFM1025

MDD patients/serum and
feces

Targeted
metabolomics/UHPLC-MS/MS

Gut microbiome and
tryptophan metabolism [144]

Akkermansia
muciniphila Mice (CRS)/serum

Untargeted
metabolomics/UHPLC-Q-Orbitrap

MS

Hormone and
neurotransmitter [145]

Lactobacillus Depression mice induced by
Ampicillin/cecum content

Targeted metabolomics/GC
-MS/MS Short-chain fatty acids [146]

Rifaximin Rats (CUMS)/hippocampus Targeted metabolomics/LC
-MS/MS Tryptophan metabolism [147]

Bacillus
coagulans

Unique IS-2
Rats (CUMS)/plasma Targeted

metabolomics/UPLC-Q-TOF-MS

L-Tryptophan, L-kynurenine,
kynurenic-acid,

3-hydroxyanthranilic acid,
acetate, propionate, and

butyrate

[148]

Aerobic exercise Rats (CUMS)/serum Untargeted
metabolomics/UPLC-Q-Orbitrap/MS

Amino acid and energy
metabolism [149]

Electroconvulsive
therapy Depressed patients/plasma Targeted metabolomics/LC-MS Tryptophan and kynurenine

metabolites [62]

Repetitive
transcranial

magnetic
stimulation

Mice (CUMS)/stool, plasma,
prefrontal cortex, and

hippocampus
Targeted metabolomics/GC-MS Polyunsaturated fatty acids [150]

Repetitive
transcranial

magnetic
stimulation

Treatment-resistant
depression patients/plasma Targeted metabolomics/LC-MS Kynurenine metabolites [61]

Abbreviations: major depressive disorder (MDD), chronic unpredictable mild stress (CUMS), chronic restraint
stress (CRS), chronic unpredictable stress (CUS), chronic social defeat stress (CSDS), chronic variable stress (CVS),
olfactory bulbectomy (OBX), lipopolysaccharide (LPS).

4.1. Western Medicines

Several notable western medicines have contributed significantly to the management
of depression, although their mechanisms of action are not fully understood. Escitalopram
is one example. It is a commonly used antidepressant of the selective serotonin reuptake
inhibitor (SSRI) class, but the response varies between individuals. The mechanism of
citalopram/escitalopram was studied using metabolomics targeted at 180 metabolites,
and changes in the profiles of acylcarnitine, lipids, and amino acids indicated that mito-
chondrial energetics and lipid membrane remodeling are implicated in the SSRI treatment
response [107]. Recently, our group conducted an LC-MS/MS study on the relation-
ship between plasma oxysterol levels and the effectiveness of escitalopram antidepres-
sant treatment. Oxysterols, especially 27-hydroxycholesterol, decreased in responders
and increased in non-responders following escitalopram treatment. This suggests that
27-hydroxycholesterol has potential as an escitalopram response indicator during MDD
treatment [108]. We also explored the role of the GM in determining escitalopram treatment
efficacy in MDD patients [109]. Such microbiota-centered perspective could potentially
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improve antidepressant efficacy in clinical practice. The antidepressant effects of ketamine
have received increasing attention since the United States Food and Drug Administration
approved (S)-ketamine nasal spray in March 2019 [151,152]. Zhou et al. analyzed changes
in lipid compositions in mice with induced chronic variable stress (CVS) and found that
disruption of sphingolipids, glycerolipids, and fatty acyls was partially corrected by ad-
ministration of (S)-ketamine [113]. MS-based metabolomics has been used to analyze the
efficacy of various synthetic antidepressants and has made a significant contribution to
improving the treatment of depression.

4.2. Traditional Chinese Medicines

Traditional Chinese medicines (TCMs) exhibiting desirable antidepressive effects have
gradually attracted more attention because of their strong safety profiles. However, due
to the multi-component, multi-target, and multi-channel nature of TCMs, elucidation of
their mechanisms of action is challenging. MS-based metabolomics provides a new way
to elucidate these mechanisms holistically [153]. For the first time, in 2021, a combination
of pharmacodynamics and urine metabolomics based on UPLC-Q-TOF-MS was used to
investigate the antidepressant effect of Millettia speciosa Champ [154]. L-isoleucine, sebacic
acid, and allantoin were identified as potential pharmacodynamic biomarkers related
to the efficacy of this TCM. Similarly, LC-MS-based metabolomics of peripheral blood
mononuclear cells (PBMCs) was used to investigate the antidepressant mechanism of
Chaigui granules [115]. Their antidepressant effects were attributed to improved immune
function and regulation of the purine metabolic pathway in PBMCs. The metabolomics
analysis of TCMs in Table 2 exhibits a systemic metabolic shift in amino acids (such as
alanine, aspartate, glutamate, tryptophan, etc.), organic acids (oxalic acids, stearic acids,
bile acid, etc.), and purine, phospholipid, etc. These differential metabolites are mainly
involved in amino acid metabolism, lipid metabolism, energy metabolism, gut microbiota
metabolism, etc. Such integration of metabolomics with other analytical strategies has
provided new insights into the mechanisms of many TCMs and promoted their use as
modern treatments for depression.

4.3. Other Treatments

Given the high proportion of refractory or treatment-resistant cases of depression,
there is an urgent need for the development of new antidepressants. Metabolomics is an
effective strategy in this field. L-theanine is a bioactive component of green tea and a food
additive with health benefits. Zhu et al. systematically explored the antidepressant effects
of L-theanine in a CUMS rat model using LC-MS/MS and enzyme-linked immunosorbent
assay (ELISA) techniques [139]. Untargeted UPLC-Q-TOF-MS highlighted 28 metabolites
that changed significantly during L-theanine treatment, while targeted HILIC-MS/MS
identified these key amino acids and neurotransmitters and, consequently, their related
pathways. By clarifying these preventive mechanisms, this study laid a foundation for
the use of L-theanine in the treatment of children and adolescents with depression. Some
probiotics also exhibit antidepressant effects and have fewer side effects, have less of an
associated stigma, and are less addictive than conventional antidepressants [155]. The
therapeutic effect of bifid triple viable probiotic capsules was evaluated in a CUMS rat
model, and untargeted metabolomics revealed that the observed reduction in depression-
like behavior may be related to endothelin-1 or CREB signaling [143].

5. Perspectives and Conclusions

MDD is a highly heterogeneous condition, but the use of metabolomics to identify
specific biological characteristics of clinical sub-phenotypes is expected to improve per-
sonalized diagnostic capabilities. Brydges et al. used three metabolomics platforms to
evaluate the correlation between metabolomic markers and three symptom dimensions
of MDD (melancholic, anxious distress, and immunometabolic) [156]. These symptoms
exhibited specific and minimally overlapping metabolomic signatures, suggesting that the



Molecules 2023, 28, 7430 14 of 22

multifaceted disruption of the delicate balance between the GM, dietary lipids, and host
lipid metabolism may be a cause of specific MDD symptoms. It is clear that further detailed
MS metabolomics studies of the various subtypes of depression are likely to improve
clinical diagnosis.

In addition to subtypes of depression, increasing attention has been paid to metabolomics
-based research of comorbid depression. Investigation of comorbid depression in mice
under social fear conditions suggested that changes in sphingolipid metabolism in the brain
may be related to the short- and long-term pathophysiology of social anxiety disorder [157].
The effects and mechanisms of Jiaotaiwan treatment of diabetes mellitus accompanied by
depression, and of albiflorin and paeoniflorin in the treatment of cancer-related depression,
have been evaluated using MS-based metabolomics, providing greater understanding of
the mechanisms of antidepressant therapies [158,159]. Metabolomics is expected to be
increasingly used in research into various diseases complicated by depression.

Due to the complexity of the pathogenesis of MDD, the integration of metabolomics
with other “omics” technologies is becoming increasingly necessary. Recent studies have
combined genomics and metabolomics to characterize various aspects of early- and adult-
onset MDD, including adult MDD suicide attempts [160–163]. Integrated proteomics and
metabolomics were used to explore antidepressant treatments in animal models and MDD
patients [164,165]. Multi-omics methods will improve our understanding and treatment
of MDD and enhance prevention strategies, enabling the considerable advancement of
precision medicine [166].

Recent advances in MS-based metabolomics platforms have facilitated a more inten-
sive study of depression. This review summarizes the main findings of the most recent
studies in this field focusing on the applied platforms (LC-MS, GC-MS, SFC-MS, etc.) and
strategies (untargeted, targeted, and pseudotargeted approaches). Key metabolic changes
(in monoamine neurotransmitters, amino acids, lipids, energy metabolism, and GM-related
metabolism) and the application of metabolomics in antidepressant treatments in western
medicines and TCMs are also reviewed. Depression sub-phenotypes, comorbid depression,
and multi-omics approaches are also discussed. We expect this review to stimulate new
developments in MS-based metabolomics in the field of depression research.
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