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SUPPLEMENTARY INFORMATION 
 
Supplementary Note S1, Elaborating interphase regions 

The expressions for functions 𝛷  (Equation (6) in the main text) were obtained using the relations 

given in Ref. [12]: 𝛷  =  𝛷 (𝜅 , 𝜅 )  =     ,     (S1) 

𝛷  =  𝛷 (𝛼, 𝜅 )  =  ( )  ( )( )  +  ( )  ( )( ) ,  (S2) 

 𝛷  =  𝛷 (𝜅 )  =     ,    (S3) 

 𝛷  =  𝛷 (𝛼, 𝜅 )  =  ( )  ( )( )  +  ( )  ( )( ) ,  (S4) 

where 𝑆 (𝛼) are the components of the 2-rank Eshelby tensor [S1]: 𝑆 (𝛼)  =  𝑆 (𝛼)  =   ( ) / arccos(𝛼)  −   𝛼(1 − 𝛼 ) / , 𝑖𝑓 𝛼 < 1   (S5) 𝑆 (𝛼)  =   𝑆 (𝛼)  =   ( ) / 𝛼(𝛼 − 1) /  −  arccosℎ(𝛼) , 𝑖𝑓 𝛼 > 1  (S6) 𝑆  =   1 −  𝑆  ,     (S7) 

where 𝛼 =  𝐿 /𝐿  is the thickness-to-length aspect ratio of the spheroid-shaped graphene 

nanoplateletelets. 𝜅  is unknown thermal conductivity of the composite, and 𝜅  is intrinsic thermal 

conductivity of the epoxy matrix. 

Functions 𝐹𝐾  and 𝐹𝐾  (𝑛 = 1,2) describe effective thermal conductivities of free (i.e. 

unassembled) particles surrounded by interphase polymer layers. For free anatase particles 𝜅 ,  =   𝐹𝐾  =  𝐹𝐾 (ℎ , 𝜅 , 𝑟 )  =  𝐾𝑏 (ℎ , 𝑟 ) ∙ 1 +    ( ) ∙    ( , )( , )  ( )∙    ( , ) , (S8) 



where 𝜅  is the intrinsic thermal conductivity of anatase nanoparticles. Anatase-epoxy interphase layer is 

characterized by its thickness ℎ , volume portion 𝜑 , Kapitza thermal boundary resistance 𝑟  and 

thermal conductivity 𝐾𝑏  𝐾𝑏 (ℎ , 𝑟 )  =  ,     (S9) 𝜑 (ℎ ) =  1 − (    )  ,    (S10) 

where 𝑅  is average radius of the particles and the factor 1/3 in the above equations is due to 𝑆 = 1/3 for 

spherical particles. For free graphene nanoplatelets 𝐹𝐾  =  𝐹𝐾 𝛼, ℎ , 𝜅 , 𝑟        =  𝐾𝑏 (ℎ , 𝑟 ) ∙ 1 +    ( ) ∙    ( , )( , )  ( )∙ ( )∙    ( , ) ,  (S11) 

where 𝜅 , 𝜅  and 𝜅  are intrinsic in-plane (𝑛 = 1,2) and cross-plane (𝑛 = 3) thermal conductivities of 

graphene nanoplatelets. 

Graphene-epoxy interphase layer is characterized by its thickness ℎ , volume portion 𝜑 , Kapitza 

thermal boundary resistance 𝑟  and thermal conductivity 𝐾𝑏  𝐾𝑏 (ℎ , 𝜅 )  =   ,     (S12) 

𝜑 (ℎ )  =  1 − ∙∙  ,    (S13) 

where 𝐿 = 𝐿 = 5 μm and 𝐿 = 50 nm are average sizes of the graphene nanoplatelets in the 𝑋, 𝑌 and 𝑍 

direrctions giving 𝛼 = = 0.01. 

Finally, 𝛷𝐾  are effective thermal conductivities of self-assembled (hybrid) graphene@anatase 

particles encapsulated in its interphase layer 𝜅 ,  =  𝛷𝐾  =  𝛷𝐾 (𝛼, ℎ , ℎ , 𝑝 , 𝑝 , 𝐶 , 𝐶 , 𝑟 , 𝑟 )  =   𝐾𝑏 (ℎ , 𝑟 ) ∙ 1 +  ( , , , , , ) ∙ ( , , , , , ) ( , )( , ) ( , , , , , )∙ ( )∙ ( , , , , , ) ( , )  , (S14) 

where 𝐹𝜅  are effective thermal conductivities of anatase-covered graphene nanoplatelets (𝐹𝜅  – in-

plane and 𝐹𝜅  – cross-plane conductivities) 𝐹𝜅  =  𝐹𝜅 (𝛼, 𝑝 , 𝑝 , 𝐶 , 𝐶 , 𝑟 )  =   𝐾𝑏 (𝑝 , 𝑝 , 𝐶 , 𝐶 , 𝑟 ) ∙ 1 + ( , , , ) ∙ ( , , , , )( , , , , ) ( , , , )∙ ( )∙ ( , , , , , )  , (S15) 

where 𝑝 ,  are the mass portions of free (unassembled) filler’s “1” (i.e. graphene) and “2” (i.e. anatase), 
respectively, and 𝐶  and 𝐶  are the mass concentrations of the fillers. 

Here, anatase covering is characterized by effective thickness ℎ  ℎ  =  ℎ (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =  ∙ ∙ ∙ ,   (S16) 

where 𝑠  and 𝑣  are the surface area and volume of the single graphene nanoplatelet.  

Next, the thermal interaction between graphene and anatase covering is described by Kapitza 

thermal boundary resistance 𝑟  and effective thermal conductivity 𝐾𝑏  𝐾𝑏 (𝑝 , 𝑝 , 𝐶 , 𝐶 , 𝑟 )  =  ( , , , ).    (S17) 



Also, 𝜑  is the volume fraction of anatase in the hybrid particle 𝜑  =  𝜑 (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =  1 − ∙( , , , ) ∙ ( , , , )  ,   (S18) 

whereas 𝜑  is the volume fraction of interphase polymer layer surrounded the hybrid particle: 𝜑  =  𝜑 (ℎ , ℎ , 𝑝 , 𝑝 , 𝐶 , 𝐶 )  =  1 − ( , , , ) ∙ ( , , , )( , , , ) ∙ ( , , , )  .  (S19) 

The above expressions for effective thermal conductivities for graphene, anatase and hybrid particles 

have been written by using the Nan-Birringer-Clarke-Gleiter model [105].  

In writing Equation S16, the underlying assumption is that anatase nanoparticles uniformly cover 

graphene nanoplatelets, thus forming a solid layer with effective thickness of ℎ . The expression for ℎ  

can easily be derived from such parameters as masses (𝑚 , ), volumes (𝑣 , ), surface areas (𝑠 , ) and mass 

densities (𝜌 , ) of the nanoparticles. Taking into account that 𝑚 ,   =   𝜌 , ∙ 𝑣 ,  , 

the total number of anatase nanoparticles per single graphene nanoplatelet can be calculated as  

𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =   ( )( )  =   ∙ ∙ ∙ .   (S20) 

Then, assuming the volume of the covering layer is 𝑣 = ℎ 𝑠 , one can equate 𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) ∙ 𝑣    =   ℎ (𝑝 , 𝑝 , 𝐶 , 𝐶 ) ∙ 𝑠 .   (S21) 

From Equation S21 we can obtain the relation to calculate ℎ  ℎ (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =  𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) ∙ .   (S22) 

Inserting Equation S20 into Equation S22, one gets Equation S16. 

If the nanoplatelet is considered as a rectangular parallelepiped, then its volume and surface area 

are given by 𝑣  =   𝑣 ,  =   𝐿 ∙ 𝐿 ∙ 𝐿 , 𝑠  =   𝑠 ,  =   2(𝐿 ∙ 𝐿 + 𝐿 ∙ 𝐿 + 𝐿 ∙ 𝐿 ).   (S23) 

When it has a shape of an oblate spheroid (  𝐿 = 𝐿 > 𝐿 ) one can find considering   𝐿 , 𝐿  and 𝐿  as 

principal diameters [S2]: 𝑣  =   𝑣 ,  =   (𝜋/6) ∙ 𝐿 ∙ 𝐿 ∙ 𝐿  𝑠  =   𝑠 ,  =   (𝜋/4) ∙ 𝐿 ∙ 1 + ∙ arctanh (𝑒)    (S24) 

where 𝑒 is the spheroid’s excentricity 𝑒 =  √1 −  𝛼    =   1 −   . 
In our experiments 𝛼 = 0.01 and 𝑒 = 0.99995. 

Strictly speaking, Equation S21 is only accurate for a case of parallelepiped-shaped nanoplatelets. 

But when the nanoplatelet is spheroid-shaped, ℎ  should be evaluated by using the relation 



𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) ∙ 𝑣    =   𝑣 , (𝐿 + 2ℎ , 𝐿 + 2ℎ , 𝐿 + 2ℎ ) − 𝑣 , (𝐿 , 𝐿 , 𝐿 ) (S25) 

where v1,2 is determined by Equations S23 and S24. 

In order to describe the case when there is no interphase interaction between the fillers, one should 

put 𝑝 = 𝑝 = 1 using Equations S26 and S27 instead of Equations S2and S3: 𝛷  =  𝛷 𝛼, 𝜅 , 𝜅 , 𝜅  =    ( )  +    ( ) ,  (S26) 

 𝛷  =  𝛷 (𝜅 , 𝜅 )  =     .    (S27) 

 

Treating mechanical properties of hybrid graphene@anatase nanosheets: Soft- and hard-sphere 

approximations 

Different architectures of hybrid MLG@TiO2 nanosheets configured in a sandwich-like structure are shown 

in Figure 4 (main text). Using the data given in Table 1 (main text), one can easily evaluate surface areas 

(𝑠 , ) volumes (𝑣 , ) and masses (𝑚 , ) of the filling particles. Numerical calculations give 𝑠 , = 5.10×10-11 

m2, 𝑣 , = 1.25×10-18 m3, and 𝑣 , /𝑠 , = 24.51 nm (for parallelepiped-shaped nanoplatelets); 𝑠 , ≈ 

3.929×10-11 m2, 𝑣 , ≈ 6.55×10-23 m3, and 𝑣 , /𝑠 , ≈ 16.66 nm (for spheroid-shaped nanoplatelets); 𝑠 =4𝜋𝑅 ~ 7.85×10‒15 m2, 𝑣 = 𝜋𝑅 ~ 8.18×10‒24 m3; 𝑚 ,   =   𝜌 , ∙ 𝑣 , ~ 2.83×10‒12 g (parallelepiped), 𝜌 , ∙𝑣 , ~ 1.48×10‒12 g (spheroid), 𝑚   =   𝜌 , ∙ 𝑣 ~ 2.54×10‒16 g. Here, we take   𝐿 = 𝐿 = 5.0×103 nm and 𝐿 = 

50.0 nm as average values for nanoplatelete’s sizes evaluated from the SEM-images [14].  

These calculations show that the thickness ℎ  of the layer covering a spheroid will be as much as 

24.51/16.66 ≈ 1.47 times less than that on a parallelepiped, provided that other conditions remain the 

same. The difference in the volume-to-surface area ratio between a parallelepiped and an spheroid is due to that the 

both surface area and volume decrease (s1,2/s1,1 ≈ 0.7704, v1,2/v1,1 ≈ 0.5236) then a parallelepiped is transformed 

into an oblate spheroid of the same linear dimensions. Also, when 𝑝 = 𝑝 = 𝑝 and 𝐶 = 𝐶 = 𝐶, one finds from 

Equation S20 that 𝑁 (𝑝, 𝑝, 𝐶, 𝐶) = 𝑁 , ≈ 11149 (for parallelepiped-shaped nanoplatelets) or 𝑁 (𝑝, 𝑝, 𝐶, 𝐶) = 𝑁 , ≈ 5838 (for spheroid-shaped nanoplatelets). 

We note that the development of the concept of “the effective thickness” follows a somewhat 

tortuous path. Below we give a brief explanation of this issue within the context of our approach. As 

mentioned above, Equation S21 implies that anatase nanoparticles form a uniform solid layer on the 

surface of a nanoplatelet. In other words, the TiO2 nanoparticles are treated as “soft spheres” capable of 

spreading out over the surface of graphene nanoplatelet like a viscid oil and thus forming a uniform solid 

covering. In the opposite case of “hard spheres”, Equation S21 is not valid and an estimate of the effective 

layer thickness needs further clarification and is hereafter referred to as 𝐻 , . From a practical point of 

view, it is important to predict permissible variation ranges for mass concentrations 𝐶  and 𝐶 , and 

related values of volume concentrations 𝜑 (𝐶 , 𝐶 ) (see Supplementary Note S2) where the assembling 

effect can be effectively used for tailoring composite’s thermal properties. 



Simplistically, assembling should be significant on the condition that TiO2 does not fully cover the 

surface of MLGs. The largest possible values of the mass concentrations can then be directly evaluated. In 

the hard-sphere approximation, the maximal allowed number (𝑁 ) of the TiO2 nanoparticles with the 

radius of 𝑅  which can be packed tightly over a flat or curved MLG surface having the area of 𝑠  is given 

by 𝑁 = .       (S28) 

Numerical calculations give 𝑁 = 𝑁 = 2.0400×104 (or 𝑁 = 𝑁 = 1.5716×104) for parallelepiped-shaped 

(or spheroid-shaped) nanoplatelets, so that 𝑁 /𝑁 ≈ 0.7704. These 𝑁  particles cover (or, speaking 

somewhat loosely, “shade”) the area of 𝑠  𝑠 = 𝑁 ∙ 𝜋𝑅 = 𝑠 . 

Thus, when the condition 𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) = 𝑁      (S29) 

is satisfied, 𝐻 ,  is equal to 2𝑅 = 50 nm and the portion 𝛥𝑠 of the surface area 𝑠  𝑠 − 𝑠 = 1 − 𝑠 ≈ 0.21𝑠  

remains uncovered (“unshaded”). For the comparison, when Equation S29 is met, ℎ  can be evaluated as ℎ ,  from 4𝜋3 𝑅 ∙ 𝑁  =  𝑠 ∙ ℎ ,  

as ℎ ,  =   𝑅  ≈ 26.18 nm 

independent of the way of modeling nanoplatelet’s shape, i.e. ℎ , < 2𝑅 . 

When 𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) > 𝑁 , it may be assumed that the ensemble of 𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) spherical 

particles with radii 𝑅  can build 𝑁𝐿  layers given by 𝑁𝐿 (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =   ( , , , ).    (S30) 

The effective thickness 𝐻 ,  of the tightly-packed covering can amount to 𝐻 , (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =   2𝑅 + (2𝑅 − 𝛿 ) ∙ 𝑁𝐿 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) − 1  =   2𝑅 · 𝑁𝐿 (𝑝 , 𝑝 , 𝐶 , 𝐶 )  − 𝛿 ∙ 𝑁𝐿 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) − 1 ,   (S31) 

where 𝛿  characterizes a lowering of the layer’s thickness (2𝑅 ) due to the effect of tight packing of 

spherical objects as shown in Figure 4(a). From the geometrical considerations, one can easily find 𝛿  =  2 − √ 𝑅 ≈ 6.7 nm 

and algebraic transformations give 2𝑅 𝑁𝐿 (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =   ( , , , ) ∙ 8𝑅  =   𝑁 (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =  ∙ ℎ (𝑝 , 𝑝 , 𝐶 , 𝐶 ), (S32) 

where 𝑣 = 𝑅  is the volume of anatase spherical particle of the radius 𝑅 . Thus, one gets 𝐻 , (𝑝 , 𝑝 , 𝐶 , 𝐶 )  =  ∙ ℎ (𝑝 , 𝑝 , 𝐶 , 𝐶 )  − 𝛿 ∙ 𝑁𝐿 (𝑝 , 𝑝 , 𝐶 , 𝐶 ) − 1 . (S33) 



In our experiments, two kind of nanocomposite samples have been used, which differ from each other by 

the ratio of 𝐶 /𝐶 :  (𝐶 , 𝐶 ) = (0.01, 0.01) and (𝐶 , 𝐶 ) = (0.01, 0.05). In the case of 𝑝 = 𝑝 = 𝑝, numerical calculations give: 

for «soft spheres» by using Equation S21 ℎ (𝑝, 𝑝, 0.01,0.01) ≈ 14.3 nm, ℎ (𝑝, 𝑝, 0.01,0.05) ≈ 71.5 nm (parallelepiped-shaped nanoplatelets), ℎ (𝑝, 𝑝, 0.01,0.01) ≈ 9.7 nm, ℎ (𝑝, 𝑝, 0.01,0.05) ≈ 48.6 nm (spheroid-shaped nanoplatelets); 

for «hard spheres», by using Equation S33 𝐻 , (𝑝, 𝑝, 0.01,0.01) ≈ 30.4 nm, 𝐻 , (𝑝, 𝑝, 0.01,0.05) ≈ 125.0 nm (parallelepiped-shaped 

nanoplatelets), 𝐻 , (𝑝, 𝑝, 0.01,0.01) ≈ 22.8 nm, 𝐻 , (𝑝, 𝑝, 0.01,0.05) ≈ 87.1 nm (spheroid-shaped nanoplatelets). 

Loading dependences of the effective thickness calculated in the soft-sphere approximation for 

different geometrical configurations of the nanoplatelets are shown in Figure S1. A noticeable difference 

between curves 1 and 2 is observed, which are obtained with the parallelepiped- and spheroid-shaped 

graphene nanoplatelets, respectively. The behavior predicted from the exact solutions (curve 3) provides 

a noticeably good agreement with the approximate results (curve 1) showing that the approximations are 

rather accurate for practical purposes of finding 𝜅  by using the approximate Equations S21 and S24 

instead of the exact Equations S25 and S24. 

 

Figure S1. Loading dependences of the effective thickness (ℎ ) of anatase layer on graphene 
nanoplatelets calculated in the soft-sphere approximation for different geometrical configurations of the 
MLGs: 1 – parallelepiped-shaped MLGs (approximate evaluation by using Equations S25 and S23), 2 – 
spheroid-shaped MLGs (approximate evaluation by using Equations S25 and S24), 3 – spheroid-shaped 
MLGs (exact evaluation by using Equations S25 and S24). 

 

Finally, using Equations S20 and S29, one can find the ratio 𝑟 = 𝐶 /𝐶 , when the number 𝑁  can be 

reached or the condition 𝑁𝐿 = 1 is satisfied. Supposing 𝑝 = 𝑝  gives 𝑟 = 𝑟 = (𝐶 /𝐶 ) = 𝑁 (𝑚 /𝑚 ) ≈ 

1.83 or 2.69 for parallelepiped-like or spheroid-like nanoplatelets, respectively. From the other hand, for 

arbitrary values of (𝐶 , 𝐶 ) at 𝑝 = 𝑝 = 𝑝, the covered portion of the platelet’s surface is 𝜋𝑅 𝑁 (𝑝, 𝑝, 𝐶 , 𝐶 )𝑠 ,   ≈   0.4292 ∙ 𝐶𝐶  



for parallelepiped-like nanoplatelets or 𝜋𝑅 𝑁 (𝑝, 𝑝, 𝐶 , 𝐶 )𝑠 ,   ≈   0.2917 ∙ 𝐶𝐶  

for spheroid-like nanoplatelets. These estimations help one to understand that the concentration set of 𝐶 = 0.01 and 𝐶 = 0.05 have been chosen to ensure entire covering of the graphene nanoplatelets with 

anatase nanoparticles. 

In fact, the condition 𝑁𝐿 = 1 defines a rough upper bound on the values of 𝐶  and 𝐶  as the 

probability to obtain more layers of anatase on graphene nanoplatelets by using a self-assembling 

techniques is extremely low. Another important bounds for choosing 𝐶  and 𝐶  come from the effects of 

interphase layer overlapping and percolation thresholds (Section 3.4 in the main text). 

Some of the computed parameters for MLG@TiO2 hybrid nanoparticles are given in Table S1, 

which includes the numbers of graphene nanoplatelets (𝑁 ,  and 𝑁 ,  for the parallelepiped- and 

spheroid-shaped configurations, respectively) and anatase nanoparticles (𝑁 ) per unit mass (1 g) of the 

nanocomposite, their ratio 𝑁 = 𝑁 /𝑁 , the number 𝑁𝐿  of the anatase layers in “the hard-sphere” 

approximation and the effective thicknesses of anatase nanoparticles covered the graphene nanoplatelets 

evaluated in the “soft-sphere” (ℎ , ) and “hard-speres” (𝐻 , ) approximations.  

 

Table S1. Numbers of the MLG (𝑁 ) and TiO2 (𝑁 ) nanoparticles, their ratio (𝑁 ), number of anatase 
layers (𝑁𝐿 ) in “the hard-sphere” approximation, and the effective thicknesses of anatase nanoparticles 
covered the graphene nanoplatelets, evaluated in “soft-spere” (ℎ , ) and “hard-speres” (𝐻 , ) 
approximations.  𝐶 /𝐶  𝑁 , /𝑁 ,  𝑁  𝑁  ℎ ,  

(nm) 

𝑁𝐿  𝐻 ,  

(nm) 

0.01:0.01 3.532×108 

6.746×108 

3.938×1012 

3.938×1012 

11149 

5838 

14.3 

9.7 

0.55 

0.09 

− 

− 

0.01:0.05 3.532×108 

6.746×108 

1.9689×1014 

1.9689×1014 

55745 

29188 

71.5 

48.6 

2.73 

0.46 

130.8 

90.0 

0.05:0.01 1.766×1010 

3.373×1010 

3.938×1012 

3.938×1012 

2230 

1167 

2.86 

1.94 

0.11 

0.02 

− 

− 

0.05:0.05 1.766×1010 

3.373×1010 

1.9689×1014 

1.9689×1014 

11149 

5838 

14.3 

9.7 

0.55 

0.09 

− 

− 

 

First, in contrast to the hard-sphere approximation, the soft-sphere approach suggests solid anatase 

layer, which completely covers the graphene nanoplatelets and may be very thin with the effective 



thickness going to zero when 𝐶 → 0. Obviously, this clear distinction made between the two 

approximations is blurred out as 𝑅  decreases. 

Second, the numerical estimates made allow us to understand why the anatase layer thickness 

determined by Equation S21 was named as an “effective” thickness. This is because the anatase 

nanoparticles are considered as being absolutely compliant and, as a consequence, Equation S21 imposes 

no restrictions on the thickness, whereas real nanoparticles are hard and the thickness cannot be less than 

the particle’s diameter. However, the soft-sphere approximation simplifies essentially a quantitative 

description of interphase layer around the hybrid (two-layered) nanosheet by using the above equations. 

As far as we know from the literature, the problem of describing two-layered nanostructures in a 

case of non-solid outer layer has not yet been analyzed. The main difficulty being that the contacts 

between the layers are dotty and phonon transport through the contacts is governed by the ballistic 

mechanisms. The above soft-spheres approach and related concept of the effective thickness (see 

Equation S16) allow to simplify simulation by replacing a dotty interface by continuous one and 

describing interface thermal transport in the hybrid anatase@graphene nanosheets by the 

phenomenological thermal boundary resistance 𝑟  (see Equation S17). 

As stated in the main text, an average value 𝑟  of 𝑟  can be given the form 1𝑟 = 𝐿 𝐿𝑟 + 𝐿 𝐿𝑟 + 𝐿 𝐿𝑟𝐿 𝐿 + 𝐿 𝐿 + 𝐿 𝐿 . 
Putting 𝑟 = 𝑟 , 𝐿 = 50 nm, 𝐿 = 𝐿 = 5×103 nm (average linear dimensions of our nanoplatelets) 

yields 1𝑟 = 1.96 × 10𝑟 + 0.9804𝑟 , 
 1𝑟 = 𝑟0.9804 + 1.96 × 10 𝑟𝑟 . 

Numerical values of 𝑟  and 𝑟  have been theoretically calculated in Ref. [S3] for copper-MLG interfaces. 

It was found that the copper and cross-plane multilayer graphene (𝑛 = 8) nanocomposite has a thermal 

interface conductance of 0.84×108 W m−2 K−1 while the copper and in-plane multilayer graphene (𝑛 = 8) 

nanocomposite shows a larger thermal interface conductance of 2.30×108 W·m−2 K−1. 

Equating = × 230 ≈ 2.738 readily gives 𝑟 ≈ 1.0144·𝑟 . Thus, approximating 𝑟 ≈ 𝑟 = 𝑟  

would result in the negligible error in the calculation of the thermal conductivity 𝜅  of graphene-epoxy 

nanocomposites. 

It is quite appropriate to compare the computational accuracy of both approximations proposed 

above. First, it should be noted that the soft-spheres approximation (SSA) implies that the Kapitza 

thermal boundary resistance of MLG@TiO2-hybrid-epoxy interface is 𝑟2. A transition to the hard-spheres 

approximations (HSA) requires 𝑟2 to be substituted by 𝑟ℎ which is given by 



𝑟ℎ =  𝑟ℎ 𝑝1, 𝑝2, 𝐶1, 𝐶2, 𝑅2  ≈   𝑠1𝑟1𝑎𝑣𝑟2𝑠1 − 𝑠21 𝑝1, 𝑝2, 𝐶1, 𝐶2, 𝑅2 𝑟2 +  𝑠21 𝑝1, 𝑝2, 𝐶1, 𝐶2 𝑟1 

 = 𝑟𝑠 (𝑝 , 𝑝 , 𝐶 , 𝐶 , 𝑅 )𝑠  + 1 − 𝑠 (𝑝 , 𝑝 , 𝐶 , 𝐶 , 𝑅 )𝑠 𝑟𝑟 , (S34) 

 
where 𝑠21(𝑝1, 𝑝2, 𝐶1, 𝐶2, 𝑅2) is the portion of graphene’s surface area covered by “hard” spherical anatase 

particles: 𝑠21 𝑝1, 𝑝2, 𝐶1, 𝐶2, 𝑅2 = 𝜋𝑅22𝑁21 𝑝1, 𝑝2, 𝐶1, 𝐶2 . 
Putting 𝑅  = 25 nm, 𝑝 = 𝑝 , and 𝐶 = 𝐶 = 0.01, we obtain 𝑠 /𝑠 ≈ 0.429 for parallelepiped-shaped 

nanoplatelets. When putting 𝑟 =3.5·10-9 W-1·m2·K-1 in Equation S34 one obtains 𝑟 /𝑟  ≈ 0.4855 (or ≈ 0.316) 

for 𝑟  = 10-8 (or 10-9) W-1·m2·K-1.  

As a consequence of the condition 𝑟 < 𝑟 , values of 𝜅  evaluated in HSA will be higher than those 

evaluated in SSA. However, the increment in 𝜅  is rather small. For example, putting α = 0.01 and ℎ = ℎ  

= 24 nm yields the enhancement in 𝜅  varied in the range from 0.3 to 1.6% for 𝑟  = 10-8 W-1·m2·K-1 and 0.23 

to 0.37% for 𝑟  = 10-9 W-1·m2·K-1, when 𝑟  varies in range from 5·10-7 to 5·10-6 W-1·m2·K-1. 

The difference in evaluating 𝜅  in HAS and SSA appears to decrease upon increasing the ratio 𝐶 /𝐶  or 𝑟 . The bound value of 𝑟  is reached when condition S29 is met (at the complete covering of 

graphene’s surface with anatase) and 𝑠 /𝑠 ≈ 0.79. If 𝐶 /𝐶  increases further, certain portions of both 

anatase and graphene fillers remain unassembled. For that cases, HSA becomes more appropriate for 𝜅  

calculations. However, the calculations become somewhat cumbersome since both parameters 𝑝  and 𝑝  

cannot be considered independent variables anymore, and their dependence on 𝐶  and 𝐶  should be 

taken into account. 

(a) (b) 

Figure S2. Calculated loading dependence of normalized effective in-plane 𝜅 , /𝜅  (curves 1) and 
out-of-plane 𝜅 , /𝜅  (curves 2) thermal conductivities of hybrid MLG@TiO2 nanoparticles at 𝜅 = 

600.0 W m-1 K-1 and 𝜅 = 6.0 W m-1 K-1. Calculations were performed by using Equation S14. 

Finally, to understand the reason for increasing 𝜅  with increasing 𝐶 , the loading dependencies of 

the filler thermal conductivities have been evaluated and plotted in Figure S2. It shows calculated loading 



dependencies of the effective thermal conductivities 𝜅 ,  (long-range plot) and 𝜅 ,  (short-range 

plot) normalized by the corresponding intrinsic values 𝜅  and 𝜅  respectively. 

It can be seen that 𝜅 , /𝜅  increases much faster than 𝜅 , /𝜅  with increasing 𝐶 . 

Therefore, the increase in 𝜅  with increasing 𝐶  observed in Figure 5 is obviously due to increased 𝜅 , , which in turn is due to increased ℎ = ℎ  of the anatase layer covering graphene nanoplatelets 

(see Table S1). The facts that 𝜅 , (𝐶 = 0) ≪ 𝜅  and 𝜅 , (𝐶 = 0) ≪ 𝜅  are furthermore expected 

to originate from the graphene-epoxy Kapitza thermal boundary resistance and related interphase layers. 

 

Supplementary Note S2, Volume concentrations of the constituents 

Starting from the general equations for mass and volume balances for a three-filling-phase 

composite of the volume 𝑉  and mass 𝑀  and taking related interphase region into account, ∑ 𝑀  =   𝑀  ,      (S35) ∑ 𝑉  =   𝑉  ,      (S36) 

together with the density relations, 𝑀 ,  =   𝜌 , 𝑉 ,  ,     (S37) 

one can obtain, after some tortuous algebra, the expressions to calculate the composite’s density 𝜌   and 

volume concentrations of the constituents 𝜑 = 𝑉𝑛/𝑉𝐶 (𝑛 = 0, …, 5) (Equation (5) in the main text) via 

the mass concentrations of the staple fillers (𝑛 = 1, 2) 𝐶 ,  =  𝑀 , /𝑀 : 

𝜌  =   ( )  +   + + 𝑝 𝐹 + 𝑝 𝐹 − (1 − 𝑝 )𝐹 , (S38) 

𝜑  =   ∙ 1 − 𝐶 − 𝐶 − 𝑝 𝐹 𝐶 − 𝑝 𝐹 𝐶 − (1 − 𝑝 )𝐹  ,  (S39) 𝜑  =   𝑝 ∙ ∙ 𝐶  ,     (S40) 𝜑  =   𝑝 ∙ ∙ 𝐶  ,     (S41) 𝜑  =   (1 − 𝑝 ) ∙ ∙ 𝐶 + (1 − 𝑝 ) ∙ ∙ 𝐶  ,   (S42) 𝜑  =   𝑝 𝐹 𝐶  ,     (S43) 𝜑  =   𝑝 𝐹 𝐶  ,     (S44) 𝜑  =   (1 − 𝑝 )𝐹 𝐶  .     (S45) 

Here, the subscript “𝑛 = 0” corresponds to a host matrix, “1” – to graphene nanoplatelets, “2” – to anatase 

nanoparticles, “3” – to self-assembled hybrid phase composed of fillers “1” and “2”, and “4” and “5” - to 

interphase regions “𝑖1” and “𝑖2” surrounding the fillers. With this in mind, the interphase layer around 

the hybrid particles may be either “𝑖1” or “𝑖2”, depending on what filler is being used as outer layer of 

the hybrid. The “𝑖2” case is detailed here. The density of the hybrid particle is given by 𝜌  =   ( )∙ ( )∙ ∙ ∙( )∙ ∙ ( )∙ ∙  .    (S46) 



In the above equations, 𝐹 , ,  are the volume factors which determine the ratio of the interphase layer’s 

volume to the particle’s volume. Assuming that the graphene nanoplatelets are ellipsoids having the axes 𝐿 , 𝐿  and 𝐿 , and the anatase particles are spheres of radius 𝑅 , we find 𝐹  =   1 + ∙ 1 + ∙ 1 + − 1   (S47) 𝐹  =   1 + − 1     (S48) 𝐹  =   1 + ∙ 1 + ∙ 1 + − 1  (S49) 

where ℎ  is the thikness of anatase layer covering graphene’s nanoplatele (see below), 𝑝 ,  are the mass 

portion of free (unassembled) fillers “1” and “2”, respectively. 

 

Supplementary Note S3, Thermal conductivity upon varying graphene thickness 

Calculations are performed at 𝜅 = 600.0 W m-1 K-1, 𝜅 = 6.0 W m-1 K-1, 𝐻  = 𝐻 = 24 nm, 𝑟 = 
1.28×10-9 m2 K W-1, 𝑟 =  3.5×10-9 m2 K W-1, 𝑟 = 1.0×10-9 m2 K W-1, 𝑟 = 2.0×10-10 m2 K W-1 (at 𝐶 = 0.010, 𝐶 = 0.050), 𝑟 = 1.456×10-10 m2 K W-1 (at 𝐶 = 0.010, 𝐶 = 0.010) (complete coverage of the surface of 
MLGs with TiO2). 
 
Table S2. Variation of the computed thermal conductivity 𝜅  upon varying MLG thickness 𝐿  when 
keeping 𝐿 = 𝐿 = 5.0×10-6 m.  

Thickness 𝐿  (nm) 𝛼 = 𝐿 /𝐿  
𝜅  (W·m-1·K-1) 𝐶 = 0.010, 𝐶 = 0.010 

𝜅  (W·m-1·K-1) 𝐶 = 0.010, 𝐶 = 0.050 

10.0 0.002 0.378 0.328 

25.0 0.005 0.330 0.331 

50.0 0.01 0.286 0.313 

100.0 0.02 0.250 0.283 

250.0 0.05 0.222 0.245 

500.0 0.1 0.212 0.226 

Table S3. Variation of the computed thermal conductivity 𝜅  upon varying MLG thickness 𝐿  when 
keeping 𝛼 = 0.01. 

Thickness 𝐿  (nm) 
𝐿 = 𝐿 = 𝛼𝐿  

(μm) 

𝜅  (W·m-1·K-1) 𝐶 = 0.010, 𝐶 = 0.010 

𝜅  (W·m-1·K-1) 𝐶 = 0.010, 𝐶 = 0.050 

10.0 1.0 0.310 0.351 

25.0 2.5 0.299 0.330 

50.0 5.0 0.286 0.313 

100.0 10.0 0.269 0.292 

250.0 25.0 0.243 0.258 

500.0 50.0 0.224 0.230 
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