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Abstract: Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor pro-
duced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers,
leading to the loss of its antibacterial activity. Although this protein has been characterized as a model
functional amyloid, the secondary structure transitions behind its formation, and the possible effect
of molecules that inhibit this process, have not been investigated. In this study, we examined the
ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid
formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid
formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism
(SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure,
thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG signifi-
cantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates
and small oligomers. However, these aggregates retained part of the β-sheet SRCD signal and a high
resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated
at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid
formation of MccE492 and other bacterial amyloids.

Keywords: microcin E492; bacterial amyloid; EGCG; green tea; synchrotron-radiation circular dichroism

1. Introduction

Amyloids are protein aggregates with a fibrillar morphology that are characterized by
a hallmark cross-β structure consisting of β-sheets aligned perpendicularly to the fiber axis,
creating a cross-like pattern [1]. These insoluble and remarkably stable structures share
dye-binding and spectral properties that can be used for their detection, including a high
affinity for the fluorescent probe Thioflavin T (ThT) and a circular dichroism spectral shift
caused by increases in β-sheet content [2].

Traditionally, amyloids have been associated with neurodegenerative diseases such
as Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s [2], but over the last 20 years,
several reports have shown amyloid assemblies playing biological roles. These “functional
amyloids” appear to be present in all forms of life [3]. Moreover, they have been widely
described in microorganisms and linked to several biological processes; functional amyloids
may have roles in biofilm formation, niche colonization, and bacterial virulence, among
other processes [4,5]. The first and best-understood example of a bacterial functional
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amyloid is curli, a type of extracellular amyloid fibers produced by Escherichia coli and
Salmonella that act as an adhesive and structural support in biofilm formation [6]. Other
examples related to biofilms include TasA produced by Bacillus subtilis [7], FapC produced
by Pseudomonas spp. [8], and PSM produced by Staphylococcus aureus [9]. Besides biofilm
formation, bacterial functional amyloids have been described to participate in aerial hyphae
formation, cell cycle regulation, bacteria–plant symbiosis, and as acting as cytolytic toxins
and antimicrobials [4,5].

Microcin E492 (MccE492) is a pore-forming bacteriocin produced by some Klebsiella
pneumoniae strains which has antibacterial activity against related species [10]. The genetic
determinants for its production are encoded in the GIE492 genomic island, which is highly
prevalent among hypervirulent K. pneumoniae strains [11,12], although the specific role
of MccE492 in virulence remains poorly understood. This bacteriocin is produced in two
distinct forms: an unmodified form (7887 Da) and a post-translationally modified form,
where glycosylated derivatives of the enterochelin siderophore are covalently linked to
its C-terminus. This modification is required for antibacterial activity since the toxin
internalization depends on its recognition by the catechol siderophore receptors of the
target cells.

In addition to its antimicrobial activity, a remarkable feature of MccE492 is the ability
to form amyloid aggregates in the cytoplasm and in the extracellular medium of produc-
ing cells [10,13–15]. This process has been studied for almost 20 years, making MccE492
a model bacterial amyloid [16]. In vitro, the aggregation of this peptide is typically ob-
served in less than 24 h at 37 ◦C in 100 mM PIPES 0.5 M NaCl buffer (pH 6.5). In these
conditions, the amyloid nature of the MccE492 fibers has been demonstrated by different ap-
proaches, including Congo Red and ThT binding, Fourier-transform infrared spectroscopy
(FTIR), TEM, and X-ray diffraction [13,17,18]. The two latter approaches showed mainly
~140 Å-width helical fibers with a diffraction pattern having the two typical amyloid re-
flections at 9.9 and 4.7 Å, corresponding to the inter-strand and inter-sheet distances in the
cross-beta array [14].

Interestingly, MccE492 amyloid formation is directly related to the loss of its antibacte-
rial activity. This evidence has given rise to the hypothesis that MccE492 amyloid formation
is a mechanism of antibacterial inactivation, forming a highly stable reservoir of antibacte-
rial activity. Nevertheless, there is scarce information regarding the secondary structure
transitions which occur as the MccE492 molecules adopt an amyloid-prone conformation.
Moreover, there are no reports of molecules which possibly inhibit MccE492 amyloid for-
mation. Given that MccE492 is secreted and can be recovered at a high purity from culture
supernatants, it could be advantageous as a model protein to test for possible anti-amyloid
molecules targeting bacterial functional amyloids.

Due to their relevance in neurodegenerative diseases and microbial virulence, sub-
stantial efforts have been made to identify molecules with anti-amyloid activity. Several
natural compounds have been found to reduce the aggregation of Aβ40/42 associated to
AD, especially polyphenols [19]. Epigallocatechin-3-gallate (EGCG) is a polyphenol found
in green tea (Camellia sinensis) which has risen as an interesting anti-amyloid compound.
Besides inhibiting Aβ40/42 amyloid formation and thus showing a potential therapeutic
effect in AD, EGCG can interfere with α-synuclein aggregation and reduce its toxicity in
PD [20,21]. Furthermore, EGCG also influences bacterial functional amyloids. In S. aureus,
EGCG was shown to prevent the assembly of amyloidogenic PSM and the disaggregation
of preformed amyloid fibers, converting them into amorphous aggregates [22]. Meanwhile,
in Pseudomonas spp., EGCG inhibited FapC amyloid formation and stabilized non-amyloid
aggregates [23]. Moreover, in E. coli, EGCG was shown to impair curli [24] and Hfq-CTR
amyloid assembly and disrupt Hfq-CTR mature fibers [25]. In some of these cases, the in-
hibitory effect of EGCG on amyloid formation was related to bacterial virulence attenuation
by inducing reduced bacterial survival [25] or impaired biofilm formation [23,24]. Thus,
EGCG could also be explored as a potential anti-virulence agent for targeting amyloids
involved in bacterial infection.
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In this work, we assessed the effect of EGCG on MccE492 amyloid formation. Using a
combination of techniques, including ThT fluorescence measurements, negative-staining
transmission electron microscopy (TEM), and synchrotron radiation circular dichroism
(SRCD), we investigated the secondary structure transitions and morphological signatures
of MccE492 amyloid aggregation, providing orthogonal evidence that EGCG impairs
MccE492 amyloid formation. This evidence supports that EGCG could be suitable for
targeting amyloid-dependent bacterial processes in K. pneumoniae, particularly those related
to MccE492.

2. Results
2.1. EGCG Inhibits MccE492 Amyloid Formation Followed by ThT Fluorescence

As a first approach to evaluating the effect of EGCG on MccE492 amyloid formation,
we followed MccE492 aggregation kinetics in the absence and presence of EGCG using ThT,
a widely used amyloid-binding fluorescent dye. For this purpose, we purified MccE492
from the culture supernatants of E. coli cells transformed with the pMccE492 plasmid which
were carrying all the genes required for MccE492 synthesis, modification, and export [15].
Lyophilized purified MccE492 was reconstituted and mixed with the buffer that has been
traditionally used to induce the aggregation of this peptide (100 mM PIPES pH = 6.5, 0.5 M
NaCl) to a final protein concentration of 200 µg/mL. Besides the baseline reactions, two
conditions were tested, one without EGCG (control) and the other with 1 mM EGCG. ThT
was added to all conditions, and the assay was incubated with shaking at 37 ºC. The ThT
fluorescence was measured every 15 s for 70 h.

Without EGCG, MccE492 showed typical sigmoidal amyloid aggregation kinetics,
beginning with a lag phase where the formation of oligomers and the nucleation of small
fibers occured (Figure 1A,B). After 12 h, the ThT fluorescence started to increase expo-
nentially due to fiber elongation, reaching a plateau around 20 h once the assay started.
Conversely, the ThT fluorescence remained close to the baseline levels in the presence of
EGCG. A similar observation was made using a different buffer (100 mM sodium phos-
phate pH 6.5) that is more compatible with circular dichroism measurements and that could
provide further evidence of the effect of EGCG, as described in Section 2.4. In this case,
likely due to the decreased ionic strength, the lag phase was extended, and the aggregation
started after 40 h, even when twice the MccE492 concentration (400 µg/mL) was used
(Figure 1C). Again, with EGCG, no ThT fluorescence increase was observed. This evidence
indicates that EGCG inhibited MccE492 amyloid formation.
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Figure 1. Effect of EGCG on MccE492 amyloid formation monitored by ThT fluorescence. (A) Schematic
representation of the typical amyloid aggregation kinetics followed by ThT. (B) MccE492 (200 µg/mL)
aggregation kinetics in PIPES aggregation buffer, with or without 1 mM EGCG. (C) MccE492
(400 µg/mL) aggregation kinetics in phosphate buffer, with or without 1 mM EGCG. Amyloid
formation was monitored by measuring ThT fluorescence (excitation: 450 nm; emission: 482 nm)
every 15 s for 70 h at 37 ◦C. A.U. = arbitrary units. The curves are representative of three independent
experiments with each buffer.
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2.2. MccE492 Is Not Incorporated into Higher-Order Aggregates in the Presence of EGCG

It has been suggested that EGCG and ThT binding to amyloid fibers compete with
one another, and thus, the absence of ThT fluorescence in the presence of the polyphenol
could be partly due to ECGC preventing the binding of ThT to the fibers. Thus, to obtain
further evidence of the EGCG effect, we used a previously described assay to follow, over
time, the MccE492 that remained unincorporated into fibers during aggregation, which was
similar to that described in Section 2.1 but without the addition of ThT. At different time
points, aliquots were collected and centrifuged (to pellet the fibers), and the supernatant
was analyzed by immunoblot using a monoclonal anti-MccE492 antibody (Figure 2). Hence,
as the aggregation progressed, less soluble microcin should have been observed.
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Figure 2. EGCG promotes a soluble state of MccE492 and impairs the formation of higher-order
aggregates. Purified MccE492 (200 µg/mL) was incubated in the absence or presence of 1 mM
EGCG in PIPES aggregation buffer at 37 ◦C. The soluble protein was visualized by immunoblot after
centrifuging the samples at 16,000× g for 30 min and recovering the supernatant. A monoclonal
anti-MccE492 antibody was used. MccE492 monomers (~10 kDa) and oligomers (>10 kDa) are pointed
out. MW: molecular weight standard (kDa). Although MccE492 has a molecular weight close to
8 kDa, it has anomalous electrophoretic migration, with an apparent MW of 10 kDa.

Without EGCG, a similar amount of MccE492 remained in the solution during the first
12 h. At 24 h, the amount of protein in the supernatant markedly decreased, indicating
that protein aggregation (i.e., amyloid formation) had occurred. Conversely, the protein
remained soluble throughout the assay with 1 mM EGCG. Moreover, MccE492 tends to
form SDS-resistant oligomers which are considered precursors to the amyloid fibers [14]
(Figure 2). Interestingly, these oligomers are not observed in the presence of EGCG, sug-
gesting that, besides inhibiting the formation of amyloid fibers, EGCG also inhibits the
formation of amyloid precursors. These results confirm the inhibitory effect of EGCG on
MccE492 amyloid formation as detected by ThT fluorescence.

2.3. EGCG Prevents the Formation of MccE492 Amyloid Fibers, as Revealed by Negative-Staining
Electron Microscopy

Next, we aimed to directly visualize the effect of EGCG on MccE492 amyloid fiber for-
mation. To this end, samples were collected at the beginning (0 h) and the end (48 h) of the
aggregation assays, mounted, negatively stained, and visualized by Electron Transmission
Microscopy (TEM) (Figure 3 and Figure S1, Supplementary Materials). As expected, at 0 h,
no fibers were observed independently of the presence of EGCG. As previously reported,
only small amorphous aggregates were observed at this stage [14,15]. After 48 h, in the
absence of EGCG, abundant amyloid fibers with the typical helical morphology [14,15] and
an average width of 10 nm were detected. Conversely, in the presence of EGCG, no fibers
were observed. This evidence confirms that EGCG completely inhibits the formation of
MccE492 amyloid fibers.
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Figure 3. Visualization of MccE492 amyloid fibers morphology in the absence and presence of EGCG.
Purified MccE492 (200 µg/mL) was incubated with or without 1 mM EGCG in PIPES aggregation
buffer at 37 ◦C. At the indicated times, samples were collected and visualized by negative-stain
electron microscopy. Scale bar: 200 nm. Images are representative of three independent experiments.
Additional images are shown in Figure S1.

2.4. EGCG Interferes with MccE492 Secondary Structure Transitions to Amyloid-Prone Forms

The MccE492 peptide was shown to have a partially disordered structure that shifts
into a β-sheet-rich conformation during amyloid aggregation [18]. To investigate whether
EGCG affects this secondary structure transition, we performed SRCD measurements in the
DISCO vacuum UV beamline at the SOLEIL synchrotron (St. Aubin, France). As the PIPES
aggregation buffer interferes with SRCD measurements, we prepared MccE492 aggregation
assays in 100 mM phosphate buffer and increased the peptide concentration to 2 mg/mL,
to shorten the lag phase and increase the SRCD signal, in a low-volume cell. MccE492
aggregated between 8 and 24 h after starting the assay in these conditions.

As expected, the SRCD spectra showed that, in the absence of EGCG, MccE492 pro-
gressively changed its conformation over time with a negative peak at ~218 nm, which is
typical of the amyloid β-sheets found in the amyloid cross-beta structure (Figure 4A) [26].
In contrast, in the condition with EGCG, a markedly reduced signal around 218 nm was
observed even 48 h after starting the assay (Figure 4B). This evidence indicates that EGCG
impairs the transition of MccE492 into an amyloid-prone conformation.

We then used SRCD to evaluate the possible effect of EGCG on the secondary structure
content and thermal stability of preformed MccE492 amyloid fibers. To this end, we
performed thermal scans from 15 ◦C to 96 ◦C, collecting spectra every 3 ◦C (Figure 4C,D),
followed by spectra deconvolution with BeStSel [27]. In this way, we could correlate the
SRCD signal change due to the temperature increase with secondary structure changes.
Previous reports indicate that MccE492 is highly resistant to temperature degradation, a
property shared with other microcins [10,28]. Also, concerning EGCG, a previous study
evaluated its thermal stability between 25 and 165 ◦C, showing that it remains mostly
unaltered at 100 ◦C and a pH close to neutrality [29]. Thus, no considerable heat degradation
of MccE492 nor EGCG was expected to occur in these assays.
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Figure 4. Effect of EGCG on MccE492 amyloid secondary structure signature and thermal stability,
as revealed by SRCD. SRCD spectra of MccE492 (2 mg/mL) in phosphate buffer incubated at 37 ◦C
in the absence (A) or presence (B) of 1 mM EGCG. (C,D) SRCD thermal scan of preformed amyloid
fibers without (C) or with (D) EGCG 1 mM.

At 15 ◦C, with or without EGCG, the aggregated MccE492 showed a parallel β-sheet
content close to 40% (Figure S2, Tables S1 and S2). Following the temperature increase,
without EGCG, the MccE492 amyloid showed a partial resistance to thermal denaturation,
retaining part of the amyloid structure even at 96 ◦C (25.6% β-sheets). However, the β-sheet
content was markedly lower in the presence of EGCG at 96 ◦C (9.5%). Moreover, in the
absence of EGCG, a sustained decrease in beta-sheet content was observed at temperatures
over 80 ◦C, while with EGCG, the loss of this structure was observed at lower temperatures
(from 60 ◦C). Of note, an unexpectedly high alpha-helix content was observed at 15 ◦C,
especially in the amyloid treated with EGCG (49.4%) and, to a lesser extent, the untreated
peptide (30.6%). In this latter condition, upon heating, this structure fell to 1.2% at 96 ◦C,
while it appeared more stabilized with EGCG (21.4% at 96 ◦C).

Thus, EGCG caused a partial reduction in the amyloid β-sheet signal and the α-helix
content of preformed MccE492 amyloid, and decreased its thermal stability.

3. Discussion

Amyloid formation is a shared trait across important human neurodegenerative dis-
eases. Considerable efforts have been made to discover anti-amyloid molecules that could
work as a treatment. Bacterial functional amyloids may be an alternative simple model for
developing and testing potential anti-amyloid molecules. Moreover, since some of these
functional amyloids have also been related to bacterial virulence (i.e., biofilm formation, tox-
ins reservoirs), they could also serve as a model to test anti-virulence agents [26]. MccE492
is one candidate protein that could serve this purpose, as it forms typical amyloid fibers in
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the extracellular space of the producing cells and, thus, can easily be purified from E. coli
culture supernatants. Among the previously proposed anti-amyloid molecules, EGCG has
been shown to prevent the amyloid formation of several human disease-associated and
bacterial functional amyloid proteins. This work showed that EGCG also impairs MccE492
amyloid formation, with complementary evidence from ThT binding measurements, SDS-
PAGE/immunoblot, TEM, and SRCD.

SRCD is a powerful spectroscopic technique that is suited for the detailed examination
of amyloid proteins, as it enables precise characterization of their secondary structural
components during the aggregation process and even their interactions with other macro-
molecules such as nucleic acids and lipid membranes [30–34]. By employing vacuum ultra-
violet (VUV) light from synchrotron sources such as the DISCO beamline at SOLEIL [31],
tunable and high-intensity circularly polarized light with exceptional sensitivity to molec-
ular chirality and secondary protein structures can be obtained. Furthermore, low-noise
spectra starting from 170 nm allow for well-fitted deconvolution.

Besides the EGCG effect, two noteworthy findings emerged from the SRCD and spec-
tral deconvolution results. Firstly, a significant presence of α-helix secondary structure was
observed, and secondly, the predicted β-sheets identified by the deconvolution model were
of the parallel type. The bactericidal activity of MccE492 is associated with the formation
of pores in the membranes of target bacteria, and it has been established that, within the
membrane, MccE492 monomers adopt a transmembrane α-helical conformation [32]. This
observation aligns with the notion that, in solution, MccE492 may adopt an unfavorable
helical conformation in comparison to the predominant random coil conformation when
analyzed via CD in aqueous solution [13]. Additionally, the high β-sheet content associated
with MccE492 amyloid formation was also evidenced by FTIR, where a relatively high
alpha-helix content was associated with the non-amyloid forms [17].

Notably, a similar behavior has been described for another amyloidogenic protein
when interacting with membranes, alpha-synuclein [33]. Experimental evidence has shown
a transition between α-helices and β-sheets in the amyloid formation mechanism of this
kind of protein [34]. Furthermore, this concurs with the identification of pentameric precur-
sors of MccE492 bearing the functional structure within the membrane [14]. Adding to this
similarity between the two proteins is the structural insight obtained through the Cryo-EM
of alpha-synuclein [35], revealing that the beta-sheets in the cross-beta structure are of the
parallel type. This convergence of features between both proteins makes comparing their
mechanisms of amyloid formation and inhibition highly intriguing.

EGCG is a type of catechin, a class of flavonoids that is commonly found in certain
plants, particularly in green tea. Besides the impairment of amyloid formation, this small
molecule has been associated with several other health benefits, including antioxidant
properties and the ability to neutralize free radicals and protect cells from oxidative damage,
potentially reducing the risk of chronic diseases [36]. Also, it has demonstrated potential
in cancer prevention and treatment. Preclinical studies suggest that EGCG’s antioxidant
properties may protect cells from DNA damage and oxidative stress, factors linked to
cancer initiation. Additionally, its anti-inflammatory effects may hinder cancer cell growth
and survival. EGCG’s ability to interfere with angiogenesis could inhibit tumor growth
and metastasis. Furthermore, it has shown promise in promoting apoptosis in cancer cells
and enhancing the effectiveness of chemotherapy and radiation therapy [37–39]. Moreover,
EGCG was related to increased brain health due to its antioxidant, anti-inflammatory,
and anti-aging abilities, as well as its neuroprotective effects [40]. Together, these data
place EGCG as a molecule of particular interest, given its proposed versatile and beneficial
health effects.

Possible mechanisms have been proposed regarding the effect of EGCG on amyloid
formation. It was shown that, when free amines or thiols are close to the EGCG hydropho-
bic binding sites, the EGCG-based quinones can covalently modify the amyloidogenic
proteins through Schiff base formation. The covalent modification of forming amyloid
fibers by EGCG can cross-link them, preventing the fragmentation or dissociation required
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for amyloid propagation and generating toxic oligomeric species of some pathological
amyloids [41]. Here, we showed that EGCG also interferes with the early stages of amy-
loid formation, causing MccE492 to remain soluble and preventing its transition to an
amyloid-prone conformation. To further understand the EGCG inhibition of MccE492
amyloid formation, we evaluated if, in the presence of EGCG, MccE492 would maintain
its antibacterial activity. We found that, independently of the presence of EGCG, MccE492
lost its activity upon incubation in aggregation conditions (Figure S3). Together, these
results suggest that, although EGCG impairs the formation of mature amyloid fibers and
SDS-resistant oligomers, it would not affect possible initial conformational changes in the
monomers favored by the aggregation conditions, which led to antibacterial activity loss.

EGCG has several reported effects on bacterial amyloids and their related processes.
As mentioned, it can inhibit biofilm formation mediated by FapC and curli [42]. Also, it
can impair quorum-sensing (QS) signaling by increasing the binding of pyocyanin due
to FapC fibril remodeling in P. aeruginosa, raising its susceptibility to antibiotics such as
tobramycin [23]. Furthermore, EGCG activates the expression of the small non-coding
RNA molecule RybB that down-regulates the production of the two main components of
E. coli biofilm: curli and pEtN-cellulose [24,43]. These examples support the possible use of
EGCG as an amyloid-targeting anti-virulence molecule.

As mentioned above, the role of MccE492 in K. pneumoniae virulence is not completely
clear. In particular, whether MccE492 amyloid formation has implications for the virulence
of the producing strains (for instance, forming part of K. pneumoniae biofilms) remains
unknown. Therefore, it would be interesting to evaluate whether EGCG affects the viru-
lence of MccE492-producing K. pneumoniae strains and if this effect is linked to MccE492
amyloid formation.

4. Materials and Methods
4.1. MccE492 Purification

MccE492 purification was carried out from culture supernatants of E. coli BL21 DE3
cells carrying the pMccE492 plasmid, which carries the whole MccE492 gene cluster, as
described previously [15]. Briefly, 2 L of M9 medium supplemented with 0.2% citrate
and 0.1% glucose were inoculated with a 1:2000 dilution of a fresh overnight culture and
grown at 37 ◦C with shaking at 160 rpm for 18–20 h. The supernatant was collected by
centrifugation and filtered through a Stericup 0.22 µm polyethersulfone membrane (Merck,
Darmstadt, Germany). The cell-free medium was incubated with 5 g of previously ACN-
activated Bondapak C18 resin (Waters, Milford, MA, USA) at 4 ◦C for 2 h with gentle
agitation. Then, the resin was filtered by negative pressure through a Buchner funnel,
washed with 100 mL of 40% methanol then with 100 mL of 25% ACN, and finally eluted
with a 30–100% ACN stepwise gradient of 50 mL each. MccE492-enriched fractions, as
shown in Figure S4, were dialyzed twice for 2 h against 40 nanopure water and then
lyophilized and stored at −20 ◦C.

4.2. MccE492 Reconstitution and Preparation for the Aggregation Assays

Lyophilized protein was resuspended in ice-cold 5 mM Tris-HCl pH 8.5 and cen-
trifuged for 30 min at 160,000× g at 4 ◦C. The protein recovered in the supernatant was
quantified with the Quick Start Bradford 1X Dye Reagent (Bio Rad, Hercules, CA, USA) fol-
lowing the manufacturer’s instructions. Protein concentration was adjusted to 200 µg/mL
in aggregation buffer (100 mM PIPES-NaOH, 0.5 M NaCl pH 6.5) or 400 µg/mL in phos-
phate buffer (100 mM sodium phosphate pH 6.5).

4.3. Aggregation Assays Followed by Thioflavin-T Fluorescence

Aggregation assays were performed as previously described [44]. Briefly, MccE492
samples in PIPES or phosphate buffer were disposed in black 96-well microplates with
flat and UV-transparent bottom (4titude 4ti-0263, Azenta, Chelmsford, MA, USA), with
or without EGCG (Sigma-Aldrich, Saint Louis, MO, USA), and with 20 µM Thioflavin T
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(Sigma-Aldrich, Saint Louis, MO, USA), in a final volume of 100 µL per well. The plates
were incubated with constant shaking at 37 ◦C, and ThT fluorescence was measured (in the
bottom of the wells) every 15 s using the microplate fluorometer TECAN infinite 200 pro
(excitation: 450 nm; emission: 482 nm). Baseline reactions were set up with buffer, with ThT,
and with and without EGCG. This value was subtracted from the corresponding samples.
The plates were sealed using Microseal B adhesive films (Bio-Rad) to prevent evaporation.
Three independent experiments were conducted in each buffer.

4.4. Determination of Soluble MccE492 during the Aggregation Assay

After preparing the samples (See Section 4.2), 1 mM EGCG was added when indicated.
Samples were incubated with constant shaking (800 rpm) at 37 ◦C and protected from
light during the assay. At different time points, aliquots of the samples were collected
and centrifuged for 30 min at 160,000× g at 4 ◦C. The supernatant was recovered, and the
remaining soluble protein was visualized by immunoblot.

4.5. SDS-PAGE and Immunoblot for MccE492 Detection

Three-phase tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) optimized for peptides was performed as described previously [45]. Nitrocellulose
membranes (Millipore, Burlington, MA, USA) were used for immunoblotting transfer
(90 min, 400 mA) using chilled 25 mM Tris-HCl, 190 mM glycine, 20% methanol as the
transfer buffer. MccE492 was detected using a monoclonal antibody prepared against
a synthetic version of the whole MccE492 peptide in mice (1:5000 dilution; GenScript,
Piscataway, NJ, USA) and with an anti-mouse IgG alkaline phosphatase-linked secondary
antibody (1:5000 dilution; Cell Signaling Technology, Danvers, MA, USA). The alkaline
phosphatase colorimetric reaction was carried out using the ready-to-use BCIP®/NBT
liquid substrate system (Sigma). The membrane was incubated directly with the substrate
until an optimal signal was observed.

4.6. Negative Staining Electron Microscopy

Aliquots of the samples from the MccE492 aggregation assays (Section 4.4) were
mounted onto formvar/carbon-coated copper grids (300-square-mesh; Electron Microscopy
Sciences) and negatively stained with 2% uranyl acetate. For staining, each grid was
deposited over a 10 µL drop of the aggregation assay mixture, incubated for 30 s, and then
removed, drying the excess liquid by contacting the edge of the grid with clean filter paper.
Then, a similar procedure was followed, but now using a drop of uranyl acetate solution and
incubating for 1 min. Micrographs were taken in a Talos F200C G2 transmission electron
microscope operated at 200 kV with a 36,000× magnification (for picture capturing) using
the Velox Imaging software (https://veloximaging.com, accessed on 19 October 2023).
Several grid fields at different magnifications and regions were observed for TEM analysis
to ensure that it correctly represented the samples. Under these conditions, if any amyloid
aggregate occurs on the sample, it will be observed. As both kinds of grids (with or without
EGCG) have been prepared and observed under equivalent conditions, the absence of
fibrillar structures on the sample incubated with the inhibitor observed by TEM reflects that
the formation of these structures was prevented. The TEM observations were performed
for three independent aggregation experiments (with or without EGCG).

4.7. Synchrotron Radiation Circular Dichroism (SRCD)

SRCD measurements were performed on the DISCO beamline at SOLEIL Synchrotron
(Saint Aubin, France) [31]. For SRCD experiments, lyophilized MccE492 prepared as
described in Section 4.1 was reconstituted in 100 mM phosphate buffer to reach a con-
centration of 10 mg/mL. A circular CaF2 cell of 19 µm path length was used to load
the samples (~4 µL), performing spectral acquisitions of 1 nm steps at 1.2 s integration
time between 261 and 170 nm, in triplicate. Intensities obtained were calibrated using a
(+)-camphor-10-sulfonic acid (CSA) standard solution. Increasing 3 ◦C steps from 15 ◦C

https://veloximaging.com
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to 96 ◦C were carried out for thermal stability measurements. Data averaging, baseline
subtraction, smoothing, and scaling were carried out with CdtoolX [46]. Intensity (mdeg)
to delta epsilon (M−1 cm−1) unit conversion was made considering protein concentration
calculated from the absorbance at 205 nm and the MccE492 amino acid sequence, as de-
scribed previously [47]. Protein secondary structure was determined with BeStSel software
(https://bestsel.elte.hu/index.php, accessed on 19 October 2023) [27]. Normalized root-
mean-square deviation (NRMSD) indicated the most accurate fit for each spectrum; values
of <0.15 were considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28217262/s1, Figure S1: Transmission electron mi-
croscopy visualization of MccE492 fibers in presence and absence of EGCG; Figure S2: MccE492
secondary structure content at different temperatures in the presence or absence of EGCG determined
using BestSel; Figure S3: MccE492 antibacterial activity in presence and absence of EGCG; Figure S4:
Acetonitrile (ACN)-gradient fractions obtained after a typical MccE492 purification; Table S1: Sec-
ondary structure content of MccE492 amyloid at different temperatures in the absence of 1 mM EGCG;
Table S2: Secondary structure content of MccE492 amyloid at different temperatures in 1 mM EGCG.
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