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Abstract: The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets
(BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic
crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-
shaped sheets stacked together in a layered structure, with the confirmation of the precursor elements.
The diffused reflectance studies revealed a strong absorption between 200 nm and 350 nm, from
which the band-gap energy was evaluated to be 4.03 eV. Furthermore, the fluorescence spectrum
was recorded for the prepared samples; the excitation spectrum shows a strong peak at 397 nm,
attributed to the 4F7/2→4G11/2 transition, while the emission shows two prominent peaks at 420 nm
(4G7/2→4F7/2) and 440 nm (4G5/2→4F7/2). The acquired emission results were utilized to confirm
the color emission using a chromaticity plot, which found the coordinates to be at (0.1529 0.1040),
and the calculated temperature was 3171 K. The as-prepared nanosheets were utilized in detecting
latent fingerprints (LFPs) on various non-porous surfaces. The powder-dusting method was used to
develop latent fingerprints on various non-porous surfaces, which resulted in detecting all the three
ridge patterns. Furthermore, the as-synthesized nanosheets were used to degrade methyl red (MR)
dye, the results of which show more than 60% degradation at the 70th minute. It was also found that
there was no further degradation after 70 min. All the acquired results suggest the clear potential of
the prepared BaLa2O4 NSs for use in advanced forensic and photocatalytic applications.

Keywords: BaLa2O4 nanomaterials; precipitation method; latent fingerprint detection; dye degradation

1. Introduction

Forensic technology performs a crucial role in the functioning of the criminal justice
system, offering fundamental equipment and methodologies for identity evaluation and
the interpretation of evidence. The relentless pursuit of justice relies heavily on these
technological improvements. Among the numerous forms of forensic evidence, fingerprints
have been a cornerstone of investigations for over a century [1,2]. In modern times, visible
latent fingerprint detection is at the forefront of investigations, with wide-ranging use
in law enforcement, border safety, and biometric authentication [3–7]. Identifying and
appraising evidence have emerged as fundamental factors in solving crimes and ensuring
that those responsible are brought to justice. In this context, latent fingerprints constitute a
crucial aspect. Unlike visible fingerprints, latent prints are hidden from the naked eye and

Molecules 2023, 28, 7228. https://doi.org/10.3390/molecules28207228 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28207228
https://doi.org/10.3390/molecules28207228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-1886-139X
https://orcid.org/0000-0001-5821-5600
https://orcid.org/0000-0001-9689-1124
https://orcid.org/0000-0003-3914-3933
https://doi.org/10.3390/molecules28207228
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28207228?type=check_update&version=1


Molecules 2023, 28, 7228 2 of 14

necessitate specialized strategies for their discovery. This concealed nature is due to the
latent prints being composed of the residual oil and sweat left on the ridges of the fingers,
which renders latent prints invisible. The traditional method of latent fingerprint detection
typically involves the application of fingerprint powder, which conforms to the shape of
the residue, as mentioned previously, thereby rendering the latent prints visible. However,
this approach is associated with difficulties and may damage the underlying surface. Thus,
there has been an escalating call for a non-damaging, less invasive approach to detecting
latent fingerprints [8–11].

The relevance and significance of forensic technology in the criminal justice system
cannot be overstated. Forensic professionals and investigators depend on its tools to inter-
pret the clues left at the scene by criminals and to establish a transparent chain of evidence.
The use of fingerprints in personal identification has deep historical roots, dating back
to historic Babylon, where fingerprints were used on clay capsules for commercial enter-
prise transactions. In the present era, the evaluation of fingerprints achieved prominence
as a forensic technology when Sir Francis Galton and Sir Edward Henry advanced the
use of fingerprints within the late 19th and early 20th centuries. Since then, fingerprint
identification has become a cornerstone of forensic science, criminal investigations, and
prison court cases. However, latent fingerprints present a unique challenge. These are
impressions left behind by accident, often at crime scenes, on glass, plastic, or metallic
surfaces. Unlike visible fingerprints, they are invisible to the human eye. The desire for
a more dependable and less destructive technique to uncover these concealed clues has
pushed the pursuit of latent fingerprint detection. Historically, the number one technique
for latent fingerprint detection has been the technology of fingerprint powder. This method
involves dusting the surface containing the latent print with powder, which adheres to the
residual oils and sweat, revealing the hidden sample. While powerful, this procedure has
inherent barriers. This negative technique can harm or contaminate the underlying surface
and may not be applicable in all circumstances. Consequently, there has been a call for
alternative, non-invasive methods. Technological improvements in forensics, specifically in
latent fingerprint detection, have extensively enriched the criminal justice system, and their
utility has extended into broader areas, including regulation enforcement, border safety,
and biometric authentication [12–14].

Photocatalytic dye degradation represents a ground-breaking method for the removal
of organic harmful dyes from wastewater with the use of the energy of photocatalysts.
This approach involves the activation of catalysts that drive the production of reactive
oxygen species, which act upon the dye molecules, breaking them into harmless byprod-
ucts. Recent advancements in this area have been focused on boosting the efficiency
of photocatalysts, generally by harnessing the specific sites of nanomaterials, such as
graphene oxide, steel–organic frameworks, and quantum dots, as highlighted in numerous
studies. These advanced substances provide significantly increased light absorption capa-
bilities, ultimately leading to greener and more eco-friendly dye degradation. Additionally,
researchers have delved into modifying photocatalysts to target unique dye types and
optimizing response times to achieve advanced overall performance. These collective
efforts have fantastic promise for a powerful and environmentally friendly remedy for
water resources contaminated with dyes [15–17].

Photocatalytic dye degradation is increasingly recognized as an environmentally
friendly solution to address the widespread issue of dye pollution in water. The process
relies on using photocatalysts, materials that can potentially use light energy and convert
it into chemical energy (ROS). These produced ROS are very potent and play an essential
role in degrading organic compounds through chemical reactions. ROS efficiently degrade
the organic dyes by breaking them into simple, non-toxic compounds.

One of the primary areas of research in this discipline has been enhancing photocata-
lysts’ overall performance. This objective has led to the exploration of diverse nanomateri-
als, which display properties that may enhance the performance of photocatalysis. Notably,
metal oxides have emerged as a promising candidate due to their excellent tunable surface
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area and exceptional electric conductivity. These properties enable them to be ideal photo-
catalyst materials, enhancing their stability and catalytic nature. Similarly, graphene and
quantum dots have shown fantastic capability in improving photocatalytic performance.
Metal oxide frameworks (MOFs) possess a porous structure that enables dye adsorption,
while quantum dots showcase outstanding light-absorbing capabilities, allowing for better
energy conversion in photocatalytic reactions.

Using nanomaterials in photocatalysis complements the method’s efficiency and con-
tributes to its environmental sustainability. By increasing the surface region for catalysis
and enhancing light absorption, these materials reduce the amount of the photocatalyst
required for effective dye degradation. This translates to lower material use, decreased
energy expenditure, and a more environmentally friendly technique for wastewater reme-
diation. Furthermore, researchers have been eager to customize photocatalysts to target
dyes. Organic dyes are available in myriad structures and compositions, each one requiring
a tailor-made approach for green degradation. Through the amendment of photocatalysts,
scientists can fine-tune their catalytic properties to suit the dye contaminants’ traits better.
This degree of specificity guarantees that the photocatalytic system stays powerful across a
wide range of dye pollution.

In addition to customizing photocatalysts, optimizing the response times has been a
focus of recent studies. Researchers are diligently working to identify the ideal parameters
for photocatalytic dye degradation, including the awareness of photocatalysts, the duration
of exposure to light, and the pH of the solution. These efforts aim to maximize the method’s
performance while minimizing energy consumption and ensuring constant outcomes in
diverse environmental conditions.

Luminescent materials are one of the most promising techniques for detecting latent
fingerprints [11]. Luminescent substances emit light when exposed to a specific sort
of energy, including ultraviolet light or X-rays. Using luminescent materials makes it
viable to enhance the identification of latent fingerprints and detect even faint or invisible
prints. Several luminescent materials, which include metal oxides (MOs), quantum dots
(QDs), and primarily lanthanide-based substances, have been studied for use in latent
fingerprint detection [18–22]. Among these luminescent materials, primarily lanthanide-
based materials have shown first-rate potential in latent fingerprint detection because of
their photophysical properties [23]. Lanthanide ions have electronic transitions with sharp
and narrow emission bands, which permits great sensitivity and selectivity in detecting
latent fingerprints.

Nanomaterials involving Barium and Lanthanum have recently garnered interest for
their potential applicability in the discipline of forensics. These nanomaterials have precise
properties that make them appropriate for forensic applications, including fingerprint
detection and analysis. Nanomaterials prepared with these factors are recognized for their
chemical stability, which permits them to keep their physical and chemical properties even
after exposure to diverse environmental situations. This stability makes them perfect for
fingerprint detection, wherein the nanomaterials can be applied to surfaces to expose latent
fingerprints that are not visible to the naked eye. Moreover, the involvement of a lanthanide
(Lanthanum) makes these nanomaterials exhibit strong luminescence properties, which
can be exploited in forensic evaluation. These properties have made them a promising
candidate for forensic applications [24,25]. Further studies are warranted to discover these
nanomaterials’ capabilities in the field of forensics.

In the present study, BaLa2O4 NSs were synthesized using the co-precipitation method.
The prepared sample was subjected to various techniques to characterize its structural,
surface morphology, and luminescent information. Furthermore, latent fingerprint visu-
alization was conducted using the powder-dusting method to assess the potential of the
prepared NPs for use in advanced forensic applications.
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2. Results and Discussion
2.1. PXRD Analysis

The structural analysis of nanomaterials plays a pivotal role in figuring out their
potential for application in the fields of forensics and catalysis. In forensics, the structures
of nanomaterials, including their high surface area and tunable reactivity, allow them to
be employed in detecting and evaluating trace evidence, providing desirable sensitivity
and specificity in crime scene investigations. Moreover, their potential as catalysts, often
derived from properly defined nanostructures, makes them precious in catalysis programs,
facilitating more efficient and sustainable chemical reactions. The capacity to tailor nano-
material systems allows for precision in each forensic and catalytic context, making them
essential tools in these domains.

PXRD analysis was conducted on the as-synthesized BaLa2O4 NSs to determine their
crystallite structure and phase identification, essential for understanding their properties
and potential applications. Figure 1 depicts the PXRD profile, which displays similarity
to the data retrieved from the Materials Project for BaLa2O4 (mp-752656) from database
version v2022.10.28 with space group Pnma and the orthorhombic phase of the parameters
a = 3.70 Å, b = 10.67 Å, and c = 12.66 Å [26]. Furthermore, the as-obtained results were
analyzed to evaluate the crystallite size of the sample using the Scherrer equation [27],

D =
kλ

βcosθ

where D, k, λ, β, and θ represent the crystallite size, shape factor of 0.9, wavelength of
the X-rays used, full width at half maximum of the profile peaks, and diffracting angle,
respectively, and D was found to be 27 nm.
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2.2. Morphology

Morphological evaluation of nanomaterials is pivotal in assessing their suitability
for forensic and catalytic applications. The unique structural traits of nanomaterials,
their size, shape, and surface area, are important in determining their effectiveness in
numerous domains. In forensics, the distinct morphological functions of nanomaterials
enable their usage in fingerprint analysis and evidence detection. Their large surface-to-area
ratio enhances their sensitivity, and tailored shapes and compositions provide numerous
applications. In catalysis, the morphology governs the catalytic ability of the nanomaterial,
influencing its response kinetics and selectivity. Nanomaterials’ tunable structures allow
them to have a role as catalysts in various applications, which are important in developing
sustainable techniques. This synergy between morphological analysis and nanomaterials’
properties underscores their ability to advance forensic and catalytic technology.

Hence, the prepared sample was subjected to FESEM and SEM for surface morphology
and EDAX mapping. Figure 2 delineates an irregular stack structure at different magnifica-
tions, with regions layered on top of one another. Furthermore, the elemental composition
is authenticated by Figure 3, the EDAX spectrum, showing the high purity of the precursors’
elements. Figure 4 reveals the mapping of Barium (Ba L), Lanthanum (La L), and Oxygen
(O K) in the selected 100 µm area of the as-synthesized sample.
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2.3. DRS Studies

The inspection of the optical properties of nanomaterials plays a pivotal role in en-
dorsing them as compelling candidates in both forensics and catalysis. Nanomaterials are
engineered on the nanoscale, having properties that set them aside from bulk materials.
These unique features make them useful in diverse applications. In forensics, the optical
properties of nanomaterials are harnessed for their capability to enhance the detection
and evaluation of evidence. Nanoparticles may be tailor-made to exhibit optical proper-
ties, including fluorescence. This allows them to behave as molecular tags or labels for
evidence, making it less complicated to identify latent fingerprints, organic materials, or
different strains at crime scenes. For example, nanomaterials with tunable fluorescence
properties can bind to blood, semen, or other physical fluids, illuminating crime scene
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evidence beneath specialized light sources. This allows for quicker and more correct
forensic evaluation.

Moreover, nanomaterials have emerged as having potential applications as catalysts
due to their large surface-to-area ratio and capability to function as catalysts in various
chemical reactions. Their optical properties are instrumental in tracking and controlling cat-
alytic reactions. Researchers can use real-time insights into reaction kinetics and pathways
by incorporating nanomaterials with precise optical signatures into catalytic procedures.
This not only effectively enhances the performance of catalytic reactions, it also affords a
tool for information and optimizing complex chemical methods.

A diffused reflectance (DR) spectrum ranging between 200 nm and 600 nm was
observed, as depicted in Figure 5a, showing two bands centered at 223 nm and 310 nm,
further appraised for the calculation of the energy band gap (Eg) using the Kubelka–Munk
function, given as [28]

F(R∞) =
(1− R∞)2

2R∞

hν =
1240

λ

where hν is the photon energy, F(R∞); R∞ is the reflection co-efficient; and λ is the wave-
length absorbed. The estimated Eg of the as-synthesized BaLa2O4 NSs was 4.03 eV, as
depicted in Figure 5b. Furthermore, the evaluated Eg was utilized to find the refractive
index of the prepared sample using the relation [29]

n2 − 1
n2 + 1

= 1−
√

Eg

20

where n, the refractive index, was found to be 0.73.
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2.4. Fluorescence Studies

The prepared sample was studied for its fluorescence properties since Lanthanum
(a lanthanide group element with active f-transitions) was involved. Figure 6a shows
the excitation spectrum of the BaLa2O4 NSs at the 440 nm emission wavelength, and
the characteristic peak at 397 nm was observed for an effective 4F7/2→4G11/2 transition.
Furthermore, the observed excitation was utilized to record the emission spectrum, depicted
in Figure 6b. The results obtained show two prominent peaks at 420 nm (4G7/2→4F7/2)
and 440 nm (4G5/2→4F7/2) [30,31].
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2.5. Chromaticity Analysis

In assessing its aptness as a luminescent material, the fabricated BaLa2O4 NSs was
subjected to a color emissivity test using the Commission International de I’Eclairage (CIE-
1931) [27,32]. Figure 7a,b show the CIE chromaticity diagram and the corresponding CCT
diagrams of the as-synthesized BaLa2O4 NSs obtained using emission studies at 397 nm
excitation. The calculation of the CCT value from the obtained co-ordinates (0.1529, 0.1040)
was performed using the McCamy empirical formula, as in [33],

CCT = −499n3 + 352n2 − 6823.3n + 5520.33

n =
x− xe

y− ye

where (xe, ye) are the color epicenter and (x, y) are the obtained CIE coordinates, and the
CCT value was found to be 3171 K. Further, the percentage color purity for the obtained
coordinates was evaluated utilizing the following relation [34]:

CP =

√
(xs − xi)

2 + (ys − yi)
2√

(xd − xi)
2 + (yd − yi)

2
× 100%

where (xs, ys) are the coordinates of the samples, (xd, yd) are the dominating wavelengths,
and (xi, yi) are the illuminating coordinates. The obtained results show a 91% blue emission.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. CIE (a) and CCT (b) plot using emission at λexi = 397 nm of the prepared BaLa2O4 NSs.  
represents the point of maximum emission. 

2.6. Latent Fingerprints (LFPs) Visualization 
Latent fingerprint detection through powder dusting is a fundamental and widely 

used method in forensic science. This approach reveals hidden fingerprints not seen by 
the naked eye. It is conducted using a fingerprint powder on surfaces where latent prints 
are suspected. The powder adheres to the residual oils and sweat left at the ridges of the 
fingerprints, making them stand out from the surface. The method involves careful usage 
of the powder, which is then lightly brushed or dusted onto the surface. The excess pow-
der is cautiously removed, leaving a clear and detailed identification of the latent finger-
print. This method is critical for crime scene investigations, permitting forensic profes-
sionals to acquire and analyze evidence that may be essential in solving crimes and bring-
ing perpetrators to justice. The simplicity and effectiveness of powder dusting make it an 
important device within the forensics toolkit. Different ridge pattern identification tech-
niques have seen increased interest in advanced forensic applications [35,36]. Generally, 
ridge patterns are recognized by type-I (whorls, loops, eyes), type-II (ridge ends, bifurca-
tions, bridges, hooks), and type-III (sweat pores) characteristics, using various techniques 
[20,37–39]. One such traditional technique, the powder-dusting method, was employed 
for the as-synthesized BaLa2O4 NSs to develop latent fingerprints (LFPs) on different non-
porous surfaces (glass, aluminium foil, and stainless steel). Figure 8 depicts the upfront 
hindrance-free ridge pattern detections on glass (A), aluminium (B), and stainless steel 
(C), captured using a Sony DSC-W690 Cyber-shot camera under white light. The acquired 
results show that the prepared samples detect type-I, type-II, and even type-III patterns 
without any background hindrance. The outcomes recommend the as-synthesized 
BaLa2O4 NSs for their potential use in advanced forensics applications. 

Figure 7. CIE (a) and CCT (b) plot using emission at λexi = 397 nm of the prepared BaLa2O4 NSs.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. CIE (a) and CCT (b) plot using emission at λexi = 397 nm of the prepared BaLa2O4 NSs.  
represents the point of maximum emission. 

2.6. Latent Fingerprints (LFPs) Visualization 
Latent fingerprint detection through powder dusting is a fundamental and widely 

used method in forensic science. This approach reveals hidden fingerprints not seen by 
the naked eye. It is conducted using a fingerprint powder on surfaces where latent prints 
are suspected. The powder adheres to the residual oils and sweat left at the ridges of the 
fingerprints, making them stand out from the surface. The method involves careful usage 
of the powder, which is then lightly brushed or dusted onto the surface. The excess pow-
der is cautiously removed, leaving a clear and detailed identification of the latent finger-
print. This method is critical for crime scene investigations, permitting forensic profes-
sionals to acquire and analyze evidence that may be essential in solving crimes and bring-
ing perpetrators to justice. The simplicity and effectiveness of powder dusting make it an 
important device within the forensics toolkit. Different ridge pattern identification tech-
niques have seen increased interest in advanced forensic applications [35,36]. Generally, 
ridge patterns are recognized by type-I (whorls, loops, eyes), type-II (ridge ends, bifurca-
tions, bridges, hooks), and type-III (sweat pores) characteristics, using various techniques 
[20,37–39]. One such traditional technique, the powder-dusting method, was employed 
for the as-synthesized BaLa2O4 NSs to develop latent fingerprints (LFPs) on different non-
porous surfaces (glass, aluminium foil, and stainless steel). Figure 8 depicts the upfront 
hindrance-free ridge pattern detections on glass (A), aluminium (B), and stainless steel 
(C), captured using a Sony DSC-W690 Cyber-shot camera under white light. The acquired 
results show that the prepared samples detect type-I, type-II, and even type-III patterns 
without any background hindrance. The outcomes recommend the as-synthesized 
BaLa2O4 NSs for their potential use in advanced forensics applications. 

represents the point of maximum emission.



Molecules 2023, 28, 7228 9 of 14

2.6. Latent Fingerprints (LFPs) Visualization

Latent fingerprint detection through powder dusting is a fundamental and widely
used method in forensic science. This approach reveals hidden fingerprints not seen by
the naked eye. It is conducted using a fingerprint powder on surfaces where latent prints
are suspected. The powder adheres to the residual oils and sweat left at the ridges of the
fingerprints, making them stand out from the surface. The method involves careful usage of
the powder, which is then lightly brushed or dusted onto the surface. The excess powder is
cautiously removed, leaving a clear and detailed identification of the latent fingerprint. This
method is critical for crime scene investigations, permitting forensic professionals to acquire
and analyze evidence that may be essential in solving crimes and bringing perpetrators to
justice. The simplicity and effectiveness of powder dusting make it an important device
within the forensics toolkit. Different ridge pattern identification techniques have seen
increased interest in advanced forensic applications [35,36]. Generally, ridge patterns are
recognized by type-I (whorls, loops, eyes), type-II (ridge ends, bifurcations, bridges, hooks),
and type-III (sweat pores) characteristics, using various techniques [20,37–39]. One such
traditional technique, the powder-dusting method, was employed for the as-synthesized
BaLa2O4 NSs to develop latent fingerprints (LFPs) on different non-porous surfaces (glass,
aluminium foil, and stainless steel). Figure 8 depicts the upfront hindrance-free ridge
pattern detections on glass (A), aluminium (B), and stainless steel (C), captured using a
Sony DSC-W690 Cyber-shot camera under white light. The acquired results show that the
prepared samples detect type-I, type-II, and even type-III patterns without any background
hindrance. The outcomes recommend the as-synthesized BaLa2O4 NSs for their potential
use in advanced forensics applications.
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2.7. MR Degradation by BaLa2O4 NSs

Photocatalysis is an innovative and environmentally friendly method for degrading
organic dyes. This process harnesses the power of light and a photocatalyst, typically
a semiconductor material like a simple metal oxide, to break down organic compounds
into harmless byproducts. When exposed to light, the photocatalyst generates electron–
hole pairs, initiating redox reactions that oxidize and degrade the organic dyes. The
critical advantage of photocatalysis is its ability to efficiently degrade a wide range of
organic dyes, even those that are challenging to treat using conventional methods. It is a
sustainable approach, as it does not rely on harsh chemicals or produce harmful residues.
Moreover, it can be applied in diverse settings, from wastewater treatment to air purification.
Photocatalysis represents a promising solution for addressing environmental pollution
and offers a cleaner, more sustainable pathway for tackling the challenges associated with
organic dye degradation.

The photocatalytic dye degradation of MR dye was performed using the prepared
BaLa2O4 NSs. A mass of 60 mg of the prepared photocatalyst was added to 100 mL of
10 ppm dye solution and an adsorption equilibrium was attained on stirring it vigorously
in the dark for 20 min. After adding the photocatalyst, 3 mL of the solution was withdrawn
every 10 min and centrifuged to study the absorption, as depicted in Figure 9a. The location
of the absorption band of Methyl Red, at 430 nm, was found to be unaltered, and the peak
decreased as a function of time. The degradation percentage was calculated using the
relation [40]

% Degradation =

[
Co − C

Co

]
× 100

where Co and C are the initial and current concentrations. The results show that the
percentage of degradation of the MR dye was 24% (10 min), 34% (20 min), 50% (40 min),
and 62% (70 min), as depicted in Figure 9b. Also, it was found that there was no further
degradation after 70 min.
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3. Experimental
3.1. Materials and Methods

Barium nitrate (Ba(NO3)2) and lanthanum nitrate (La(NO3)3) were purchased from
Sigma (Carlsbad, CA, USA). Synthetic methyl red (MR) (C15H15N3O2), available in the
laboratory, was used in the photocatalytic dye degradation. A high-resolution Bruker
powder X-ray diffractometer (Karlsruhe, Germany) was used to study the phase dynamics
of the prepared sample. A JOEL JSM-7100F FESEM and EVO MA 15 (Carl Zeiss, Schleswig-
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Holstein S-H, Germany) were used to determine the surface morphology and confirm the
elemental composition of the prepared sample. The absorption band was produced using
a UV-3200 (Lab India, Mumbai, India) double-beam UV–Visible spectrophotometer for
band-gap analysis. A SHIMADZU fluorescence spectrophotometer was used for photo-
luminescence analysis of the prepared samples. A Rotek UV chamber was used to detect
latent fingerprint designs on various surfaces.

3.2. Synthesis of BaLa2O4 Nanosheets

A one-pot co-precipitation method (Figure 10) was utilized to synthesize the BaLa2O4
NSs. Stoichiometric amounts of Ba(NO3)2 (2.6133 g) and La(NO3)3 (4.3301 g) were mea-
sured and transferred to a 100 mL round-bottom flask. This was then completely dissolved
in 25 mL of water, giving a homogeneous mixture. The mixture obtained was kept on a hot
stirrer for about 7 to 8 h until the precipitation was complete. Furthermore, the precipitate
was centrifuged at room temperature at 900 rpm for about 20 min to separate it from the
solvent. The precipitate was air-dried at 70 ◦C in an oven and further calcinated at 700 ◦C
for further characterization. The yield was estimated to be about 83% (5.7630 g).
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3.3. Photocatalytic Degradation Activity

The synthesized BaLa2O4 nanosheets’ (NSs) overall catalytic performance was in-
vestigated using synthetic MR dye as the model pollutant. Initially, 100 mL of solution
containing 20 parts per million (ppm) of MR dye was prepared. To establish the desorption
equilibrium between the photocatalyst and the dye, the prepared solution, containing the
dye and photocatalyst, underwent lively stirring in the dark for 20 min. The prepared
samples featured a sizeable percentage of La2O3, recognized for its first-rate photocatalytic
ability in degrading synthetic dyes [24,25]. Consequently, after adding the photocatalyst
to the MR dye solution, absorption measurements were taken at the 0 min mark to gauge
the initial absorbance. Subsequently, at 10 min intervals, samples were extracted from the
solution on the stirrer. These samples were then subjected to centrifugation to remove any
coagulated catalyst, ensuring that the analysis was centered totally on the outcomes of the
photocatalyst. The absorption traits of the solution were tested at these time points. This
systematic technique allowed for a complete evaluation of the catalytic performance of the
BaLa2O4 nanosheets in degrading the MR dye, with absorption measurements at different
time points providing valuable insights into the degradation kinetics and performance of
the photocatalytic technique.
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4. Conclusions

In summary, a simple co-precipitation method was utilized to fabricate BaLa2O4
NSs. The prepared sample was investigated using PXRD, FESEM, UV, and a fluorescence
spectrophotometer. The structural results show that the prepared sample matched the
data retrieved from the Materials Project database, mp-752656, having an orthorhombic
phase. Irregular sheet shapes stacked on top of one another in a layer-like morphology were
observed from the morphology studies. The distribution of the precursor elements in the
prepared sample was confirmed from EDAX mapping analysis. DRS studies depict a strong
peak at 310 nm, from which the calculated energy band gap and refractive index were
4.03 eV and 0.73, respectively. The excitation spectrum shows a strong excitation at 397 nm
(4F7/2→4G11/2) with the 440 nm emission maintained, alongside an emission spectrum
depicting two prominent peaks at 420 nm (4G7/2→4F7/2) and 440 nm (4G5/2→4F7/2),
maintained at 397 nm excitation. Further, the CIE-1931 diagram confirming the color
emission with coordinates (0.1529, 0.10401) was utilized to calculate the CCT, which was
found to be 3171 K. The obtained coordinates were utilized to evaluate the CP%, the result
of which was a purity of 91%. The as-prepared nanosheets were used with the powder-
dusting method to detect latent fingerprints developed on various non-porous surfaces
(glass, aluminium, and stainless steel). The obtained results depict the detection of up to
a type-III level ridge pattern. Furthermore, an effective dye degradation against methyl
red was conducted by making use of the synthesized BaLa2O4 NSs; up to 62.23% of the
methyl red was degraded, with no further degradation after 70 min. All the acquired
results suggest the prepared BaLa2O4 NSs as a potent candidate in advanced forensic and
photocatalytic applications.
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