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Figure S1. The optical micrograph of coconut shell powder.  

 

 

 

Figure S2. (a) CV and (b) GCD curves of CSC electrode at various scan rates or 

current densities. (c) Histogram of the decoupling capacitance contributions of 

CSC at various scan rates. Decoupling capacitance of (c) CSAC and (d) CSC 

electrode contributed by the fast-kinetic process (blue area) and the slow-

dynamic processes (blank) at 10 mV s−1.  



 

Figure S3. Capacitive contributions of CSAC cathode in ZHS at various scan 

rates: (a) 1 mV s−1, (b) 2 mV s−1, (c) 5 mV s−1, (d) 10 mV s−1 and (e) 20 mV s−1.  

 

 

 

Figure S4. Nyquist plots of CSAC-based ZHS with frequency range of 105-0.01 

Hz. 
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Table S1. Electrochemical capacitances of CSC and CSAC electrodes calculated 

from CV and GCD curves of 6 M KOH-loaded symmetric device. 

Sample 
Capacitance calculated from CV curves at various scan rates 

5 mV s−1 10 mV s−1 20 mV s−1 50 mV s−1 100 mV s−1 

CSC 119 F g−1 117 F g−1 113 F g−1 104 F g−1 96 F g−1 

CSAC 354 F g−1 340 F g−1 331 F g−1 320 F g−1 311 F g−1 

Sample 
Capacitance calculated from GCD curves at various current 

densities 

0.2 A g−1 0.5 A g−1 1 A g−1 2 A g−1 5 A g−1 10 A g−1 

CSC 121 F g−1 115 F g−1 110 F g−1 103 F g−1 90 F g−1 86 F g−1 

CSAC 367 F g−1 351 F g−1 343 F g−1 334 F g−1 324 F g−1 316 F g−1 

 



Table S2. Electrochemical performance comparison of CSAC- and other biomass-derived carbons-based symmetric supercapacitors. 

Precursor Sample Electrolyte Capacitance (F g−1) Capacitance retention Cycling stability Ref. 

Coconut shell CSAC 6 M KOH 367 (0.2 A g−1) 86.10% (0.2-10 A g−1) 92.09% (10 A g−1, 10000 cycles) This work 

Coconut shell 3DPGLS 1 M TEMABF4/PC 91.15 (0.2 A g−1) 89.2% (0.2-2 A g−1) 85.1% (0.1 A g−1, 5000 cycles) [1] 

Coconut shell CSCK-800-2 6 M KOH 317 (0.5 A g−1) 68% (0.5-20 A g−1) 99.7% (5 A g−1, 10000 cycles) [2] 

Coconut shell and coal CJA15 6 M KOH 251.67 (0.5 A g−1) 77.9% (0.5-10 A g−1) - [3] 

Durian kernel DKAC-700 6 M KOH 330 (0.2 A g−1) 75.15% (0.2-20 A g−1) 97.9% (2 A g−1, 10000 cycles) [4] 

Pistachio shell NCNaK-1 1 M KOH 88 (0.5 A g−1) 77.27% (0.5-5 A g−1) 95.8% (10 A g−1, 5000 cycles) [5] 

Corn husk ASCH-1:1 6 M KOH 127 (1 A g−1) 69.0% (1-20 A g−1) - [6] 

Plastic bags PE-HPC-900-NH3 6 M KOH 110 (0.05 A g−1) 90.9% (0.05-0.5 A g−1) 97.1% (2 A g−1, 10000 cycles) [7] 

Feather finger grass flower HT-PC 6 M KOH 120 (1 A g−1) 70.6% (1-30 A g−1) 70% (10 A g−1, 10000 cycles) [8] 

Bamboo ABC-900 3 M KOH 79 (0.5 A g−1) 81.9% (0.5-20 A g−1) 91.8% (3 A g−1, 10000 cycles) [9] 

Cornstalk HPCS-3 1 M H2SO4 413 (0.5 A g−1) 65.9% (0.5-10 A g−1) 92.6% (5 A g−1, 20000 cycles) [10] 

Cotton stalk FTMAC-4 1 M H2SO4 254 (0.2 A g−1) 83.1% (0.2-10 A g−1) 96% (1 A g−1, 10000 cycles) [11] 

Rice straw NMCSs@RSPC-1 6 M KOH 268 (1 A g−1) 80.2% (1-10 A g−1) 90% (5 A g−1, 4000 cycles) [12] 

Lotus leaf LLPC-800-1:3 6 M KOH 274 (1 A g−1) 88% (1-10 A g−1) 90% (5 A g−1, 5000 cycles) [13] 

Rose RAC-800-2 1 M Na2SO4 128.8 (0.5 A g−1) 72.3% (1-4 A g−1) 96% (5 A g−1, 10000 cycles) [14] 

Rice husk PCNS/RHC8 6 M KOH 315 (0.1 A g−1) 60% (0.1-50 A g−1) 95.8% (5 A g−1, 10000 cycles) [15] 

Tremella THPC 1-24 6 M KOH 299.3 (0.5 A g−1) 83.6% (0.5-20 A g−1) 97% (10 A g−1, 50000 cycles) [16] 
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