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Abstract: This review article describes a historical perspective of elucidation of the nature of the
chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in
chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry
(BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking
for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS
methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited
for the elucidation of the scope and applicability of the BS methods. Several chemical indices have
been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular
orbital models have been employed to explain the metal oxyl-radical character of the M=O and
M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between
carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the
chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O,
O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species
with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II)
is also explained by this analogy. The early proposals obtained by these theoretical models have
been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0),
CASPT2, and UNO CI (CC) methods and quantum computing (QC).

Keywords: M=O; MOO; iron oxide; iron peroxide; molecular oxygen; atomic oxygen; isolobal and
isospin; oxyl-radical; BS and beyond BS methods; compound I and II; UNO X (X=CI; CC)

1. Introduction

This review article describes a historical perspective of the elucidation of the nature of
the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (MOO) com-
pounds in chemistry and biology [1–24]. The iron-oxo species are assumed to be the active
site of P450 enzymes and nonheme iron enzymes. Over past decades, both experimental
and theoretical investigations have been performed to aid understanding, explanation
and prediction of structure, bonding, and the reactivity of these complex compounds with
high-valence states, such as Fe(V) and Fe(IV). From a theoretical viewpoint, both the static
and dynamical electron correlation effects [25] play important roles for the 3d transition
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metal (M = Cr, Mn, Fe, Cu, etc.) oxo and peroxo compounds with quasi-degenerated elec-
tronic and spin states [26–30]. This means that the theoretical models explicitly involving
electron–electron repulsion terms are indispensable for investigations into the nature of
the chemical bonds of these systems. Historically, quantum-mechanical (QM) methods
employed for them have been the unrestricted (U) semi-empirical and ab initio Hartree–
Fock (HF) molecular orbital (MO) models, the Kohn–Sham (KS) density functional theory
(DFT), and the hybrid HF-KS DFT (UHDFT) models based on a single Slater determinant
approximation. These MO-based theoretical descriptions of the chemical bonds are often
referred to as “broken-symmetry (BS)” methods, which have been employed as the first
theoretical steps toward complex systems.

Theoretically, the BS methods are mainly responding to the static electron correlations
of M=O and MOO compounds. Therefore, the single reference (SR)- and multi-reference
(MR)-coupled cluster (CC) single (S) and double (D) methods have been performed for
remaining dynamical correlation corrections [25]. On the other hand, complete active space
(CAS) configuration interaction (CI), CAS self-consistent field (SCF), and CASSCF second-
order perturbation (PT2) have been also employed for extended computations of the M=O
and MOO compounds [31,32]. The CAS CCS is formally equivalent to CASSCF. The natural
orbitals (UNO) and occupation numbers obtained by the natural orbital analysis of BS
solutions have been used for the construction of CAS [32]. Recently, CAS CI, CASSCF,
CASPT2, MR CI, MR CC, etc., by use of UNO [25] have been performed beyond DFT
computations of electronic and spin structures of metalloenzymes involving 3d transition
metal complexes. Very recently, quantum computation (QC) has been proposed for accurate
computations [33–36] of M=O and MOO compounds.

Transition metal enzymes play important roles in biological processes and reac-
tions [37–77]; (1) oxygen carriers and storages in myoglobin (M = Fe), hemoglobin
(M = Fe), hemocyanin (M = Cu), hemerythrin (M = Fe), (2) dioxygenations of phenol deriva-
tive, indole derivatives and others by dioxygenases (M = Fe, Cu), (3) mono-oxygenations
of alkanes, alkenes, etc., by P450 (M = Fe, Mn) and non-heme iron (M = Fe, Mn) enzymes,
(4) methane mono-oxygenation by methane monooxygenase (M = Fe, Cu), (5) water oxida-
tion in photosystem II (PSII) (M = Mn), (6) oxygen reduction by cytochrome c oxidase (CcO),
etc. These metalloenzymes have 3d transition metal oxo (M=O), peroxo (MOO), dinuclear
metal oxides cores (M-(µ-O)-M) and (M-(µ-O)2-M), tetra-nuclear Mn clusters (Mn4Ox),
etc., which are embedded in the protein matrix. The protein matrix is often treated with
the molecular mechanics (MM) model for computational economy; therefore, QM/MM
methods have been used to elucidate the structure, function, and catalytic reactions of the
metalloenzymes involving 3d M=O and MOO core complexes coupled strongly with the
protein matrix of metalloenzymes.

In the early 1980s, we initiated QM-theoretical investigations into the electronic and
spin structures of 3d M=O and MOO model complexes, which are responsible for the above-
mentioned biological functions and reactions [25–30]. The spin-polarized (SP) unrestricted
Hubbard (UHB) and HF (UHF) models were applied to elucidate the electronic and spin
structures of these model complexes with oxyl-radical reactivity. The UHF CCSD and
UHDFT computations of the M=O species were performed to elucidate the binding energies
between M and O, indicating the practical and handy applicability of UB3LYP (one of
UHDFT) in the investigation of the transition-metal oxo compounds [25,78,79]. In a recent
review [80], we summarized our computational results on Mn=O, Mn-O-Mn, MnO2Mn,
Mn4O4, and CaMn4Ox (X = 5, 6) systems in relation to water oxidation by water oxidation
complex in photosystem II (PSII).

In this review, the historical development and perspective of theoretical elucidation of
the nature of chemical bonds of high-valent M(X)=O (M = Mn, Fe; X = IV, V) and MOO
species are mainly described for understanding and explanation of mono-oxygenations of
cytochrome P450 enzymes and related heme iron-oxo systems [1–18,48–70]. To this end, the
basic concepts and principles of the BS and beyond BS methods are briefly reviewed in relation
to the theoretical modeling of electrophilic, homolytic radical, electron-transfer radical, and
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nucleophilic reactivity of these species, depending on the types of substrates and environmental
conditions [25–30,81,82]. However, several excellent review articles [83–90] have already
been published on the structure, bonding, and reactivity of P450 and related enzymes.
Particularly, X-ray structures [88] and biological functions of P450 have been summarized
in the book [21]. Therefore, our BS theoretical and computational results for M=O and
MOO species in both heme- and non-heme systems are mainly reviewed in this article.
Future perspectives are also touched on in relation to quantum computations (QC) [33–36]
by using UNO obtained by the BS computations of metalloenzymes (UNO-QC) [25,26,36].

2. Historical Backgrounds for Mono-Oxygenation Reactions
2.1. Discoveries of Cytochrome P450 Enzymes and Related Metalloenzymes

First of all, the history of discovery of P450 is briefly reviewed as an introduction
of P450 enzymes [1–21,37–70]. Cytochrome P450 (CYP) is an important enzyme for sev-
eral biological reactions. The CYP is classified into several families, such as CYPmXn
(m, X denote family and subfamily, respectively, and n denotes the name of each en-
zyme of the same group), depending on the structures of amino acid primary sequences.
The CYP enzyme catalyzes the incorporation of only one oxygen atom of molecular oxygen
into substrates, such as alkanes (RH), while reducing the other oxygen atom into a water
molecule (H2O) with the following stoichiometry [1–21]; therefore, these reactions are often
referred to as mono-oxygenations.

R-H + O2 + NAD(P)H + H+ → R-OH + H2O + NAD(P)+ (1)

The mono-oxygenation reactions in Equation (1) are different from the dioxygenase
reactions with the following stoichiometry [22,23].

R + O2 → R-O2 (2)

where R is a carbon substrate and RO2 is an di-oxidized product. The first reports of cy-
tochrome P450 by Omura and Sato were published in 1962~1964 [2,5–7,9].
Before their publications, Klingenberg discovered the carbon monoxide-binding pig-
ment [1]. Hayaishi and Mason established the concepts of dioxygenases [22–24] and mono-
oxygenase, namely, mixed-function oxidases [24] and/or external monooxygenase [22,23].
Cooper et al. [3,4,8] later elucidated the connection between cytochrome P450 and mixed-
function oxidation using photochemical action spectra.

Each cycle of mono-oxygenation illustrated in Figure 1 requires two electrons that
originate from the pyridine nucleotides, NADH or NADPH [21,85], which is formed by
photosynthesis [82]. The function of the electron transport protein of cytochrome P450
enzyme is to accept two electrons from NAD(P)H and to transfer them one at time to the
cytochrome P450 during the mono-oxygenation reactions. Two classes of cytochrome P450
enzymes have been identified based on the electron transfer pathways. In one class, an
N-terminal P450 heme domain is fused to a C-terminal NADPH, namely, cytochrome P450
reductase (CPR), which contains a flavin mononucleotide (FMN)-flavodoxin (FAD) and a
FAD/NADPH binding domain. The electron transport chain of this class is expressed as
follows [1–21]:

NADPH→ FAD→ FMN→ Heme (P450) (3a)

where NADPH and FMN are two electron (2e−) and one electron (e−) donors, respectively.
Therefore, FMN transfers two electrons by NADPH one at time at the necessary steps, as
illustrated in Figure 1.

The one electron mediator FMN is replaced with an adrenodoxin, 2Fe-2S ferredoxin-
type iron-sulfur protein, in other class of P450 enzymes. The electron transfer process of
the class is expressed as follows [1–21].

NADPH→ FAD→ 2Fe-2S→ Heme (P450) (3b)
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The NAD(P)H or NADH provides one proton (H+) and therefore one more necessary
H+ is transferred in the cytochrome P450 enzyme systems, as shown in Figure 1. Iron-sulfu
(Fe-S) clusters, such as ferredoxin, play important roles for electron transfer reactions in biology.
Therefore, the theoretical investigations of 2Fe-2S, 3Fe-4S, and 4Fe-4S clusters are also very
important for the elucidations of redox reactions in biology [33–36,91,92].

The reaction cycle of the mono-oxygenation with cytochrome P450 is now eluci-
dated chemically [21,83–90]. Figure 1 illustrates the well-established molecule-based re-
action cycle of mono-oxygenation reactions by cytochrome P450 [1–21,48–90]. The rest-
ing state (A) is expressed by the porphyrin (Por) LFe(III) (L = axial thiolate anion) state
with a distal coordinated water molecule, namely, the sixth ligand to iron. The low-spin
(S = 1/2) state of iron is favored in the A state because of the coordination of water molecule.
The coordinated water molecule is replaced with substrate alkane (RH) at the next step
(B). The high-spin (S = 5/2) ground state of the PorLFe(III) species is formed at this step
(B), changing the redox potential for electron capture. In fact, the one-electron transfer
(OET) from cytochrome P450 reductase (CPR) becomes feasible, providing the one electron
trapped intermediate (C) with a PorLFe(II) electronic configuration.

The molecular oxygen is inserted at the Fe(II) site, affording the Fe-peroxide inter-
mediate (D) with PorLFe(III)OO. The further one-electron transfer from CPR provides
the reduced intermediate (E) with PorLFe(III)OO−. The proton transfer occurs to afford
the protonated intermediate (E’) PorLFe(III) with the hydroperoxide anion, which is often
referred to as Compound 0. The heterolysis of the OOH bond of E’ is induced by the
protonation, providing the formal PorLFe(V)=O intermediate in step F, which is trans-
formed into π cation radical Por(+•)LFe(IV)=O intermediate when the axial ligand (L) is
appropriate ligands [1–21]. The F is referred to as cytochrome P450 compound I (P450-
CPI) [56–62]. The formal iron-oxo intermediate Fe(V)=O3+ formed at the step F undergoes
the mono-oxygenation, as illustrated in Figure 1 [24]. The hydrogen radical abstraction
(HRA) mechanism by F was proposed based on the large intermolecular kinetic isotope ef-
fect (kH/kD > 11), indicating a radical reactivity [21]. However, other intermediates [65–71]
were also proposed for mono-oxygenations by F.

Extensive investigations have been performed into PorLFeOO compounds with several
kinds of axial ligand (L) [37–45]. The axial ligand is also the thiolate anion of chloride
peroxidase that undergoes a catalytic chlorination of alkane, as shown in Equation (4).

2R−H + 2Cl− + H2O2 → 2R-Cl + 2H2O (4)

On the other hand, the axial ligand (L) is histidine (His) in the case of peroxidase
(M = Fe), which catalyzes the decomposition reaction of hydroperoxide into molecular
oxygen and water as follows:

2H2O2 → O2 + 2H2O (5)

The axial ligand (L) is also histidine (His) in the case of myoglobin (Mb) and hemoglobin
(Hb) [83]; however, the H-N bond of histidine in peroxidase is linked with the proton-
accepting amino acid to form its anion in a sharp contrast to Mb and Hb. The same reaction
in Equation (5) is also catalyzed by catalase (M = Fe) with L = phenolate anion arising
from tyrosine. The shunt pathway from B to E’ using per-acids ROOH and H2O2 has been
investigated to elucidate chemically the reaction cycle in Figure 1 [15,16,83–90].

In the 1970s~1980s, magnetic susceptibility and EPR experiments [37–41,43,44] elu-
cidated open-shell electronic structures of PorLFeOO. The magnetic property of oxygen
carriers such as hemoglobin was investigated in Prof. Kotani’s Lab. at that time [39].
The biological functions of P450 enzymes were extensively investigated in Prof. Sato’s
lab at the protein institute at Osaka University. In the early 1980s, we initiated theoretical
investigations of the nature of the chemical bonds of the high-valent transition metal oxo
and peroxo compounds in the metalloenzymes [25–30]. The SP BS UHF models [93,94],
followed by small UNO CAS CI [95], were employed as a first step to investigate metal
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oxides because multi-reference theoretical models [31,32] were hardly applicable to them at
that time. Other groups [96,97] employed the BS Xα model for theoretical investigations
of transition metal complexes, such as iron-sulfur (Fe-S) complexes. As shown later, early
BS computations performed [25–30] elucidated fundamental concepts such as oxyl-radical
character and several chemical indices to elucidate and understand the nature of chemical
bonds of high-valent M=O and MOO species. The chemical indices, such as effective bond
order and oxyl-radical character, are indeed useful and effective for current theoretical
investigations of oxygenation reactions by P450 and related enzymes. The chemical in-
dices [25] are also obtained with the multi-configuration (MC) models [25,98–104], such
as CASSCF, CASPT2, and RASPT2, providing effective bridges between BS and MC mod-
els for metalloenzymes [25,82]. Both BS and MC QM methods have been used for the
QM/MM methods, for which MM models are employed for the inclusion of protein fields
of metalloenzymes [82,105–109].
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Figure 1. The reaction cycle (A–F) for the mono-oxygenation reactions of alkanes by cytochrome
P450 [1–21]. The two electrons and one proton are provided by NAD(P)H and one proton by others
(see details in the text). The shunt pathway from (B) to (E’) is feasible using peracids ROOH, and
H2O2 instead of molecular oxygen (O2) [15,16,83–90].

2.2. Isolobal and Isospin Analogy between Organic and Inorganic Peroxides

Fifty years have passed since our proposal of BS approaches [110,111] to organic radical
reactions [112]. In the early 1970, we investigated chemical reactions by singlet molecular oxy-
gen [81] and the related organic peroxides, such as carbonyl oxides (CH2OO) [82,95,98] with
the eight diradical states in the narrow energy region via the BS and UNO CI methods [25,99];
therefore, these molecules are regarded as quasi-degenerated electronic systems [32]. One of the
fundamental problems in the theoretical chemistry at that time was “How to understand and explain
the structure and reactivity of iron oxides compounds in Figure 1?” [42,45,49–64].

In the early 1980s, the reaction cycle for the mono-oxygenation reaction in Figure 1
was not established yet [1–21]. Spectroscopic studies for peroxidase have been performed
to elucidate possible intermediates, elucidating the Fe(IV)=O π-cation radical, the com-
pound I [13,14,37–41,43,44]. On the other hand, Groves and collaborators [42,45,48–54]
have performed pioneering works for the elucidation of the structure and reactivity of
heme-type iron-oxo (Fe=O) model compounds, proposing the rebound mechanism for
mono-oxygenations of alkanes by P450. Their early proposal for the active catalysts was the
Fe(V)=O species [45,48]. The observed radical reactivity of iron-oxo and iron-peroxide indi-
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cated a similarity to the complex oxygenation reaction of the organic peroxide compounds
investigated by the BS computations [81,82]. Therefore, the first step of our theoretical
approach to the high-valent transition metal oxides was to consider the isolobal and isospin
analogy between organic peroxides (CH2OO, etc.) and inorganic active peroxides (MOO)
on the basis of the BS models [25,26,29,81,82].

The iron-peroxide intermediate D in Figure 1 [1–21] is an important precursor for the
generation of the iron-oxo intermediate F for the mono-oxidations. Therefore, theoretical
investigations of the nature of the Fe-O-O bonds have been crucial over the past decades.
As mentioned above, we have considered the isolobal and isospin analogy between carbonyl
oxides (R1R2C-O-O) [29,113,114] and iron-peroxides (LFe-O-O (L = R1R2)) [25,26,29,115,116],
where R1 and R2 are substituents for carbonyl oxide and L denotes ligands (heme for heme
iron systems) [1–21,37–41,45,87]. In fact, we investigated electronic structures of oxygenated
dipoles such as carbonyl oxide R1R2COO that exhibited a chameleonic behavior between the
following two extreme structures: 1,3-dipolar structure, R1R2

+C=O-O− and/or 1,3-diradical
structure, R1R2•C-O-O•, depending on types of substituents R1 and R2 and environmental
conditions [29,82]. Figure 2 illustrates the optimized structures of the singlet (A) and triplet
(B) states of the H2C-O-O. . .H2O cluster. The electronic structures (A) and (B) are qualitatively
responding to ionic and radical states, respectively. Similar complex behaviors were also
expected for LFe-O-O with different axial ligands (L), as illustrated in Figure 2 [26,29,82].

The dissociation of 1,3-dipole; R1R2
+C=O-O− was considered to be feasible into the

R1R2C+•↑ (doublet fragment S = 1/2) and superoxide anion [↓•O-O−. . .H-O-H] (doublet
fragment S = −1/2) in a solution phase if substituents R1 and R2 were electron-donating
groups [26,29,82]. On the other hand, 1,3-diradical: R1R2↑•C-O-O•↓ was considered to
dissociate into R1R2C: ↑↑ (triplet fragment S = 2/2) and molecular oxygen ↓•O-O•↓ (triplet
fragment S = −2/2) if substituents R1 and R2 were not electron-donating groups [26,29,82].
Therefore, BS models have provided the isolobal and isospin analogy between R1R2

+C=O-
O− and L1L2Fe(III)=O-O– [26,29,82] and the same analogy between for R1R2↑•C-O-O•↓
and L1L2↑•Fe(II)-O–O•↓. The L1L2↑•Fe(II)-O-O•↓ exchange-coupled structure was consid-
ered to be responding to the radical reactivity [16,82], as shown in Figure 2. Recently, this
iron peroxide radical is often assumed for oxygenation reactions by P450 [21] and dioxyge-
nase [116].

Hydrogen bonding interactions, together with solvation, also play important roles for
the conversion from a 1,3-singlet diradical structure to a 1,3-dipole structure, as shown in A
and B of Figure 2 [26,29]:

R1R2↑•C-O-O•↓ + H-O-R→ R1R2
+C=O-O−. . .H-O-R (6)

The mechanisms of oxygenation reactions by the carbonyl oxides R1R2COO and the related
oxygenated 1,3-dipoles were not simple because of the sensitivity of their electronic and spin
structures to environmental effects as elucidated experimentally [113,114], suggesting a similar
chameleonic reactivity of transition metal peroxides PorLFe(III)OO [26,29,82,115]. Distal histidine
also plays an important role for the hydrogen bonding stabilization of iron peroxides [61].

PorLFeOO + H-N (His)→ PorLFe(III)-O-O−. . .H-N (His) (7)

The isolobal and isospin analogy between [R1R2C-O-O. . .H-O-H] and [LFe-O-O. . .H-
N(His)] indeed provided a prediction that carbonyl oxide models were applicable to tran-
sition metal peroxides species in Figure 2 [26,29,82,113–115]. Quantum mechanically, the
electronic structures of these species are expressed by the superposition of the zwitterionic
(ZW) and diradical (DR) extreme structures and their weights are variable with the types
of ligands and environments. For example, the common moderate 1,3-diradical character
(about 40~50%, Y = 0.4~0.5) (see the next section) was concluded for both carbonyl oxide
H2COO and iron-peroxide FeOO [26,29,82]. Therefore, FeOO with coordinated ligand (L)
was regarded as a coupling structure between LFe(III)+↑ (S = 1/2) and superoxide anion
(−O–O•↓) (S = −1/2) if L was a strong electron-donating ligand such as cysteine anion –SR
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in cytochrome P450 (L = −SR) in D of Figure 1 [1–21,37–41]. The same picture is feasible
for chloroperoxidase with L = thiolate anion, peroxidase with L = imidazole anion, and
catalase with L = phenolate anion. On the other hand, LFeOO was regarded as an exchange
coupling state between LFe(II)↑↑•• (S = 2/2) and triplet molecular oxygen (↓•O–O•↓)
(S = −2/2) under the condition of the weak electron-donating ability of L [26,37–41]. There-
fore, the latter picture was applicable to molecular oxygen transfer enzymes such as Mb
and Hb with L = histidine [83].
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Figure 2. The optimized geometrical structures of the H2C-O-O. . .H2O cluster in the singlet (A) and
triplet (B) states and (C) computational model for transition metal peroxides (M-O-O) with axial (X)
(X = SH−, NH3) and distal (H2O) ligands. The optimized C-O and O-O distances were 1.215 (1.406)
and 1.626 (1.402) Å, respectively, for the (A,B) structures. The O. . .H hydrogen bonding distances
(O. . .H-O-H) were 2.098 (2.629) Å, respectively. The (NH2)4 cluster was employed as a model of
porphyrin (Por) in early ab initio computations [25,26,29,82]. The hydrogen-bonding structure for the
singlet (A) state was assumed for X-(NH2)4M-O-O---H-O-H (C).

The FeOO species undergoes O–O bond fission in the cytochrome P450 enzyme and
peroxidase, as shown in Figure 1; Figure 3 [1–21,37–41]. The FeOO species formed by one
electron capture in E is nucleophilic because of the O2 dianion character. Therefore, the
formation of LFe(III)-hydroperoxide is feasible by the proton addition to PorLFeOO, as
shown in the steps E and E’ [26,82].

L-Fe(III)+-−O-O• + e− → L-Fe(III)+−−O-O− + H+ → L-Fe(III)-−OOH (8)

The heterolysis of hydroperoxide bond is further feasible with the addition of one
more protons in the next step from E’ to F as follows [1–21,37–41].

L-Fe(III)-OOH + H+ → L-Fe(III)-O+. . .−OH...H+ → L-Fe(V)=O + H2O (9)

The formal Fe(V)=O bond in 4 of Figure 3 has been extensively investigated as the
active site of the mono-oxygenation reaction by cytochrome P450 enzyme [1–21,37–45].
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However, the high-valent porphyrin (Por)LFe(V)=O complex was often converted into π
cation radical Por(+•)LFe(IV)=O intermediate if L was taken as a strong electron donor, such
as histidine anion of peroxidase, cysteine anion (−SR) of cytochrome P450 and chloroper-
oxidase (CPO), and phenolate anion (Phe-O−) of catalase. The Por(+•)LFe(IV)=O is often
referred to as the cytochrome P450 compound I (Cpd I) [49–64].

The homolysis of the hydroperoxide [21,26,82] was proposed in some cases (L = Cl−)
as follows:

L-Fe(III)-OOH→ L-Fe(III)-O•. . .•OH...H+ → L-Fe(IV)=O + •OH (10)

The hydroxyl radical was often toxic in biological systems [21,82]. It was gener-
ated in the shunt pathway using hydroperoxide (H2O2) [47,55], as shown in Figure 1.
Therefore, constructions of appropriate ligand fields (L) are required to suppress the
hemolysis. Por-L-Fe(IV)=O was referred to as the compound II (Cpd II). Cpd II with the
heme-ligand was often a sluggish reagent like triplet molecular oxygen (3O-O) in sharp
contrast to atomic oxygen (3O) [26,27,81]. Therefore, the 3O model was proposed for
reactive Cpd I [81]. The atomic oxygen model has been applied to non-heme Fe(IV)=O
species, as discussed later. Thus, the isolobal and isospin analogy between R1R2C-O-O
and LFe-O-O provided qualitative pictures of the iron-peroxide intermediates [26,29,81,82].
The chemical reactivity of the LFe-O-O in 1 of Figure 3 was hardly elucidated in relation to
the di-oxygenation reactions [22–24] at that time. A recent XRD study has elucidated the
structure of the reaction site of the 2,3-dioxygenase catalyzing the cleavage of the pyrrole
ring of tryptophan, suggesting the decomposition pathway through dioxetane (see the
Section 4.2) [116].

Molecular oxygen (O=O) with the orthogonal π* orbitals is a magnetic molecule with
the triplet ground state. Atomic oxygen (3O) in the ground triplet state exhibits radical
reactivity. On the other hand, singlet atomic oxygen (1O) undergoes the insertion reaction.
The high-valent Fe(V)=O species generated in the F step is a doublet species with the
electrophilic LUMO like 1O [81]. On the other hand, the Fe(IV)=O species in Cpd I is a
ground triplet species with radical reactivity. Therefore, we have proposed the 1O and 3O
models for stereospecific and non-stereospecific epoxidation of the C=C double bonds [81].
The isolobal and isospin analogy among Fe(IV)=O, O=O, and O [26,27,81,82] was indeed
feasible for the theoretical understanding of the mono-oxygenation reactions by P450 [1–21]
and related non-heme transition metal oxo compounds [37–47,83–89], as shown later.

Newcomb and his collaborators [65–70] have investigated the stereochemistry of mono-
oxygenations of heme-Fe(IV)=O species using hypersensitive radical probes, indicating
that the radical rebound mechanism is not complete for the P450-catalyzed hydroxylations.
They have proposed an ionic mechanism (+OH insertion model) instead of the radical
mechanism. Thus, multiple oxidant models have been proposed for mono-oxygenation
reactions by P450 model complexes [65–70]. To this end, mutation experiments of the
native P450 have been also performed [21]. The isolobal and isospin analogy among M=O
(M = Cr, Mn, Fe), O=O, and O revealed by the BS computations [26,27,29,30] have provided
a fundamental concept for the understanding of chameleonic mono-oxygenation reactions
by P450 and related metal-oxo compounds [42–70]. The multiple oxidant models have been
also applicable for the high-valent Mn-oxo compounds [71–77], indicating the necessity
of theoretical investigations of the nature of 3d transition metal oxo compounds [27,81].
The BS models with both charge and spin degrees of freedom have been handy and practical
for theoretical investigations of complex ionic and radical intermediates in the multiple
intermediates model for P450 and related systems in Figures 1–3.
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Figure 3. Formations of transition metal superperoxide (1), oxygen dianion (2), metal hydroper-
oxide (3) and metal-oxo (4) intermediates, and radical addition intermediate (5) for oxygenation
reactions [26,27,29,81,82]. 1 and 4 were assumed for active transition metal (M) peroxo and oxo
catalysts for dioxygenase [22–24] and monooxygenase [21,83–90], respectively.

3. Ab Initio Calculations of Metal Oxo and Peroxide Complexes
3.1. Ab Initio Calculations of Metal Peroxide Complexes

In this section, early ab initio computations for the elucidation of the nature of the
metal-peroxide (MOO) bonds have been revisited [26,29,82]. In the 1980s, we performed
ab initio BS(UHF) computations of several model complexes R1R2LMOO complexes for
Por-L-MO1O2 complexes (M = Cr, Fe, Ni; R1R2 = (NH2)4 for Por; L = NH3, −SR) in order
to confirm the guiding principles based on the above-mentioned isolobal and isospin
analogy [26,29,82]. Figure 2 illustrates the computational model for the transition metal
peroxides with a distal water molecule used as a model of distal histidine. The (NH2)4
model was employed for a computational economy although the porphyrin ligand was
employed for the EHMO and Xα calculations [96,97]. The (NH2)4 model is now regarded
as a model of tetradentate ligands of non-heme Fe(IV)=O species (see later). The simple
theoretical model enabled us to construct many spin configurations for these complexes,
even at that time. Some of the early computational results are summarized in Table 1.

Table 1. Spin states and orbital configurations of transition metal oxides [M(X)OO]X−2 and charge
populations by the broken-symmetry (UHF) methods [29,82].

[M(X)OO] (a) 2S + 1 δ1 δ2 dσ dπx dπy dπx* dπy* Fe (c) O1
(b) O2

(b)

Cr(II)OO (c) 3 ↑ 0 ↑ ↑ ↑ ↓ ↓ 1.86 −0.37 0.51
7 ↑ 0 ↑ ↑ ↑ ↑ ↑ 1.86 −0.43 0.57

L1Cr(II)OO (c,d) 3 ↑ ↑ ↑↓ ↑ ↑ ↓ ↓ 1.40 −0.51 −0.26
7 ↑ ↑ ↑↓ ↑ ↑ ↑ ↑ 1.43 −0.69 −0.38

Fe(II)OO (c) 3 ↑ ↑↓ ↑ ↑ ↑ ↓ ↓ 1.82 −0.41 0.59
7 ↑ ↑↓ ↑ ↑ ↑ ↑ ↑ 1.84 −0.44 0.60

L1Fe(II)OO (d) 3 ↑ ↑ ↑↓ ↑ ↑ ↓ ↓ 1.24 −0.35 0.08
L12Fe(II)OO (d) 3 ↑ ↑ ↑↓ ↑ ↑ ↓ ↓ 1.42 −0.31 −0.01
L123Fe(II)OO (d) 3 ↑ ↑ ↑↓ ↑ ↑ ↓ ↑ 1.44 −0.31 −0.07
L13Fe(II)OO (d) 3 ↑ ↑ ↑↓ ↑ ↑ ↓ ↑↓ 1.40 −0.62 −0.44
L133Fe(II)OO (d) 3 ↑ ↑ ↑↓ ↑ ↑ ↓ ↓↓ 1.41 −0.56 −0.51

(a) [M(X)O]; Formal oxidation numbers are X and−2 for M and OO, respectively. (b) Net charges on the oxygen site
and the corresponding value (X − 2 −m) on the metal site. (c) The energy gaps between S = 1 and S = 3 are 6.5, 8.5,
and 5.1 (kcal/mol) for Cr(II)OO, L1Cr(II)OO and Fe(II)OO, respectively. (d) L1 = (NH2)4, L12 = (NH2)4(NH3), L13
= (NH2)4(↓•SH), L123 = (NH2)4(NH3)(H2O), L133 = (NH2)4(↓•SH)(H2O). The up and down arrows are denoted
the up and down spins of electron, respectively.

From Table 1, the net charge populations on the O1 and O2 sites were −0.3~−0.4 and
0.5~0.6, respectively, for naked M(III)OO (M = Cr, Fe), indicating electrophilic property of
the naked systems. On the other hand, the corresponding values were −0.33~−0.35
and −0.01~0.10, respectively, for the model complexes (NH2)4Fe(III)OO, (NH2)4NH3
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Fe(III)OO, and (NH2)4NH3Fe(III)OO. . .H-O-H (see Figure 2). The total negative electron
density of the OO part was only −0.3~−0.4 in accordance with weak superoxide character.
Therefore, these model complexes are regarded as models for oxygen carrier complexes such
as Mb and Hb [20,83]. On the other hand, the corresponding charges were −0.53~−0.65
and −0.44~−0.63, respectively, for the model complexes (NH2)4(SH−)Fe(III)OO and (NH2)
4(SH−)Fe(III)OO. . .H-O-H. The total negative charges of the OO part were about −1.0
in the case of axial thiolate anion ligand, indicating the strong superoxide character [21].
In the late 1980s, a superoxide radical model was proposed for dioxygenase based on these
computational results [29,82], as shown in Figure 3. Recently, L-FeOO intermediates have
often been assumed for the explanation of the oxygenation reactions [21,116].

The net charges ∆Q(O2) on the OO part for the transition metal (Fe) peroxides in
Table 1 were found to be parallel to the electron-donating ability of ∆Q(ED) of ligands
(NH2)4L, which was defined as the net electron transfer from ligands to the native core
Fe(II)O2 [29,82]. Figure 4 clearly indicated the linear relationship between ∆Q(O2) and
∆Q(ED) as follows:

∆Q(O2) = −0.73 ∆Q(ED) + 0.29 (11)

From Figure 4, the BS computational results have elucidated that the transition metal
peroxides are classified into the following three types: (1) Type I with the weak superoxide
(SOD) character (0.0 < ∆Q(ED) < 0.5), (2) Type II with the intermediate SOD character
(0.5 < ∆Q(ED) < 1.5), and Type III with the strong SOD character (1.5 < ∆Q(ED)) [26,29].
The molecular oxygen (O2) is a weak electron donor for the naked Fe(II) ion, which is
classified into Type I. On the other hand, the O2 site is a one electron acceptor for iron-
peroxide complexes Fe(III)-(OO−•) with strong electron-donating ligands, particularly the
thiolate anion group in accordance with Type III. The ab initio computational results have
been wholly compatible with the characteristic properties of PorLFeOO cores of metalloen-
zymes examined in the preceding section II. The superoxide anion in the intermediate E of
Figure 1 accepts one electron to afford the oxygen dianion followed by protonation to afford
hydroperoxide, as shown in E’ of Figure 1. Thus, early BS computations [26,29,82] provided
important information for the theoretical understanding of the nature of the chemical bonds
of the metal peroxides (MOO).
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Figure 4. Variations of the superoxide (SOD) character (∆Q(O2) for transition metal peroxide
complexes against reduction of net negative charges (∆Q(ED)) on the electron-donating (ED) lig-
and [26,29,82]. The electronic properties of the iron-peroxide bonds are classified into three type I-III
on the basis of the BS(UHF) computations.
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3.2. Ab Initio Calculations of Metal Oxo Complexes

In this section, early ab initio computations for the elucidation of the nature of the
metal-oxo (M=O) bonds have been revisited [27]. The ab initio UHF computations of
transition metal oxo (M=O) species were performed to elucidate the electronic and spin
structures [27,81]. Some of the computational results for the naked cores M=O are summa-
rized in Table 2 [27]. From Table 2, the electronic configuration of the neutral [Fe(II)=O]0

core (3d6-2p4 model) is given by Equation (12). The one σ and twoπ bonds were doubly
occupied for the naked core [Fe(II)=O]0,

(dδxy)X (dδx2−y2)Y (dσ-pσ)2 (dσ-pσ*)0 (dπxz-pπxz)2 (dπxz-pπxz*)1 (dπyz-pπyz)2 (dπyz-pπyz*)1 (12a)

whereas the antibonding σ* orbital was vacant. The two antibonding π* orbitals and two
δ orbitals (X = Y = 1) were singly occupied, providing the quintet ground state (S = 4/2).
Theoretically, the σ-σ* spin-flip excitation was feasible to afford the septet excited state
(S = 6/2). The σ-σ* excitation energy was calculated to be about 13 kcal/mol, indicating an
important contribution to the ferromagnetic exchange interactions among 3d electrons. The
one-electron oxidation in the dδx2−y2 orbital (X = 1 and Y = 0 in Equation (12)) of Fe(II)=O
provided [Fe(III)=O]1+ with the quartet (S = 3/2) ground and sextet (S = 5/2) excited
states. The σ-σ* excitation energy was calculated to be about 18 kcal/mol. The two-electron
oxidation of the δ-orbital provided the [Fe(IV)=O]2+ with the triplet iron-oxo (S = 2/2) core.
The energy gap between the ground triplet and excited singlet states was calculated to be
about 27 kcal/mol.

Table 2. Spin states and orbital configurations of transition metal oxides [M(X)O]X−2 and charge
populations by the broken-symmetry (UHF) methods [27,81].

[M(X)O] (a) 2S + 1 δ1 δ2 σ πx πy πx* πy* ∆E (b) N.X. (c)

Cr(III)O 4 ↑ ↑ ↑↓ ↑↓ ↑↓ 0 ↑ 0.0 −0.19
6 ↑ ↑ ↑↓ ↑↓ ↑ ↑ ↑ 30.6 −0.42

Cr(IV)O 3 ↑ ↑ ↑↓ ↑↓ ↑↓ 0 0 0.0 0.35
7 ↑ ↑ ↑↓ ↑ ↑ ↑ ↑ 39.0 0.30

Cr(V)O 2 ↑ 0 ↑↓ ↑↓ ↑↓ 0 0 0.0 0.96
6 ↑ 0 ↑↓ ↑ ↑ ↑ ↑ 70.0 0.65

Mn(III)O 3 ↑ 0 ↑↓ ↑↓ ↑↓ 0 ↑ 0.0 −0.04
5 ↑ 0 ↑↓ ↑ ↑ ↑ ↑ 44.0 −0.04

Mn(IV)O 2 ↑ 0 ↑↓ ↑↓ ↑↓ 0 0 0.0 0.33
4 ↑ 0 ↑↓ ↑↓ ↑ 0 ↑ 36.0 0.29

Mn(V)O 3 ↑ ↑ ↑↓ ↑↓ ↑↓ 0 0 0.0 1.08
7 ↑ ↑ ↑↓ ↑ ↑ ↑ ↑ 64.4 1.06

Fe(II)O 5 ↑ ↑ ↑↓ ↑↓ ↑ 0 ↑ 0.0 −0.72
7 ↑ ↑ ↑↓ ↑ ↑ ↑ ↑ 12.9 −0.62

Fe(III)O 4 ↑ ↑ ↑↓ ↑↓ ↑↓ 0 ↑ 0.0 −0.55
6 ↑ ↑ ↑↓ ↑↓ ↑ ↑ ↑ 18.4 −0.59

Fe(IV)O 3 ↑↓ 0 ↑↓ ↑↓ ↑↓ ↑ ↑ 0.0 0.55
1 ↑↓ 0 ↑↓ ↑↓ ↑↓ ↑ ↓ 26.7 0.35

(a) [M(X)O]; Formal oxidation numbers are X and –2 for M and O, respectively. (b) kcal/mol, (c) N. X; net charge
(m) of the oxygen site and the corresponding value (X − 2 −m) on the metal site. The up and down arrows are
denoted the up and down spins of electron, respectively.

The above three Fe=O core models have the common triplet iron-oxo core with dif-
ferent occupation numbers (X and Y) of δ-orbitals. Therefore, the net charges on the
oxygen site were calculated to be −0.72, −0.55, and 0.35 for the following three cases:
X = Y = 1, X = 1 and Y = 0, and X = Y = 0, indicating variations from the nucleophilic
to the electrophilic property, depending on the occupation numbers of δ-orbitals [27,81].
This means that the [Fe(IV)=O]2+ core embedded in porphyrin dianion becomes nucle-
ophilic since the occupation numbers are X = 2 and Y = 0 (low spin) for [PorFe(IV)=O]0.
Therefore, the one-electron oxidation is necessary for the generation of the electrophilic
heme iron compounds; [PorFe(V)=O]1+ ↔ [Por(+)Fe(IV)=O]1+. On the other hand, the
non-heme complexes, [L1L2Fe(IV)=O]Z+ are often total quintet state (S = 4/2) because
X = Y = 1 in Equation (12) (see details in Figure 1 and Table 2).

In order to elucidate the ligand coordination effects, we examined the {[Fe(IV)O]2+

(NH2)2}0 complex, as shown in Figure 5A [27,81]. The net charges ∆Q(O) on the O part
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for the transition metal (M) oxo compounds in Table 2 were found to be parallel to the
electron-donating ability of ∆Q(ED) of ligands, which is defined as the net electron transfer
from ligands to the native cores [M(IV)O]2+ (3d6-2p6 model). Figure 5A clearly indicates
the linear relationship between ∆Q(O2) and ∆Q(ED) for {[Fe(IV)O]2+(NH2)2}0 under the
low-spin condition (X = 2 and Y = 0) as follows:

∆Q(O) = −0.44 ∆Q(ED) + 0.76 (13a)

From Figure 5A, the net charges on the oxygen site were calculated to be 0.76 and 0.32 for
∆Q(ED)=0 and 1, respectively. The corresponding values for the naked core Fe(III)O]+ by ab
initio methods were 0.48~0.67, depending on the orbital and spin configurations in Equation (12),
as shown in Table 2, supporting the estimation formula in Equation (13a). The net charge of
the O-site was estimated to be 1.20 for ∆Q(ED) =−1 in Equation (13a). The oxygen site was an
electron donor for the Fe(X) (X = IV, V) ion, indicating the electrophilic reactivity of the oxygen
site towards electron-donating substrates, such as PPh3 [27].

On the other hand, the negative charge on the O-site was about−0.5 for the total neutral
complex model [Fe(IV)O(NH2)2]0 in the strong electron-donating ligands (2.5 < ∆Q(ED)), as
shown in Figure 5A. Therefore, the oxygen site of iron-oxo compounds is nucleophilic in this
region [27], indicating that one more oxidation of the Fe ion is necessary for the conversion
from nucleophilic to electrophilic in nature. Indeed, the net charge for the oxygen site of
[Fe(V)O(NH2)2]1+ is estimated to be about zero in the region (1.5 < ∆Q(ED) <2.0), indicating the
electrophilic or radical (see later) reactivity. Thus, the computational results elucidated variations
of the reaction modes of iron-oxo species, depending on electron-donating properties of ligands
and valence state of Fe ion.

For comparison with the high-valent iron-oxo species, ab initio computations [27]
were also performed for [Mn(IV)O(NH2)2]0 complex, as shown in Figure 5B. Figure 5B also
indicated the linear relationship between ∆Q(O2) and ∆Q(ED) for {[Mn(IV)O]2+(NH2)2}0

under the low-spin δ structure (X = 1 and Y = 0) as follows:

∆Q(O) = −0.34 ∆Q(ED) + 0.53 (13b)

From Figure 5B, the net charges on the oxygen site were calculated to be 0.87, 0.53,
and 0.19 for ∆Q(ED) = −1, 0, and 1, respectively. The electron-accepting ability of Mn(IV)
is slightly lower than that of the Fe(IV) ion in accordance with the 3d-orbital level by the
extended Hubbard model [25]. From Table 2, the net charges of the O-site by the ab initio
calculations were 0.18 and 1.08 for the naked [Mn(IV)O]2+ and [Mn(V)O]+. The oxygen
site was an electron donor for the naked Mn(IV) ion, indicating the electrophilic reactivity
towards electron-donating substrates.

On the other hand, the negative charge on the O-site was about−0.5 for the total neutral
complex model [Mn(IV)O(NH2)2]0 in the strong electron-donating ligands (2.5 < ∆Q(ED)), as
shown in Figure 5B. Therefore, the oxygen site of manganese-oxo compounds was nucleophilic
in this region. The net charge for the oxygen site of [Mn(V)O(NH2)2]1+ was also estimated to be
about zero in the region (1.5 < ∆Q(ED) < 2.0). Thus, ab initio computations elucidated that the
nature of high-valent Fe(X)=O and Mn(X)=O (X = IV, V) bonds exhibit chameleonic behavior,
depending on the electron-donating ability of the coordinated ligands and valence states of
M (=Fe, Mn) ions, indicating the necessity of careful QM/MM modeling of the catalytic sites
for mono-oxygenations. The BS extended Hubbard model (UEHB) [25], UHF [27], Xα [96,97],
and Hartree–Fock–Slater (UHFS) models [25] were useful for qualitative understanding and
explanation of electronic and spin states of the high-valent metal-oxo compounds. The UEHB
model [25] was used to reduce the large on-site repulsion integral (U) by UHF since the
UHF coupled cluster (CC) SD(T) model for the reduction of U was too heavy at that time.
Nowadays, the reduction of U was alternately accomplished with hybrid DFT (HDFT) [117–119]
models for M=O and MOO after the calibrations based on the UCCSD(T) results.
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3.3. Comparisons among UHF, UCCSD(T), and Hybrid DFT Computational Results

Here, geometric structures and binding energies of the metal oxo bonds by several com-
putational methods have been revisited. BS UHF model was a first step toward theoretical
elucidation of the nature of chemical bonds of the transition metal oxo compounds [25–27].
As a next step, we examined the unrestricted CC (UCC) SD(T) model, including dynamical
correlation corrections [25,32,78,79]. The hybrid UHF plus UDFT (HUDFT) [117–119] was
also examined as an alternative tool of UCCSD(T) for handy and practical investigations of
large metal-oxo compounds. Therefore, UHF, UCCSD(T), and HDFT (UB3LYP and UBLYP)
computations were performed to elucidate the optimized M-O lengths of the naked neutral
metal oxo species [78,79], for which the observed bond lengths were available, as shown in
Table 3. Two different basis sets, (1) double zeta (DZ) basis (BS I) and (2) triple zeta (TZ)
basis (BS II), were used for elucidation of the basis set dependency, as shown in Table 3.

Table 3. The optimized bond length (Å) of transition metal oxides by the BS methods [78,79].

System Spin
State UHF UB3LYP UBLYP UCCSD(T) Exp.

(1) (a) (2) (b) (1) (a) (2) (b) (1) (a) (2) (b) (2) (b)

CrO 5Π 1.90 1.86 1.66 1.62 1.65 1.62 1.66 1.615
MnO 6Σ+ 1.88 1.87 1.66 1.63 1.67 1.64 1.69 1.648
FeO 5∆ 1.84 1.83 1.63 1.61 1.64 1.62 1.65 1.619
CoO 5∆ 1.85 1.84 1.64 1.63 1.66 1.65 1.64 1.631

4Σ− 1.79 1.79 1.61 1.59 1.62 1.61 1.62
NiO 3Σ− 1.80 1.81 1.63 1.63 1.65 1.65 1.64 1.631
CuO 2Π 1.92 1.87 1.82 1.77 1.80 1.75 1.80 1.724

(a) BS I (1); Huzinaga MIDI [533(21)/5(21)/(41)] for transition metals and 6-31G for O. (b) BS II (2); MIDI plus
pdf-polarization MIDI [533(21)/5(21)1*/(41)1*/1*] for transition metals and 6-31G* for O.

From Table 3, the calculated M-O bond lengths were not so different between the basis
sets (1) and (2) [78,79]. The M-O bond lengths by UHF were longer by about 0.2 Å than
the corresponding experimental values. On the other hand, the UCCSD(T) computations
exhibited remarkable improvements of the calculated M-O lengths in accordance with the
experimental results, as shown in Table 3. Both hybrid UDFT (UB3LYP and UBLYP) also
provided reasonable M-O bond lengths as compared with the experiments. Thus, HUDFT
was reliable enough for geometry optimizations of the M-O bond lengths [78,79].
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The UHF, UCCSD(T), UB3YP, and UBLYP computations were performed to elucidate
the binding energies of the naked neutral metal oxo species, for which the observed bond
lengths were available, as shown in Table 4 [78,79]. From Table 4, the binding energies of
the M=O bonds were highly dependent on the basis sets, indicating that the larger TZ basis
set (BS II) is more favorable than the DZ basis set (BS I). The calculated binding energies for
M=O by UCCSD(T)/BS II were smaller than the observed values. This implies that more
larger basis sets than the BS II are necessary for quantitative UCCSD(T) computations of
the binding energies of the M=O species; moreover, more expensive CC methods, such
as UCCSDT, may be necessary for quantitative purpose. On the other hand, UBLYP
methods/BS II overestimated the binding energies of M=O because of underestimation of
the electron–electron repulsion (U) effects. Thus, UB3LYP/BS II model was found to be
practical for the theoretical investigation of M=O species at that time [78,79].

Table 4. The binding energies (eV) of transition metal oxides by the BS methods [78,79].

System Spin
State UHF UB3LYP UBLYP UCCSD(T) Exp.

(1) (a) (2) (b) (1) (a) (2) (b) (1) (a) (2) (b) (2) (b)

CrO 5Π 0.44 1.24 3.42 4.34 4.48 5.35 3.71 4.57
7Π 0.12 0.98 2.26 2.92 2.72 3.29

MnO 6Σ+ −0.28 1.13 2.50 4.09 3.64 5.26 2.94 3.83
4Π −0.39 0.80 2.08 2.94 3.29 4.27
4Σ −1.34 0.00 1.57 2.98 2.80 4.23
8Π −0.03 1.43 1.32 2.58 1.70 2.94

FeO 5∆ −0.39 1.05 2.89 4.38 4.07 5.34 3.21 4.17
3Φ −0.19 1.03 2.47 3.36 3.72 4.38

5Σ+ −0.90 0.48 2.96 3.91 4.21 4.82 2.96
7Σ+ −1.31 0.31 1.99 3.40 2.96 4.08

CoO 4∆ −1.05 0.35 3.00 4.07 4.36 5.43 2.92 3.94
4Σ− −2.10 0.67 2.06 3.74 3.39 5.20 2.61
2∆− −0.43 0.78 2.35 3.44 3.70 4.85
6∆ 1.46 0.18 1.83 3.21 2.94 4.36

NiO 3Σ− −1.73 −0.19 3.26 4.13 4.19 5.59 3.13 3.91
1Σ− −2.76 −1.37 2.82 3.72 3.81 5.24
5Σ −0.54 0.37 1.72 2.69 2.46 4.01
5∆ 0.00 0.01 1.62 2.28 2.17 3.30
5Φ −0.47 0.91 1.47 2.30 1.41 2.94

CuO 2Π 0.08 0.61 2.27 2.69 2.80 3.18 2.37 2.75
4Σ− −0.26 0.02 0.74 0.93 1.50 1.57

(a) BS I(1);Huzinaga MIDI [533(21)/5(21)/(41)] for transition metals and 6-31G for O. (b) BS II (2) MIDI plus
pdf-polarization MIDI [533(21)/5(21)1*/(41)1*/1*] for transition metals and 6-31G* for O.

UB3LYP/BS II methods indeed provided reasonable binding energies of M=O as com-
pared with the experimental values, as shown in Table 3 [78,79]. The calculated binding
energies by the methods were 4.34 (4.57), 4.09 (3.83), 4.38 (4.17), 4.07 (3.94), 4.13 (3.91), and 2.69
(2.75) eV for CrO(5Π), MnO(6Σ+), FeO(5∆), CoO(4∆), NiO(3Σ−), and CuO(2Π) in the ground
state, respectively, where the experimental values are given in parentheses. The relative
energies among several spin states of each MO species were obtained by changing the
occupation numbers of eight molecular orbitals in Equation (12). For example, the binding
energies for FeO were 4.38, 3.36, 3.92, and 3.40 eV for the 5∆, 3Φ, 5Σ+, and 7Σ+ states, respec-
tively, indicating four states within the narrow energy region (about 1 eV). The physical
terminology “quasi-degenerated energy states” [32] is often used for 3d metal-oxo species in
Table 3. Therefore, theoretical investigations by UHDFT, such as UB3LYP, were found to
be contributable to the elucidation of the complex reaction mechanisms of the iron-oxo
bonds [78,79]. Indeed, UB3LYP have been employed for many theoretical investigations of
chemical reactions by P450 [83–90] (see later).

4. Orbital Bifurcations for Radical Reactions and Derivations of Chemical Indices
4.1. HOMO-LUMO Mixing for Homolytic and Electron-Transfer Diradicals by BS Models

In this section, the intra- and inter-HOMO-LUMO mixings are revisited for MO-
theoretical elucidation of homolytic and electron-transfer diradicals [25–30]. In the 1980s,
the high-valent transition metal oxo M(X)=O (X = IV, V) compounds were found to exhibit
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electrophilic and/or radical reactivity for alkanes, etc. [42–77] in contradiction to the
nucleophilic reactivity of low-valent M(X)=O (X = II) species. As mentioned above, it
was a challenge for theoretical chemists to explain the unusual properties of these species.
Here, fundamental concepts and basic theories of the broken-symmetry (BS) approach
are re-visited for theoretical elucidations of structure, bonding, and reactivity of organic and
inorganic peroxides with non-negligible radical character because of narrow HOMO-LUMO
energy gaps, as shown in Figures 6 and 7. To this end, diradical intermediates are formally
classified into homolytic [93] and electron-transfer [94] diradicals, as illustrated in Figure 6.

Anti-aromatic molecule [120] and 1,3-diradicals [121] were typical homolytic diradical
species [93,95]. Recently, many diradical compounds have been synthesized and character-
ized by several spectroscopic methods [122]. The orbital bifurcation of a doubly occupied
covalent bond into spin-polarized (SP) radical orbitals occurs under the mathematical
condition where the HOMO-LUMO energy gap given by ∆ε = εLUMO − εHOMO is smaller
than the on-site electron repulsion integral (U) in the BS approximation [25–30,78,79,81,82]

∆ε = εLUMO − εHOMO/U < 1 (14)

where the εX (X = HOMO, LUMO) denotes the orbital energy of X. For example, such
situations occur in the dissociation reactions of hydroperoxide and related peroxides
(for example metal-hydroperoxide [82]), as shown in Figure 6A [25,26].

H-O-O-H→ [H-Oδ•. . .•δO-H]→ HO• + •OH (15a)

M-O-O-H→ [M-Oδ•. . .•δO-H]→M-O• + •OH (15b)

Under the BS model, the HOMO-LUMO mixing procedure is introduced for con-
struction of the UHF [93] and UHDFT solutions [117–119]. The resulting MOs at the UHF
and UHDFT levels of theory are given by the HOMO-LUMO mixing by the restricted (R)
Hartree–Fock (RHF) and R-HDFT (RHDFT) solutions [25,93,119], as shown in Equation (16).
Here, the HOMO-LUMO mixing scheme [25,93,119] is given by

Ψ+
i = cos θϕi + sin θϕ∗i (16a)

Ψ−i = cos θϕi − sin θϕ∗i (16b)

where θ denotes the orbital mixing-parameter determined by BS computations.
Since HOMO, ϕi and LUMO, ϕ∗i , by RHF (RHDFT) are symmetry-adapted and usually
belong to different spatial symmetries (Pn), the resulting BS MOs, Ψ+

i and Ψ−i , obtained by
the HOMO-LUMO mixing [93] are often spatially symmetry-broken in accordance with the
naming of the BS method in general.

In fact, the dπ-pπ bonds of the high-valent M=O species were rather covalent instead
of the ionic bonds. Therefore, the HOMO (dπ-pπ)-LUMO (dπ-pπ)* mixing on Equation
(16) provided the BS orbitals, which were mainly localized on the M- and O-site, ↑•M-
O•↓, respectively. The up and down spins are into BS orbitals, namely, “different orbitals
and different spins (DODS)” [25–30], as illustrated in Figure 6A. Chemically, the unstable
intermediate in Equation (15) is often referred to as a homolytic diradical in the homolysis
of the O-O bond.

Very strong charge-transfer (CT) complexes often provided an electron transfer diradi-
cal as in the case of aromatic radical substitution reaction [123–125]. The HOMO-LUMO
energy gap becomes small for donor (D) and acceptor (A) pairs, indicating the HOMO
(donor; D)-LUMO (acceptor; A) mixing responsible for one-electron transfer (OET) process
in Equation (17) [94].

D + A→ [Dδ•+. . .−δ•A]→ [D•+ + −•A] (17)

The OET process was formally regarded as a symmetry-allowed radical process
since HOMO(D) and LUMO(A) have the same spatial symmetry [94]. Both charge and
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spin are separated in the OET diradical, as shown in Equation (17). The OET diradical
in Equation (18a) is often assumed for proton-transfer reactions for mono-oxygenation
reactions, followed by the radical rebound mechanism in Equation (18b). The redox
potentials of the reactants play an important for the formation of the OET radical in
Equation (18a) [94,123,125]. The hydroxylation via Equation (18a,b) is often referred to as
the electron transfer-coupled proton transfer (ET-PT) process [83–89].

M(X)=O + H-R→ [M(X-1)-O−. . .+H. . .•R]→ [M(X-1)-OH. . .•R] (18a)

[M(X-1)-OH. . .•R]→ [M(X-2)-•OH. . .•R]→ [M(X-2)-HOR] (18b)

On the other hand, homolytic diradicals formed by the intramolecular HOMO-LUMO
mixing undergo hydrogen radical abstractions as follows:

M(X)=O + H-R→ [M(X-1)-O•↓. . .δ↑•H. . .δ↓•R]→ [M(X-1)-OH. . .↓•R] (19)

The radical rebound process in Equation (18b) is also applicable for the mono-oxygenation by
the hydrogen radical abstraction (HRA) mechanism [83–89]. However, second hydrogen abstrac-
tion by M(X–2)-•OH in Equation (18b) is feasible to afford olefins, M(X–2)-HOH + R(C=C), in some
case. From the reaction scheme in Equation (19), the binding energy of the H-C bond is directly
related to activation barriers of the HRA reaction by P450 and related iron-oxo compounds [83–90].
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denoted the up and down spins of electron, respectively.

4.2. Four Different Mechanisms of Chemical Reactions by BS Models

In this section, the concepts of orbital symmetry and orbital bifurcation have been
revisited in relation to electronic mechanisms of chemical reactions [25]. In the 1970s, the
concept of orbital symmetry conservation was a guiding principle for understanding, ex-
planation, and prediction of symmetry-allowed concerted reactions [126–128]. The Hückel
MO (HMO) and extended Hückel molecular orbital (EHMO) models were employed for
the elucidation of energy levels and spatial symmetries of Mos for reacting molecules under
consideration [126]. The gap of the HOMO-LUMO (frontier orbitals [127]) was usually
large for nonradical concerted reactions, as shown in Figure 6A. On the other hand, the
HOMO-LUMO energy gaps became small for diradical species, as shown in Equation (14),
nevertheless indicating no orbital bifurcation at the EHMO level of theory because the
electron repulsion (U = 0) was neglected.

On the other hand, as mentioned above, the orbital bifurcation took place at the
Hartree–Fock (HF) MO level of theory, providing DODS Mos for homolytic [93] and
electron transfer [94] diradicals, as shown in Figure 6. Therefore, radical reaction mech-
anisms can be explained with the orbital bifurcations and the resulting DODO orbitals.
Indeed, the combination of the following two fundamental orbital concepts: “orbital sym-
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metry conservation and orbital bifurcation” provided four different mechanisms, as shown in
Figure 7A [25–30,93,94]. The four mechanisms defined by two criteria have been equally
applicable for BS models, such as UHF [25,93] and UHDFT [78,79,119], in general.

The original orbital symmetry-allowed reaction is characterized as the symmetry-
allowed nonradical (AN) reaction [25,112], as shown in Figure 7A. On the other hand, the
orbital symmetry-forbidden reaction is regarded as the symmetry-forbidden radical (FR)
reaction [25,112]. The formal FR reaction is often converted into the symmetry-forbidden
nonradical (FN) reaction under the condition that the HOMO-LUMO gap becomes larger
than the on-site repulsion (U) (see Equation (10)) because of push-pull effects by substituents
introduced. The zwitterionic (ZW) reaction is an example of such FN reactions [113,114].
On the other hand, the HOMO-LUMO gap becomes very small for a donor-acceptor pair,
providing a formally symmetry-allowed electron-transfer radical (AR) process [123–125] in
Figure 7A. Thus, the concepts of the orbital symmetry and orbital bifurcation are useful for
the theoretical understanding of chemical reaction mechanisms in general.

The charge and spin density populations at the BS level of theory are also related to
four different mechanisms in Figure 7B [25,112]. The AN reactions are characterized by no
charge separation and no spin separation, as shown in Figure 7B. On the other hand, the
FR reactions are usually characterized by no charge separation, but remarkable separation
between up- and down-spins. The spin density disappears in the case of the FN reactions,
whereas the separation between the plus and minus charges becomes remarkable, as shown
in the ZW intermediate [113,114]. The AR reactions are characterized by both charge and
spin separations, as in the case of electron-transfer diradicals. Thus, the populations of
both the charge and spin densities by the BS models are useful for classifications of the four
chemical reaction mechanisms, as shown in Figure 7B.
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Figure 7. (A) Classifications of reaction mechanisms on the basis of the orbital symmetry conservation
and orbital bifurcation into four groups and (B) characterization of them by populations of the charge
and spin densities obtained by the BS computations [25,27,112].

4.3. Derivations of Effective Bond Orders for Fe(IV)=O and Fe(V)=O Bonds

In this section, derivations of several chemical indices have been revisited for the
characterization of the nature of the chemical bonds of the metal-oxo bonds [25,27,29].
Theoretical computations are often regarded as convenient and practical tools to calculate
potential curves and activation barriers for chemical reactions. The computational results
further provide important information to obtain deep insights into the quantum mecha-
nisms of chemical reactions. Populations of charge and spin densities by BS models were
practical and convenient indices for characterizations of reaction mechanisms, as shown in
Figure 7. On the other hand, the concept of the symmetry and/or orbital phase of molecular
orbitals plays important roles in the Woodward–Hoffmann–Fukui rule for concerted reac-
tions [126,127]. However, the HOMO-LUMO mixing occurs in the BS approach for radical
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reactions [93], indicating the orbital bifurcation. Therefore, we performed the natural orbital
analysis of the BS solutions to elucidate the natural orbitals (UNO) and their symmetries
and occupation numbers [25,32], which were crucial for MO theoretical understanding and
explanations of electronic and spin structures of diradical and polyradical species [25,93,94].
To this end, several chemical indices were also derived to investigate the nature of chemical
bonds of open-shell systems [25,128]. The localized natural orbitals of UNO (ULO) were
also used to obtain the VB-like models [25] of open-shell molecules (see Appendix A).

The orbital overlap Ti between BS MOs obtained by the HOMO-LUMO mixing in
Equation (16) was defined as an order parameter to elucidate the magnitude of the orbital
bifurcation [25,93].

Ti =
〈
Ψ+

i

∣∣Ψ−i 〉 = cos 2θ (20)

Therefore, the Ti index becomes 1.0 in the case of the closed-shell (restricted) case; Ψ+
i

= Ψ−i = ϕi, whereas Ti is 0.0 for the complete mixing case (θ = π/4): complete diradical pair
with 100% diradical character (Y = 1.0, see Equation (27a)). The effective bond order b was
defined as an extension of the Coulson’s bond order based on the MO model by [25,93,129]
to express the decrease in chemical bonding via the intramolecular HOMO-LUMO mixing,

bi =
ni − n∗i

2
=

(1 + cos 2θ)− (1− cos 2θ)

2
(21a)

= cos 2θ = Ti (21b)

where ni (= 1 + Ti) and ni* (= 1 − Ti) denote the occupation numbers of the bonding
(HOMO) and antibonding (LUMO) orbitals, respectively. The effective bond order (b) is
nothing but the orbital overlap (Ti) between BS MOs under the BS approximations [25,93].

Here, the effective bond orders of the transition metal-oxo species with the octahedral
(Oh) ligand fields are briefly investigated. The eight different orbitals in Equation (12)
are obtained for the L(Oh)M=O bonds with the octahedral ligand (Oh) field, as shown in
Figure 8A. For example, the orbital energy levels and occupation numbers of the eight
orbitals for Fe(IV)=O species are illustrated in Figure 8A [83–86]. The one dσ-pσ and two
dπ-pπ bonding orbitals are doubly occupied, and the corresponding antibonding (dσ-pσ)*
orbital is zero for Fe(IV)=O species. On the other hand, the antibonding (dπxz-pπxz)*
and (dπyz-pπyz)* orbitals are singly occupied MOs (SOMO), as illustrated in Figure 8A.
The orbital energy gap between dδxy and dδx2−y2 is usually large for the pseudo Oh ligand
fields, such as heme (Por) ligand plus axial ligand L in Figure 8C, providing the doubly
occupied dδxy orbitals. Therefore, PorLFe(IV)=O species have the ground triplet state
(S = 2/2) [27,81] because of the orthogonality between (dπxz-pπxz)* and (dπyz-pπyz)*. There-
fore, the bond order for PorLFe(IV)=O species in the ground triplet state is calculated to be
2.0 (= (3 × 2 − 1 × 2 − 0 × 2)/2).

On the other hand, the orbital energy gap between dδxy and dδx2−y2 is very small
for the pseudo trigonal bipyramidal (TBP) geometries. such as TauD systems [87], as
illustrated in Figure 8B; therefore, dδxy and dδx2−y2 are singly occupied, providing the
triplet configuration. Interestingly, TBPLFe(IV)=O bonds in TauD of Figure 8D have
the total quintet state (S = 4/2) because of ferromagnetic effective exchange interactions
between the orthogonal 3d orbitals. However, the effective bond orders for the Fe(IV)=O
bonds are not changed with the spin transition from the triplet and quintet states because
of no essential contribution of dδ orbitals to the Fe-O bonding.

PorLFe(V)=O species in P450 enzymes [1–21] is obtained by one-electron oxidation of
the Fe(IV)=O bond, for example, by the removal of one electron from the (dπyz-pπyz)* or
(dπxz-pπxz)* singly occupied MO) in Figure 8A. The π*-LUMO of Fe(V)=O plays an impor-
tant role for mono-oxygenation reactions. The bond order for the PorLFe(V)=O species in
the ground doublet state is 2.5 (= (3 × 2 − 1 × 1 − 0 × 2)/2). Many excited configurations
are also conceivable for PorLFe(V)=O and PorLFe(IV)=O species, as summarized in Table 5.
The occupation numbers of many excited configurations are shown by the occupation
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numbers of the eight orbitals in Figure 8A,B. The bond orders for these excited states are
obtained by considering the occupation numbers of the molecular orbitals in Table 5.

Interestingly, the one electron transfer from porphyrin to the Fe(V)=O occurs to pro-
vide the well-accepted compound I (Cpd I) structure Por(+•) LFe(IV)=O [83–90], entailing
the reduction of the effective bond order of the Fe=O bond. The intermolecular one-
electron transfer (OET) from electron donor (D) to PorLFe(V)=O is also feasible, provid-
ing [PorLFe(IV)-O− + D(+•)], which plays an important role for the ET-PT process [21].
The electron-delocalization between LUMO (Fe(V)=O) and HOMO (H-CR) occurs in the
case of the hydroxylation via the ET-PR process, reducing the activation barrier for hydro-
gen atom transfer (HAT). The cationic intermediate has been proposed as one of the active
species for mono-oxygenations [65–70].
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Table 5. The bond orders for high-valent transition-iron oxo bonds with the octahedral ligand (Oh)
and trigonal bipyramidal (TBP) ligand fields [27,82].

No. Systems δxy σ πzx πzy πzx* πzy* δx2−y2 σ* BO

1 2Fe(V)=O 2 2 2 2 1 0 0 0 2.5
2 2Fe(V)=O 2 2 2 2 0 0 0 1 2.5
3 4Fe(V)=O 1 2 2 2 1 0 1 0 2.5
4 4Fe(V)=O 1 2 2 2 0 0 1 1 2.5
5 4Fe(V)=O 1 2 2 2 1 1 0 0 2.0
6 4Fe(V)=O 1 2 2 2 1 0 0 1 2.0
7 2••Fe(V)–O•• 2 2 1 + T 1 + T 1 − T 1 − T 0 1 0.5 + 2T
8 2•Fe(V)–O• 2 2 2 1 + T 1 1 − T 0 0 1.5 + T
9 2•Fe(V)–O• 2 2 2 1 + T 1 0 0 1 − T 1.5 + T
10 2•Fe(V)–O• 2 2 1 + T 2 1 0 0 1 − T 1.5 + T
11 2•Fe(V)–O• 2 1 + T 2 2 1 0 0 1 − T 1.5 + T
12 4•Fe(V)–O• 1 2 2 1 + T 1 1 − T 1 0 1.5 + T
13 3Fe(IV)=O 2 2 2 2 1 1 0 0 2.0
14 3Fe(IV)=O 2 2 2 2 1 0 0 1 2.0
15 3Fe(IV)=O 2 2 2 2 0 1 0 1 2.0
16 1Fe(IV)=O 2 2 2 2 1 1 0 0 2.0
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Table 5. Cont.

No. Systems δxy σ πzx πzy πzx* πzy* δx2−y2 σ* BO

17 3•Fe(IV)=O• 1 2 1 + T 2 1 − T 2 1 0 2.0 − T
18 3•Fe(IV)=O• 1 2 2 1 + T 2 1 − T 1 0 2.0 − T
19 3•Fe(III)–O• 2 2 2 1 + T 1 1 − T 0 1 1.0 + T
20 3•Fe(III)–O• 2 2 2 1 + T 1 1 0 1 − T 1.0 + T
21 3•Fe(III)–O• 2 1 + T 2 2 1 1 0 1 − T 1.0 + T
22 5Fe(IV)=O 1 2 2 2 1 1 1 0 2.0
23 5Fe(IV)=O 1 2 2 2 1 1 0 1 1.5
24 5•Fe(III)–O• 1 2 2 1 + T 1 1 − T 1 1 1.0 + T
25 5•Fe(III)–O• 1 2 2 1 + T 1 1 1 1 − T 1.0 + T
26 5•Fe(III)–O• 1 1 + T 2 2 1 1 1 1 − T 1.0 + T

T is the orbital overlap between bifurcated orbitals in Equation (20). The S = 1/2 (S = 3/2) and S = 1 (S = 2) are
the ground states for Fe(V)=O and Fe(IV)=O for the Oh (TBP) ligand fields, respectively, and many other excited
states are also feasible. The effective bond order (BO) is reduced by the orbital bifurcation (T < 1.0) via the spin
polarization (SP) effect.

4.4. Reduction of Effective Bond Order and Radical Reactivity of High-Valent Fe=O

Here, the concept of the effective bond order is examined in relation to the radical
reactivity [25,67]. The Fe(V)=O and Mn(IV)=O bonds are formally isolobal and isospin
states with the 3d4-2p6 electron configurations, providing the molecular orbital descriptions,
as shown in Equation (12b). Therefore, the 2(4)Σ state of them is expressed by the following
occupation numbers: X = 2 (1), Y = 0 (1), Z = 1 (1), and W = 0 (0) for heme (non-heme)
ligands in Equation (12b). On the other hand, the 2(4)Π state is expressed by the following
occupation numbers: X = 2 (1), Y = 0 (1), Z = 0 (0), and W = 1 (1) for heme (non-heme)
ligands in Equation (12b). The 2∆ state with the triple bond is formally obtained by the
following occupation numbers: X=2, Y=1, Z=W=0 for the Fe(V)=O species.

(dδxy)X (dδx2−y2)Y (dσ-pσ)2 (dσ-pσ*)Z (dπxz-pπxz)2 (dπxz-pπxz*)0 (dπyz-pπyz)2 (dπyz-pπyz*)W (12b)

The orbital energy gaps between the doubly occupied bonding (dπqz-pπqz) (HOMO)
(q = x or y) and vacant antibonding (dπqz-pπqz)* (LUMO) (q = x or y) are usually large
for LM(X)=O (M(X) = Fe(V), Mn(IV)) species with relatively short M(X)-O distances.
The LUMO is responsible for the nucleophilic attack of electron-rich compounds. On the
other hand, the energy gap becomes small in the case of the elongated M-O distances,
indicating the instability in Equation (14). The mixing between (dπqz-pπqz) and (dπqz-pπqz)*
(q = x or y) in Equation (16) took place, providing BS orbitals that were mainly localized on
the M and O-sites, respectively, which is compatible with the M-oxo bond with the strong
oxyl-radical character; PorL↑•M(X−1)-O•↓, as shown in Figure 9. The orbital overlap (Ti)
between the SP orbitals becomes smaller than 0.6. The occupation numbers of HOMO
(dπqz-pπqz) and LUMO (dπqz-pπqz)* (q = x or y) are given by X = 2, Y = 0, Z = (1 + Ti) and
W = (1 − Ti), respectively. Thus, the high-valent LFe(V)=O and Mn(Y)=O (Y = V, IV) exhibit
electrophilic and radical reactivity, depending on the oxyl-radical character [62–70], which
is controlled by types of ligand (L) and environments.

The SP orbitals are also obtained for other HOMO-LUMO pairs with orbital energy
gaps. Table 5 summarizes the bond orders (BO) for the high-valent iron-oxo bonds in the
octahedral and trigonal bipyramidal ligand fields [25–30]. From (No. 1~4) Table 5, the
effective bond order (BO) is 2.5 for the 2(4)[PorLFe(V)=O] with singly occupied 1(dπqz-pπqz)*
or 1(dσ-pσ)* since 2(dδxy) pair in Figure 8A or 3[1(dδxy)1(dδx2−y2)] in Figure 8B does not
contribute to the effective bond order of the Fe=O bonds. The effective bond orders for
Fe(V)=O decrease with the increase in the occupation numbers of the antibonding orbitals,
as shown in Table 5. The BO value is 2.0 for 3(5)Fe(IV)=O with singly occupied 1(dπqz
− pπqz)* (q = x or y) or 1(dσ-pσ)*. The BO values for Fe(IV)=O in the excited states also
decrease with the increase in occupation numbers of the antibonding orbitals.

The effective bond order of the 2(4)Σ state of Fe(V)=O with the 1(dσ-pσ)* is given by
0.5 + 2T because of the SP of two dπ-pπ orbitals, as shown in No. 7 in Table 5. On the
other hand, the effective bond order is given by 1.5 + T for 2(4) Π state, as shown in the Oh
ligand field (No. 8) and trigonal bipyramidal (TBP) ligand field (No. 12), indicating the SP
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structure Fe(IV)-O• with a strong dπ oxyl-radical character, which is responding for radical
reactivity (see later). Several other cases are summarized in Table 5.

The effective bond order of the singlet, triplet, and quintet states of Fe(IV)=O is given
by 2.0 because two (dπ-pπ)* orbitals are singly occupied, as shown in the Oh ligand field
(No. 16, 13) and trigonal bipyramidal (TBP) ligand field (No. 22). The SP structures
are also conceivable for Fe(IV)=O, providing several Fe(III)-O• structures. Some exam-
ples are summarized in Table 5. Many other electronic and spin structures are also con-
ceivable for Fe(X)=O (X = IV, V) after one electron capture from electron donors (D), as
shown in Figure 6. They are also constructed by the same procedures discussed above.
The singlet state with the X = Y = 2 and Z = W = 0 is conceivable even for the Fe(IV)=O bond.
The designs of appropriate ligand fields for 3d M=O species are feasible for the generation
of target electronic and spin states under investigation because of quasi-degeneracy among
possible intermediates with the same effective bond orders.
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Figure 9. (A) The closed-shell (dπ-pπ) HOMO and (dπ-pπ)* LUMO of M=O compounds, (B) BS
orbitals obtained by the HOMO-LUMO mixing responding for the oxyl-radical character [25,27,81,82].
The high-valent 3d metal-oxo bonds often exhibit the oxyl-radical character. The up and down arrows
are denoted the up and down spins of electron, respectively.

4.5. Isolobal and Isospin Analogy among Fe(IV)=O, O=O, and O for Chemical Reactions

Here, the isolobal and isospin analogy among metal-oxo bonds and molecular and
atomic oxygens is examined to elucidate possible reaction modes in relation to the multiple
intermediate models for mono-oxygenation [27,29,81,82]. The energy gap between the
HOMO-LUMO in Equation (14) is zero for Fe(IV)=O, O=O, and O because of the complete
degeneracy of the HOMO and LUMO. Therefore, the ground state of these species is triplet
because of the Hund rule, indicating the isospin analogy among them. These species have
two degenerated singly occupied MO (SOMO) configurations. The one-electron reduction
of them provides Fe(III)=O, superoxide anion (O2

−•), and oxygen anion (O−•), which
are isospin doublet states. Their two-electron reduction states are Fe(II)=O, molecular
oxygen dianion (O2

2−), and atomic oxygen dianion (O2−), which are formally singlet states.
On the other hand, their one-electron oxidation states are the doublet Fe(V)=O, O2

+•, and O+•.
The bond orders are 2.5, 2.0, 1.5, and 1.0 for O2

+• (Fe(V)=O), O2 (Fe(IV)=O), O2
−•

(Fe(III)=O), and O2
2− (Fe(II)=O), respectively, where the isolobal iron-oxo species are given

in parentheses. The O-O distances are 1.123, 1.207, 1.280, and 1.49 Å for O2
+•, O2, O2

−•, and
O2

2–, respectively [21,37,41], indicating its elongation with the increase in the occupation
numbers of the antibonding orbitals. A similar tendency is expected for the isolobal and
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isospin iron-oxo bonds. Indeed, the Fe-O distances are 1.62~1.68 and 1.81 Å, respectively,
for the Fe(IV)=O and Fe(III)=O [78,79].

The isolobal and isospin analogy among Fe(IV)=O, O=O, and O [27,81,82] provides
a guiding principle for an understanding of the mechanisms of oxygenation reactions.
For example, the singlet molecular oxygen (1∆xx(yy)) has the vacant LUMO, which is related
to four different reactions in Figure 10; (a) 1, 4-diradical (DR) reaction (FR), (b) zwitterionic
(ZW) reaction (FN), (c) electron transfer (ET) reaction (AR), and (d) perepoxide (PE) reaction
(AN) [81]. Similar mechanisms are also expected for the excited singlet 1Fe(IV)=O (1∆πxπx)
and the ground doublet 2Fe(V)=O species with the vacant LUMO like the singlet O2
(1∆xx(yy)) and O(1∆πxπx), as illustrated in Figure 10A [25,27,29]. Therefore, these species
may undergo the nonradical nonsynchronous reactions [65–70], such as stereospecific
epoxidation and oxygen insertion, as shown in Figure 11.

On the other hand, the triplet O (3P) model is applicable to elucidate non-stereospecific
epoxidations via 1,4-singlet and triplet diradical intermediates and non-stereospecific oxy-
gen insertion via hydrogen abstraction reaction by the 3Fe(IV)=O and 2Fe(V)=O with strong
oxyl-radical character; ↑•Fe(IV)-O•↓, as illustrated in Figures 10B and 11.
Dawson and Sono [14] summarized early spectroscopic results for P450. Meunier summa-
rized a number of experimental results for mono-oxygenations by Fe(X)=O before 1994 [16].
Judging from the available experimental results [16,18], the four reaction mechanisms
in Figure 10; Figure 11 were found to be useful for understanding and explanation of
chameleonic experimental results for mono-oxygenations by several M(X)=O (M = Fe, Mn,
etc.; X = IV, V) complexes [42–70].

The ab initio UHF calculations were performed to examine the scope and applicability
of the above isolobal and isospin analogy [27,81]. Figure 12 illustrates the calculated state
correlation diagrams for the chemical reaction between Fe(IV)=O and ethylene. The 1,4-DR
pathway (FR) was more favorable than the PE pathway (AN) for the mono-oxygenation in
this simple model. The curve crossing between the singlet and triplet states took place along
the 1,4-DR pathway, as shown in Figure 12A [27], indicating the two-state reactivity. The 1,4-
diradical addition mechanism was also more favorable than the four-centered mechanism
in the case of Mn (X)-O•, as illustrated in Figure 12B. Thus, high-valent Fe=O and Mn=O
exhibited strong oxyl-radical characters, which were responding to non-stereospecific
epoxydation reactions by various synthetic model complexes of P450 enzymes [42–70].

The analogy between hydrogen radical abstractions (HRA) by triplet atomic oxygen
(3O) and 3Fe=O in Figure 11 has been feasible [83–89]. On the other hand, a singlet
oxygen atom (1O in the 1D state) undergoes an insertion reaction into the R-C-H bond to
afford R-C-OH. Therefore, we proposed selection rules for mono-oxygenation reactions by
transition metal oxo (M=O) bonds, as shown in Figure 11A [27,54]; (1) singlet O (1D) model
for stereospecific mono-oxygenation and (2) triplet O (3P) model for non-stereospecific
mono-oxygenation reactions. Multiple state mechanisms [27] were also proposed for mono-
oxygenations of alkanes [83–89], as illustrated in Figure 11B. Thus, the high-valent transition
metal oxides with strong oxyl-radical character, M(X)-O• (X = III, IV) were expected to
undergo radical addition and abstraction reactions in (A) and (B) in Figure 11 [27,30,81].

In the 1980s, our computational facility [27] was hardly possible to perform BS
computations based on more realistic models of porphyrin metal complexes. In 2004,
Koizumi et al. [79] performed the ab initio UDFT computations of PorM(V)=O compounds
(M = Mn, Fe), elucidating the instability of the dπyz-pπyz bond. The HOMO-LUMO mix-
ing indeed entailed the spin-polarized (SP) bond, Por ↑↑M(IV)-O•↓, where spin densities
on the Fe and O-sites are about 2.0 and −1.0 because of the strong SP effect. There-
fore, the UDFT computations supported early theoretical models for radical reactions
via the oxygen-radical site of our triplet O (3P) model for high-valent M(V)=O bonds in
Figure 11. The radical coupling (RC) mechanism for the O–O bond formation [79] was also
proposed on the theoretical grounds at that time in relation to the O–O bond formation for
water oxidation [80].

Por↑↑M(IV)-O•↓ + ↑•O-M(IV)↓↓Por→ Por↑↑M(IV)-O-O-M(IV)↓↓Por (22)
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Figure 10. (A) Isolobal and isospin analogy between molecular oxygen (O=O) and Fe(X)=O
(X = IV, V) for addition reactions of C=C double bonds in accordance with four mechanisms in
Figure 7, (B) triplet (3P) and singlet (∆xy) (with singly occupied px and py atomic orbitals) atomic oxy-
gen (O) models for hydrogen radical abstraction reactions, proton transfer model in the zwitterionic
(ZW) state and singlet oxygen (∆xx) (with doubly occupied px atomic orbital and vacant py atomic
orbital) O-model for the non-radical oxygen insertion reactions [27,29,81,82]. The ZW intermediate in
(A) is responding for the NIH shift in aromatic compounds. These intermediates are responding for
the multiple intermediates model for P450 and non-heme iron-oxo compounds (see text).

Molecules 2023, 28, x FOR PEER REVIEW 26 of 67 
 

 

 
Figure 11. (A) Stereochemistry of mono-oxygenation reactions of the C=C double bonds by high-
valent transition metal oxo (M(X)=O, X = IV, V) compounds, such as Cpd I, on the basis of the isolobal 
and isospin analogy between the M(X)=O and atomic oxygen [27,81]. The terminology of SE2 was 
used for NIH shift in the cationic intermediate state of aromatic molecules, such as tryptophan [21] 
and (B) the four-center (essentially concerted), radical and insertion type mechanisms [27,81] of the 
hydroxylation reactions of alkanes on the basis of the same isolobal and isospin analogy. 

 
Figure 12. (A) Comparison between 1,4-diradical (DR) and perepoxide (PE) reaction pathways for 
singlet (1Δ) and triplet (3Σ) Fe(IV)=O in Figure 10. The 1,4-diradical (DR) pathway is more favorable 
than the perepoxide pathway by both spin states. The spin crossover takes place in the 1,4-diradical 
process, indicating a two-states model. (B) Comparison between 1,4-diradical and four-center 
(electrophilic) reaction pathways for Mn(IV)=O in Figure 11A. The 1,4 diradical pathway is more 
favorable than the four-center pathway, confirming the predictions based on the isolobal and isospin 
analogy [27,81]. 

4.6. Quantum Resonance between BS Solutions (RBS) and Diradical Character 
Here, the concept of quantum resonance is introduced to the recovery of the broken-

symmetry to obtain the symmetry-projected states for the EPR spectroscopy and several 
chemical indices [25]. The orbital symmetry breaking in Equation (14) and in Figure 9 is a 
fundamental concept for understanding and explanation of the structure and reactivity of 
high-valent transition metal oxo compounds at the MO theoretical level, as illustrated in 

Figure 11. (A) Stereochemistry of mono-oxygenation reactions of the C=C double bonds by high-
valent transition metal oxo (M(X)=O, X = IV, V) compounds, such as Cpd I, on the basis of the isolobal
and isospin analogy between the M(X)=O and atomic oxygen [27,81]. The terminology of SE2 was
used for NIH shift in the cationic intermediate state of aromatic molecules, such as tryptophan [21]
and (B) the four-center (essentially concerted), radical and insertion type mechanisms [27,81] of the
hydroxylation reactions of alkanes on the basis of the same isolobal and isospin analogy.
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Figure 12. (A) Comparison between 1,4-diradical (DR) and perepoxide (PE) reaction pathways
for singlet (1∆) and triplet (3Σ) Fe(IV)=O in Figure 10. The 1,4-diradical (DR) pathway is more
favorable than the perepoxide pathway by both spin states. The spin crossover takes place in the
1,4-diradical process, indicating a two-states model. (B) Comparison between 1,4-diradical and
four-center (electrophilic) reaction pathways for Mn(IV)=O in Figure 11A. The 1,4 diradical pathway
is more favorable than the four-center pathway, confirming the predictions based on the isolobal and
isospin analogy [27,81].

4.6. Quantum Resonance between BS Solutions (RBS) and Diradical Character

Here, the concept of quantum resonance is introduced to the recovery of the broken-
symmetry to obtain the symmetry-projected states for the EPR spectroscopy and several
chemical indices [25]. The orbital symmetry breaking in Equation (14) and in Figure 9
is a fundamental concept for understanding and explanation of the structure and re-
activity of high-valent transition metal oxo compounds at the MO theoretical level, as
illustrated in Figures 10–12 [27]. However, it does not mean the true broken-symmetry
(BS) state in the phase transition of the solid-state physics, indicating the necessity of the
quantum-mechanically (QM) correct description of diradicals for EPR spectroscopy and
other spectroscopies [14,18,37–41]. In fact, the recovery of the broken-symmetry (BS) occurs
via the quantum resonance in the case of finite systems without phase transitions [25,27].

The BS configuration with the antiferromagnetic (AF) (↑•. . .•↓) spin pair
(Φ(BSII) =

∣∣Ψ+
i αΨ−i β

∣∣) is employed for the qualitative orbital explanation of the singlet-
type diradical configuration, as shown in Figure 10. However, such an expression does not
mean the true classical anti-parallel spin alignment (Neel order in the molecular magnetism
in infinite systems) [25,27]. In fact, the other AF BS configuration with the (↓•. . .•↑) spin
alignment (Φ(BSII) =

∣∣Ψ−i αΨ+
i β
∣∣) is also feasible for diradicals. Two BS configurations

are completely degenerated in energy, as illustrated in Figure 13. Therefore, the quantum
resonance between these configurations occurs under the non-zero overlap (Ti) condi-
tion [25] to provide the resonating BS (RBS) states given by the in (+) and out (−) of phase
combinations as follows:

ΨRBS(+) =
1√
2
[Φ(BSI) + Φ(BSII)] =

∣∣∣∣∣Ψ+
i Ψ−i (αβ− βα)

√
2

∣∣∣∣∣ (23a)

ΨRBS(−) =
1√
2
[Φ(BSI)−Φ(BSII)] =

∣∣∣∣∣Ψ+
i Ψ−i (αβ + βα)

√
2

∣∣∣∣∣ (23b)
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The RBS(+) and RBS(−) states are nothing but pure singlet (S) and triplet (T) states,
respectively, which are responsible for the QM requirement for finite systems without
magnetic phase transitions [15]. The energy gap between the S and T states is defined as the
effective exchange integral (J) in the spin Hamiltonian model for EPR (see later) [25,27,39].

2J = 1E(RBS(+)) − 3E(RBS(−)) (24)

where XE(Y) denotes the total energy of the spin state (X) of the RBS state Y. The J val-
ues have been determined by the magnetic susceptibility experiments and EPR spec-
troscopy [37–41]. The RBS state is now accepting as an entangled state in the quantum
information and computing [33–36].

The PorLFe(III)OO− was often regarded as the exchange coupled system between
PorLFe(III) cation radical (S = 1/2) and superoxide anion radical (S = 1/2) [14,37–41].
Therefore, the exchange coupling between them provided the ground singlet and excited
triplet states, as shown in Equation (23) [14,27,39]. The J value becomes negative in sign
in our chemist’s definition in Equation (24). The spin Hamiltonian model is revisited in
relation to the EPR spectroscopy of possible spin states of the reaction intermediates [14,39]
later. The RBS(+) solution in Equation (23a) is re-expressed by symmetry-adapted MOs
in Equation (14) in order to obtain the effective bond order for the pure singlet state and
diradical character [93]

ΨRBS(+) =
1√

2
(
1 + T2

i
){(1 + cos 2θi)(ϕHOMO−i ϕHOMO−i)− (1 + cos 2θi)

(
ϕ∗LUMO+i ϕ

∗
LUMO+i

)}
(25)

where the first and second terms denote the ground and doubly excited configurations,
respectively, in the 2 × 2 configuration interaction (CI) model based on the natural orbitals
(UNO) of the BS solutions [25,32,95,98]. The refined effective bond order (B) is expressed
with the occupation numbers of the bonding and antibonding UNOs by the projected BS
(ΦRBS(+)) and UNO CI [25]

B =
ni(RBS(+))− n∗i (RBS(+))

2
=

(1 + Ti)
2 − (1− Ti)

2

2
(
1 + T2

i
) =

2Ti

1 + T2
i

(26a)

=
2bi

1 + b2
i
≥ bi (26b)

The effective bond order (B) after quantum resonance, namely, the elimination of
triplet contamination in the AF configuration, is larger than that (b) of the BS solution itself.
The radical character (Y) is defined by twice of the weight of the doubly excited configu-
ration (WD) under the delocalized MO (canonical UNO) CI approximation as [26–30,32]

Y = 2WD =
(1− Ti)

2

1 + T2
i

= 1− 2Ti

1 + T2
i

(27a)

= 1− B (27b)

The metal-oxyl-radical character (Y) can be in turn calculated by the weight of the
doubly excited configuration (WD) obtained by UNO CI, CAS CI [32,98], and CASSCF [31,99].
The radical character Y is directly related to the decrease in the effective bond order B. Chemical
indices b, B, and Y, are mutually related in the present BS MO and beyond BS approach to
M=O [80,100].

The BS UB3LYP/BS II computations elucidated that the dπ-pπ bond of 4Σ (4Π) state)
state of the Mn(IV)=O exhibits 71 (54)% (Y = 0.71 (0.54)) diradical character [78,79]. There-
fore, the effective bond order (B) was calculated to be 0.29 (0.46) for these states, respectively.
The strong oxy-radical character of Mn-oxo bonds was consistent with the 1,4-diradical
addition mechanism in Figure 12B. Thus, chemical indices obtained by the natural orbital



Molecules 2023, 28, 7119 26 of 63

(NO) analysis of the BS solutions are useful for understanding and explanation of radical
reactivity of high-valent metal-oxo bonds [42,46–70,83–90]. The successive UNO CI is in
turn useful for refinements of these indices at the BS level of theory.
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[25,27,28]. The configuration interaction (CI) by the use of the natural orbitals (UNO) of the BS 
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and down arrows are denoted the up and down spins of electron, respectively. 

4.7. Spin Density and Pair and Spin Correlation Functions for Singlet Diradicals 

Figure 13. The quantum resonance between the broken-symmetry (BS) configurations (BSI and
BSII) degenerated in energy provides the two resonating broken-symmetry (RBS) states, which are
equivalent to the pure singlet (S) and triplet (T) states. The energy gap between the S and T states
is defined as 2J in the chemist’s notation [25,27]. The size-consistent approximate spin projection
(AP) for the LS BS solution (AP BS) is performed with the use of the total energy of the HS BS
solution [25,27,28]. The configuration interaction (CI) by the use of the natural orbitals (UNO) of
the BS solutions [25,32,95,98] is also performed for refinements of the AP (LS) BS energy [25,27,32].
The up and down arrows are denoted the up and down spins of electron, respectively.

4.7. Spin Density and Pair and Spin Correlation Functions for Singlet Diradicals

In this section, the concepts of correlation and spin correlation functions [25,130] have been
revisited in relation to the possible roles of spin density by the BS methods.
Spin density is a useful chemical index for radical reactions, as shown in Figure 6. How-
ever, the spin density disappears after the spin projection of singlet BS solutions for singlet
diradicals via the RBS procedure in Equation (23) [25,27,131]. In the 1970s, the BS methods
with significantly larger <S2> value than the exact S(S+1) value were negatively discussed
based on wrong spin properties such as spin contamination and symmetry dilemma [132].
Therefore, against the symmetry dilemma [132], we tried to elucidate possible positive roles of
the spin density of singlet diradical and open-shell species from the basic principle of “strong
electron and spin correlation effects” [25,130]. Our fundamental idea was to examine the pair
and spin correlation functions related to strong correlation and spin correlation effects in these
radical species [25,130]. The second-order pair and spin correlation functions of the BS solutions
were derived to elucidate the important roles of spin densities for chemical indices for strongly
correlated systems. Indeed, the on-site pair function (P2) for electrons with different spins is
indeed given by the following [25,130]:

P2(r1, r1; r1, r1) =
P1(r1, r1)

2 −Q1(r1, r1)
2

2
(28)

where P1(r1, r1)2 and Q1(r1, r1)2 denote, respectively, the square of density and spin density.
This means that the magnitude of the spin density is directly related to the size of the
Coulomb hole (mutual repulsion) for electrons with different spins, providing an important
theoretical picture that the size of the dot • in the preceding chemical expressions means
the magnitude of the Coulomb hole on the theoretical ground. The same physical picture
was later derived in the field of the DFT theory [133,134].
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The Kohn–Sham (KS) DFT model provided spin densities for singlet diradical species,
although the exact DFT was believed to provide no spin density like the exact quantum
mechanical (QM) models, such as RBS [25]. Therefore, the spin densities of KS SDT
were also rationalized on the same idea [133,134], namely, the pair function in Equation
(28) [25,130]. The Equation (28) was also applicable to the hybrid DFT model, providing
the DFT correlation function for the multi-reference (MR) DFT approach [135]. The spin
orbit interactions for spin inversion were not discussed at that time [25,130].

Moreover, the square of the spin density (Coulomb hole) in Equation (28) is related to
the unpaired electron density U(r1) responding to the deviation from the single determinant
under the BS approximation as [25,130,136,137]

U(r1) = Q2(r1, r1) = Q2(r1) = ∑ ni(2− ni) (29)

The magnitude of the spin densities reported in various recent BS calculations can
be understood from the viewpoint of non-dynamical correlations between electrons with
different spins, namely, strong electron repulsion effects. From Equation (29), the unpaired
spin density U(r) is obtained via the occupation numbers of the beyond BS methods, such
as CASSSCF [31,99] and UNO CI (CC) [32,100]. Therefore, the spin density index [93] is
also introduced to express the characteristic behavior of the spin density as follows:

Q(r1, r1) =
√

Ui(r) =
√

1− T2
i , Q(r1, r1) = ∑i Qi(r1, r1) (30)

The next problem with the symmetry dilemma was to provide an answer to the
basic question [132], namely, the possible roles of the sign of spin densities under the
BS approximation. In order to elucidate the answer to this question, the spin correlation
function [25,130,138] was introduced since it was observed in the case of infinite systems
with the neutron diffraction technique [139]. In fact, the spin correlation function K2(r1, r2)
for the BS solution was approximately given by [25,130]

K2(r1, r2) =
∫

s(1)s(2)P2(r1, r2; r1, r2)ds ≈ Q(r1)Q(r2) (31)

where P2 denotes the second-order density matrix. This means that the spin correlation
is singlet-type if the sign of spin density product is negative in sign (↑↓) or (↓↑), although
such short-time spin order cannot be detected by the neutron diffraction because of the
quantum resonance in polyradical species [25]. Therefore, the arrow notations ↑ (or ↓) are
used to describe spin correlations between the up and down spins in this review.

The spin correlation functions in Equation (31) were extended for general Hartree–
Fock (GHF) solutions described with general spin orbitals (GSO), two-component spinor,
which provide non-collinear spin structures with three-dimensional spin densities [25,130].
Although the spin densities arising from the first-order density P1(r1, r2) disappear at
the pure singlet state, RBS(+) in Equation (25), the unpaired electron density (U(r1)) and
spin correlation function (K2) still exist as important spin and electron correlation indices
even in the resonating BS (RBS) and symmetry-adapted multi-reference (MR) beyond
BS wave functions such as MR CC [32] and MR DFT [136], complete active space (CAS)
CI [32], and CASSCF [31]. Therefore, the sign and magnitude of spin densities in the BS ap-
proach should be understood from the above theoretical viewpoints in Equations (23)–(31).
The pair and spin correlation functions can be used to elucidate the nature of chemical
bonds in the case of RBS and MR approaches [25,32] as alternative indices for spin density
at the BS UB3LYP level of theory.

Recently the information entropy [140,141] is a useful measure of quantum effects
in SCES. The information entropy (In) for chemical bonds is defined by the occupation
number as

Ii = −ni ln ni, Ic = −2 ln 2, In = Ii/Ic (32)
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where Ii and Ic denote the information entropies defined by the occupation numbers of the
partially and fully occupied orbitals. The effective bond order In is defined by the ratio of
them. Its behavior is similar to that of the effective bond order (b), as shown in Figure 14.

Figure 14A illustrates functional behaviors of the chemical indices against the orbital
overlap Ti (i = HOMO, HOMO–1, . . .). The effective bond order (b) is decreased linearly
with the decrease in the orbital overlap (Ti). The effective information entropy (In) also
indicates a similar behavior. The spin density Qi (green line) increases sharply, even in the
large orbital overlap region Ti > 0.6, indicating a strong radical character. This characteristic
behavior is partly responsible for the spin contamination effect in the BS solution [93].
On the other hand, the diradical character (Yi) (blue line) obtained after the elimination
of the spin contamination remains to be lower than 15% in this region, but it increases
sharply in the strong diradical region (Ti < 0.4) [26]. Thus, Figure 14A is useful for the
understanding of the functional behaviors of the chemical indices.

Several chemical indices defined by the occupation numbers of the natural orbitals are
equally applicable beyond BS methods, such as CASSCF, CASPT2, and MR CI(CC) [25,32].
Therefore, they play important roles in conceptual bridges between BS and beyond BS
methods, as illustrated in Figure 14B [140]. The natural orbitals (UNO) obtained by BS
computations are useful for the construction of reference configurations for these beyond
BS computations [32]. In 1980, we proposed fundamental theoretical methods (UNO
UCCS (= MCSCF), UNO CI (CC), MR CI) for elucidation of quasi-degenerated electron
systems such as those of M=O in Tables 3 and 4. Figure 15 summarizes our early theoretical
approaches to quasi-degenerated electron systems [32]. Thus, the BS-independent particle
models [25] are useful as the first step for investigations of the nature of chemical bonds
of strongly correlated electron systems (SCES) such as 3d transition metal oxides [25–30].
The beyond BS methods [31,32] are necessary as the second step for elucidation of the scope
and reliability of the BS computational results. Finally, the quantum computations [33–36]
are expected to be the final step for the elucidation of chemical bonds under investigation.
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states of the peroxidase, P450, etc. In the 1980s, the spin Hamiltonian (Heisenberg (HB)) 
model was used for the analysis of experimental magnetic results for transition metal 
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Figure 14. (A) Schematic illustration of variations of the chemical indices with the orbital overlap (Ti)
between broken-symmetry (BS) orbitals in the BS methods coupled with spin projections [25,32,93].
Definition and derivation of the chemical indices are given in Equations (24)–(32). (B) Natural
orbitals (UNO) are obtained by the BS computations in the single Slater determinant approximation.
The UNO and their occupation numbers [32,100] are used for construction of multi-configurations
for CASSCF and CASPT2 [31,99,101]. Some of chemical indices are calculated with the occupation
numbers of the natural orbitals of BS and beyond BS methods, indicating the theoretical bridges
between them.
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Figure 15. Early proposal of theoretical methods for investigation of electronic and spin states of
quasi-degenerated systems [32]. The general BS methods including UHF, generalized HF (GHF) using
general spin orbitals (GSO), Hartree–Fock–Bogoliubov (HFB) [25], etc. under the single determinant
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that are used for multi-determinant configurations (complete active space (CAS) for multi-reference
(MR) configuration interaction (CI) and coupled cluster (CC) calculations. UNO CASCCS (S = single
excitation) is equivalent to the CASSCF [31].

4.8. Quantum Spin Hamiltonian Models for Compound I (Cpd I)

Here, the exchange couplings between local spins are examined in relation to the
spin states of the peroxidase, P450, etc. In the 1980s, the spin Hamiltonian (Heisenberg
(HB)) model was used for the analysis of experimental magnetic results for transition metal
oxides obtained by the magnetic susceptibility methods and EPR spectroscopy [14,37–41]

H (HB) = − 2Jab Sa • Sb (33)

where Jab and Sq (q = a, b) denote, respectively, the effective exchange interaction between
local spins and local spin on the site q (q = a, b). We derived a computational scheme of the
Jab values by using energy gap between the low-spin (LS) and high-spin (HS) BS solutions
as [25,27,28]

Jab = [LSE(Y) − HSE(Y)]/[HS<S2>(Y) − LS<S2>(Y)] (34)

where XE(Y) and X<S2>(Y) were, respectively, the total energy of the spin state X by the
computational method Y and the total spin angular momentum of the LS BS solution.
Equation (34) was derived for the BS method after approximate spin projection (AP)
[25,27,28]. Therefore, it was also useful for symmetry-adapted multi-configuration (MC)
methods [31,32], such as CASCI and CASSCF [25,99]. The size-consistent total energy of the
AP LS BS solution without spin contamination [140] has been given by using the J value as

LSE(AP BS) = LSE(BS) + Jab [LS<S2>(BS) − S(S + 1)] (35)

where S(S + 1) is the total spin angular momentum for the LS (2S + 1) state. Therefore, the
second term in Equation (35) denotes the energy correction for the LS BS solution with the
total spin quantum number LS<S2>(BS), which often involves the HS spin contamination
contribution for the exact LS state with the spin quantum number S(S + 1).

Spin Hamiltonian models using the arrow notations based on the sign of Jab in
Equation (34) have been applied to elucidate spin states of transition metal oxides [25–29].
For example, the compound I (F) in Figure 1 was often regarded as the exchange coupled
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system between porphyrin π cation radical (Por (+↓•) with down spin (S = −1/2) and
triplet (S = 2/2) ground state of L↑•Fe(IV)=O•↑ [37–41]; X = 2 and Y = 0 in Equation (12),
providing total doublet (Stotal = (2/2 − 1/2) = 1/2) and quartet (Stotal = (2/2 + 1/2) =3/2)
states, 2[Por(+•↓) ↑•Fe(IV)=O•↑], and 4[Por(+•↑) ↑•Fe(IV)=O•↑], as shown in Figure 16.
These exchange-coupled states are used for the two-state model of the Cpd I structure [86].
The back charge transfer from ↑•Fe(IV)=O•↑ core to the (Por (+•↓) part provides a formal
2[PorL↑•Fe(V)=O] with a doublet spin state, as illustrated in Figure 3 [15–21,142–146].
The three-state model of the Cpd I is obtained by including the last structure [146].

The doublet 2[Fe(V)=O] core (2E state) is often the parent iron-oxo complex of P450 [21]
instead of the 3Fe(IV)=O complex of non-heme iron-oxo enzymes. As mentioned above,
the 2[Fe(V)=O] core has the lower-lying π LUMO responding for the nonradical mono-
oxygenations; addition reaction in Figure 10A and insertion reaction in Figure 11B [25,27,81].
However, 2[PorL↑•Fe(V)=O] often exhibits spin polarization (SP), as illustrated in Figure 9,
providing the 2[PorL↑↑••Fe(IV)-O•↓] with the oxyl-radical character for radical reactions,
as illustrated in Figure 16 [27]. The orbital overlap (Ti) between SP BS orbitals and the
effective bond order (b) were calculated to be 0.35 [80], indicating the intermediate radical
character (Y = 38%) and large unpaired electron density (U(r) = 0.87).

The ET-PT process is feasible for 2[Fe(V)=O] if the substrates are strong donors, such
as amines (H-NR). The activation barrier for the ET-PT, namely, the allowed radical (AR)
process in Figure 7, is significantly reduced when compared with the homolytic hydro-
gen radical abstractions (HRA). The kinetic isotope effect for hydroxylation may be re-
duced for the ET-PT process if the quantum effect is not operative for the PT process.
Therefore, the relative stability between the 2[Por(+•↓) ↑•Fe(IV)=O•↑]
(2Cpd I) and 2[Por↑•Fe(V)=O] (2E) is very important for the understanding of the stere-
ospecific and non-stereospecific reaction modes by P450, as illustrated in Figure 11.

The LFe(IV)=O core in non-heme enzymes often exhibits the high-spin quintet con-
figuration (high spin (HS), namely, X = Y = 1 in Equation (12)) in non-heme iron-oxo
compounds, R1R2↑↑↑•••Fe(IV)=O•↑ (S = 4/2) in Figure 8B. The reduction of the energy
gap between the dxy and dx2-y2 by the C3 ligand is essential for the generation of the S
= 2 intermediate. The triplet atomic oxygen O (3P) model is equally applicable to this
high-spin species. The non-heme Fe(IV)=O core may exhibit the SP effect of the dσ-pσ
bond, providing the R1R2↑↑↑↑••••Fe(III)-O•↓ (S = 3/2) (No. 26 in Table 5). Thus, the
bifurcation of the dσ-pσ bond providing the pσ oxyl-radical character is also one of the
important factors for understanding of chemical behaviors of non-heme Fe(IV)=O bonds.

The Equation (34) was applied to elucidate the relative stability between the dou-
blet and quartet spin states of Por(+•)lFe(IV)=O compounds, which were highly sensitive
to axial ligands (R), as shown in Figure 17 [20,142,143]. The effective exchange interac-
tion between Por(+•)L doublet ligand part and triplet Fe(IV)=O core was easily calcu-
lated by using Equation (34). Figure 17 illustrates the computational models employed.
The calculated J values were negative in sign for 1 with phenolate anion (L) of catalase and
3 with thiolate anion (L) of P450, indicating the LS doublet ground state. On the other hand,
the calculated J values were positive in sign for 2 with imidazole anion (2a) (L) and neutral
imidazole (2b) of peroxidase and 4a and 4b model complexes with chloride anion (L) in
accordance with the high-spin quartet state [51]. The magnitude of the J values was small
for the model complexes examined in accordance with the experimental results, as shown
in Table 6.
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configuration. In the case (A), the (π) and (σ) denote π- and σ-type oxyl orbitals, respectively. The ↑
and ↓ denote the up- and down-spins, respectively. The high-valent Por↑•Fe(V)=O (see Figure 3) often
exhibits the spin polarization (SP) of the dπ-pπ bond, providing the Por↑↑••Fe(IV)-O•↓ (π) under the
(δxy)2 configuration. On the other hand, the SP of the dσ-pσ bond provides the Por↑↑••Fe(IV)-O•↓
(σ) [147–176]. In the case (B), the total high-spin 4[L↑↑↑•••Fe(IV)-O•↑] and 3[L↑↑↑•••Fe(V)-O] are
feasible. The SP configurations are also available for the non-heme compounds as discussed in the
text [177–207]. The up and down arrows are denoted the up and down spins of electron, respectively.

Table 6. Calculated effective exchange integral (J cm−1) values for the compound I complexes [143].

Model Catalase Peroxidase (a) P450 Model Complex

1 2a 2b 3 4a 4b

Jcalc. −29.3 9.1 59.9 −20.4 40.66 29.57
Jexp. 6 (b) −1.3 < Jexp

(c) < 1.3 −18 (d) - 21.5
(a) 2a: deprotonated, 2b: protonated. (b) Estimated by J = −0.2D and D~30 cm−1. (c) HRP. (d) CPO, estimated by J
= −0.51D and D~35 cm−1.
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4.9. Charge and Spin Correlation Diagrams for Mono-Oxygenations by Cpd I

Here, the possible reaction mechanisms for mono-oxygenations by heme iron oxo com-
pounds are derived on the basis of the charge and spin correlation diagrams [147–176,208–214].
To this end, the UMP and approximately spin projected (AP) UMP methods were applied to
depict the potential curves of the M=O+ (M = Cr, Mn, etc.) species, indicating that only 50%
of the binding energy was reproduced by APUMP4 in a sharp contrast to the UCCSD(T)
method [78,79]. On the other hand, the HDFT augmented with CASPT2 provided reason-
able potential curves for the FeO+ + H2 reaction [209,211,213], elucidating the two state
reactivity patterns of the reactions. Thus, in contrast to organic reactions, two states of
different spin multiplicities (TSR) are feasible in the case of oxygenation reactions by 3d
transition metal oxides [27,211–213]

The spin correlation functions in Equation (34) have indeed indicated that the spin
Hamiltonian (Heisenberg (HB)) model is applicable to derivations of spin correlation dia-
grams for mono-oxygenation reactions [20,21,83–90]. Shaik et al. [147–149] first proposed
the two states (doublet and quartet) reactivity paradigm of the hydroxylations by P450.
The doublet 2Cpd Ia with the ↓↑↑ spin alignment undergoes hydrogen abstraction reaction,
providing the transition structure (TS) that is characterized by the populations of down
spin (↓) at porphyrin and up spin (↑) at Fe and up spin (↑) at alkyl radical, as shown in
Equation (36a). The down spin (↓) at porphyrin is replaced by the up spin (↑) in the course
of hydrogen abstraction reaction by 4Cpd Ia. The conversion of the valence state from
Fe(IV) into Fe(III) occurs in the TS region for both 2Cpd Ia and 4Cpd Ia.

On the other hand, doublet 2Cpd Ib with the ↑↑↓ spin alignment also undergoes
hydrogen abstraction, providing the Fe(IV) site with two up spins and one down spin at
the oxygen site. Therefore, the spin densities on the Fe site are about 1 for 2Cpd Ia and
4Cpd Ia and 2 for 2Cpd Ib [142–146]. Thus, spin structures of three different compound I are
directly related to those of transition structures for homolytic hydrogen radical abstractions
(HRA) in Equation (19), and Figures 10 and 11B. HDFT computations [146–176,208–214]
have already been performed to locate the transition structures of hydrogen abstraction
reactions by Cpd I. The activation barriers for hydrogen radical abstraction are parallel
to the binding energies of the H-C bonds [174]. The detailed computational results are
not touched in this review since several excellent review articles have been published, as
shown in refs. [83–90,175,176].

2[Por(+•↓) ↑•Fe(IV)=O•↑](2Cpd Ia) + H-R→ 2[Por(+•↓) ↑•Fe(III)-OH. . .↑•R] (36a)

4[Por(+•↑) ↑•Fe(IV)=O•↑](4Cpd Ia) + H-R→ 4[Por(+•↑) ↑•Fe(III)-OH. . .↑•R] (36b)

2[Por ↑↑••Fe(IV)-O•↓](2Cpd Ib) + H-R→ 4[Por ↑↑••Fe(IV)-OH. . .↓•R] (36c)

The isolobal–isospin analogy among Fe=O, O=O, and O [81,82] (see Figure 10) in-
dicates that the electron-transfer [94] coupled proton transfer (ET-PT) mechanism is an
alternative possibility for electron-rich substrates [81,82]. The transfer of beta spin of
H-R bond to SOMO of 3Fe(IV)=O followed by proton transfer (ET-PT) in Equation (18)
and Figure 10 is also conceivable for 2Cpd Ia and 4Cpd Ia, as shown in Equation (37a) if
the substrate (H-R) is strongly electron-donating such as amine. On the other hand, the
transfer of alpha spin of H-R paired bond to the O• site of 2Fe(IV)-O• providing the O-

site followed by proton transfer (ET-PT) in Equation (18) and Figure 10 is also feasible
for 2Cpd Ib, as shown in Equation (37b). The spin configuration of Fe(III) is S = 1/2 for
2(4)Cpd Ia, and the spin configuration of Fe(IV) is S = 2/2 for 2Cpd Ib, providing the up and
down spins on the alkyl radical site, as shown in Equation (37a,b). Therefore, the sign of
spin density on the alkyl radical is an important index for discrimination between ET-PT
reactions by 2(4)Cpd Ia and 2Cpd Ib. Thus, the spin correlation diagrams are also useful for
understanding the ET-PT reaction mechanisms. Indeed, we can understand the reaction
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mechanisms based on the reported signs and populations of spin densities by hybrid DFT
computations [83–90,118–176,208–215].

2(4)[Por(+•↓(↑)) ↑•Fe(IV)=O•↑)(2(4)Cpd Ia) + H-R→ 2(4)[Por(+•↓(↑)) ↑•Fe(III)-O−. . .(+↑•H-R)→
2(4)[Por(+•↓(↑)) ↑•Fe(III)-OH. . .↑•R]

(37a)

2[Por ↑↑••Fe(IV)-O•↓](2Cpd Ib) + H-R→ 2[Por ↑↑↑•••Fe(III)-O−. . .(+↓•H-R)]
→ 2[Por ↑↑↑•••Fe(III)-OH. . .↓•R]

(37b)

4.10. Mono-Oxygenations by Nonheme Iron-Oxo Compounds

Here, early our theoretical models for Fe=O [26–30] have been revisited in relation
to non-heme iron-oxo species [177–207,214,216–219]. The mono-oxygenations by the non-
heme Fe(IV)=O bonds were considered on the basis of the isolobal and isospin analogy
between Fe(IV)=O and atomic oxygen (O), as illustrated in Figure 11 [27,81]. Therefore,
the electronic and spin configurations in Table 5 are applicable to mono-oxygenations by
the Fe(IV)=O with the closed-shell singlet and open-shell triplet δ orbitals in Figure 8A,B.
The 1[Fe(IV)=O](1∆πxπy)(δxy)2 with the up spin (πx) and down spin (πy) (No. 16 in Table 5)
is responding for radical abstraction as in the case of 1O (Dxy) [81], providing alkyl radical
with the down spin, as shown in Equation (38a). Similar hydrogen radical abstraction (HRA)
is also feasible for 3{[Fe(IV)=O(1∆πxπy)]3[1(δxy)1(δx2−y2)]}, as shown in Equation (38b).
The 3[Fe(IV)=O](3Σ) with (δxy)2 and 5[Fe(IV)=O](3Σ) with (δxy)1(δx2−y2)1 undergo the
HRA reactions like 3O (3P) [81], providing alkyl radical with the up spin, as shown in
Equation (38c,d). The down and up spins are induced on the alkyl radical site, depending
on the 1∆πxπy and 3Σ states of Fe(IV)=O. Thus, the isolobal and isospin analogy [26,27,81]
provided guiding principles for radical reactions of alkanes with non-heme iron-oxo bonds.

1[Fe(IV)=O](1∆) + H-R→ 1[↑•Fe(III)-O•↓. . .H-R]→ 1[↑•Fe(III)-OH. . .↓•R] (38a)

3[↑↑••Fe(IV)=O] + H-R→ 3[↑↑↑•••Fe(III)-O•↓. . .H-R]→ 3[↑↑↑•••Fe(III)-OH. . .↓•R] (38b)
3[↑•Fe(IV)=O•↑](3Σ) + H-R→ 3[↑•Fe(III)-OH. . .↑•R] (38c)

5[↑↑↑•••Fe(IV)=O•↑] + H-R→ 5[↑↑↑•••Fe(III)-OH. . .↑•R] (38d)

The ET mechanism [94], followed by proton transfer (ET-PT) in Equation (18) and
Figure 10, is feasible for 5[Fe(IV)=O](3Σ) with (δxy)1(δx2−y2)1 if the substrate (H-R) is
strongly electron-donating. The down-spin transfer of the H-R bond to the Fe(IV)=O core
with π2 SOMO occurs in the first place, providing the high-spin Fe(III) with S = 3/2 and
the cation radical (up spin) state of H-R (S = 1/2) that undergoes the proton shift to afford
alkyl radical with the up spin, as shown in Equation (37c). On the other hand, the up
spin transfer of the H-R bond to the Fe(IV)=O core with σ* LUMO occurs in the high-spin
state, providing the high-spin Fe(III)-O–• with the σ-type lone pair (O−) and the π-type
delocalized spin (↑•) and the cation (down spin) radical of H-R (S = −1/2), followed by
proton transfer (PT) for the O-H bond formation and radical coupling for the O-R bond
formation, as shown in Equation (37d). The linear-like F-O---H-C conformation is favorable
for the ET-PT process. The ferromagnetic effective exchange interactions among local
spins on the Fe(III) ion plays an important role for stabilization of the high-spin state [25].
The kinetic isotope effect is supposed to be small for the ET-PT processes under the assump-
tion of no quantum effect.

5[↑↑↑•••Fe(IV)=O•↑] + H-R→ 5[↑↑↑•••Fe(III)-O−. . .(+↑•H-R)]
→ 5[↑↑↑•••Fe(III)-O-H. . .↑•R]

(37c)

5[↑↑↑•••Fe(IV)=O•↑] + H-R→ 5[↑↑↑↑••••Fe(III)-O−(σ)↑•(π). . .(+↓•H-R)]
→ 5[↑↑↑↑••••Fe(III)-HO↑•(π). . .↓•R]→ 5[↑↑↑↑••••Fe(III)-HO-R]

(37d)
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The spin polarization (SP) of the dσ-pσ bond may be possible for specific cases, as
illustrated in Figure 18. The SP effect of 5[Fe(IV)=O](3Σ) with 3[(δxy)1(δx2-y2)1] provides
the highest spin S = 5/2 configuration of Fe(III) and oxygen radical site with the down
spin (S = −1/2), as shown in Equation (39a). The effective exchange interactions of the
Fe (S = 5/2) are more favorable than those of the Fe (S = 3/2) [25,82]. The homolytic
radical abstraction (RA) reaction by pσ radical orbital of the site O is feasible, as shown in
Equation (39a), in sharp contrast to those of pπ radical orbital of the site O in Equation (36).
Therefore, linear-like transition structures Fe-O-H. . .R are favorable for hydrogen radical
abstractions (HRA) in Equation (39a). The discrimination between the ET-PT in Equation
(37d) and RA in Equation (39a) may be feasible from the activation barriers for hydroxyla-
tions. The spin-flip excitation from the (dσ-pσ) bond to the (dσ-pσ)* LUMO is conceivable
to afford the highest spin state, as shown in Equation (39b).

5[↑↑↑•••Fe(IV)=O•↑] + H-R→ 5[↑↑↑↑↑•••••Fe(III)-O•↓ + H-R)]
→ 5[↑↑↑↑↑•••••Fe(III)-O-H. . .↓•R]

(39a)

7[↑↑↑↑↑•••••Fe(III)=O•↑] + H-R→ 7[↑↑↑↑↑•••••Fe(III)-OH. . .↑•R] (39b)

The excited radical states of iron-oxo species stabilized by the ferromagnetic exchange
interactions (the Hund rule and/or spin catalysis effect)) of the HS (S = 5/2) Fe(III) ion
may be generated by photoexcitation, as summarized in Table 5. Thus, the BS level of
theory [142–146] is found to be useful for elucidation of spin correlation diagrams and
selection rules for oxygenation reactions by iron-oxo compounds.
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Figure 18. (A) The large energy gap between the bonding HOMO (dσ-pσ) and antibonding LUMO
(dσ-pσ)* orbitals responsible for no HOMO-LUMO mixing. (B) the small energy gap between the
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The up and down arrows are denoted the up and down spins of electron, respectively.

Over the past two decades, both experimental and theoretical investigations have
been extensively performed for the non-heme iron-oxo compounds [177–207,216–219].
In 2003, the crystal structure of the synthetic non-heme Fe(IV)=O species [181] was first
discovered, providing spectroscopic results for the characterizations of these species. In the
same year, the first characterization of the so-called TauD was also performed, opening the
biochemistry of the non-heme iron-oxo species [182]. After these discoveries, a chemical
synthesis of the non-heme Fe(IV)=O model complexes have been performed to elucidate
the mechanism of the hydroxylation reactions by Fe(IV)=O [183,187,190,192,194,200,202].
The mono-oxygenation reactions by TauD and related biological systems have also been
investigated to elucidate key roles of the non-heme Fe(IV)=O intermediates for biological
functions [184,185,189,191].
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Judging from the computational results [186,193,197–199,201], hydrogen radical ab-
straction (HRA) mechanisms are concluded in many cases, indicating that both the π-SOMO
of Fe=O-HOMO (H-C bonding orbital) and π-SOMO of Fe=O-LUMO (H-C anti-bonding
orbital*) interactions are operative in accordance with the essentially neutral charge at
the hydrogen site in the transition states for HRA reactions. However, the latter orbital
interaction is often neglected for simplified illustrations of the HRA reactions.

On the other hand, the ET-PT mechanism is really feasible for strong electron-donating
substrates, such as H-N bond of amines [21]. The UB3LYP computations [186,193,197–199,201]
have elucidated that the spin crossovers between different spin states in Equations (36)–(39)
often occur along the reaction pathways for the HRA reactions, indicating that ferromagnetic
effective exchange interactions among local spins play important roles for the stabilization of
transition structures and reaction intermediates. This entails difficult theoretical problems to depict
the accurate potential curves for HRA reactions [204–207,218,219]. These interesting results are
revisited later.

4.11. Quantum Spin Hamiltonian Models for Binuclear Transition Metal Oxides

In this section, early ab initio computations of the binuclear transition metal com-
plexes [27,81,82,220] have been revisited in relation to the EPR spectroscopy and hole
doping on the oxygen site. The following exchange-coupled binuclear complexes have
been involved in metalloenzymes [17,221–226]: (1) binuclear copper oxide (CuO2Cu) in
hemocyanin and binuclear iron oxide (FeXFe) (X = OH, O) of hemerythrin for molec-
ular oxygen carriers, (2) binuclear iron and copper oxides (MOM) (M = Fe and Cu) of
methane monooxygenase, (3) binuclear Mn oxide (MnOMn) of Mn-catalase for molecular
oxygen carriers. In the early 1980s, the exchange-coupled transition metal complexes were
synthesized as model complexes of these redox-active metalloenzymes [17,217,220,221].
The paramagnetic susceptibility and EPR experiments revealed the effective exchange
integrals (J) for binuclear transition metal complexes at that time. The isolobal and isospin
analogy between oxygenated dipoles and transition metal µ-oxo dimer was our guiding
principle to elucidate the electronic and spin state of the M-O-M systems [27,81].

•X-O-X• (X = O, NH, CH2)↔ •Y-O-Z• (Y, Z = Mn, Fe, Cu. . .) (40)

Both systems are essentially regarded as three-center four-electron [4e, 3o] systems. There-
fore, the HOMO becomes the antisymmetric non-bonding orbital, as shown in Figure 19. On the
other hand, the LUMO is the symmetric anti-bonding MO. The [4e, 3o] π-bonds are stable for
4d and 5d metals, as shown in Figure 19, indicating the large HOMO-LUMO gap. On the other
hand, the orbital energy gap between the HOMO-LUMO is small for 1, 3-diradical and M–O–M
systems (M = 3d transition metals), indicating the spontaneous HOMO-LUMO mixing that en-
tails the broken-symmetry orbitals mainly localized on the left and right metal sites, respectively,
as shown in Figure 19. Therefore, the Heisenberg model is applicable for the 3d-metal systems
with strong 1,3-metal diradical character •M–O–M•. Thus, the isolobal and isospin analogy
in Equation (40) is applicable to the [4e, 3o] systems [27]. The BS UHF calculations were also
performed for binuclear complexes for confirmation of the analogy. To this end, the J values of
these transition metal complexes were obtained by using the computational scheme after spin
projection in Equation (34) [25–29]. The computational results are summarized in Table 7.

The J-values for the Cr(III)-O-Cr(III) complex were calculated to be largely negative
in sign, indicating the strong antiferromagnetic (AF) interaction. However, the calculated
J-value was −187 cm−1 for the NH3Cr(III)-O-Cr(III)NH3, indicating the suppression of the
super-exchange interaction with the coordination of NH3 ligand [27]. It was compatible
with the observed J-value for the (NH3)5Cr(III)-O-Cr(III)(NH3)5 [25], indicating the applica-
bility of the computational procedure for elucidation of the nature of the exchange-coupled
binuclear complexes. The J-values calculated for the Mn(II)-O-Mn(II) indicated the spin
crossover from the antiferromagnetic (AF) and ferromagnetic (F) state with the increase
in the Mn-O distance [27]. The calculated J-value for NH3Mn(III)-O-Mn(III)NH3 was
−60 cm−1, indicating the AF interaction is consistent with the magnetic behaviors of many
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Mn oxides [80]. However, it exhibited the spin crossover from AF to the ferromagnetic
(F) state in the elongated Mn-Mn distance. The J-values calculated for the Fe(III)-O-Fe(III)
also indicated the spin crossover from the AF and F state with the increase in the Fe-O
distance [17]. The linear Ni(II)-O-Ni(II) unit exhibited the AF interaction.

Table 7. The J values for binuclear transition metal complexes by the broken-symmetry methods [27,28].

System Conf. Jab (R(M–O), Angle)

CrIIIOCrIII d3-d3 −6204 (1.0) −1987 (1.25) −671 (1.5) −377 (1.7)
XCrIIIOCrIIIX d3-d3 −187 (1.7) −79 (1.8) −10 (1.9)
Mn0 . . .Mn0 d5-d5 −32 (3.0) −7 (3.5)
MnIIOMnII d5-d5 −3534 (1.0) −156 (1.5) 7 (2.0)

XMnIIOMnIIX d5-d5 −24 (1.71)
XMnIIIOMnIIIX d4-d4 −60 (1.71)

FeIIIOFeIII d5-d5 −4913 (1.0) −264 (1.5) −71 (1.6) 279 (1.8)
326 (1.9)

NiIIONiII d8-d8 −14754 (1.0) −831 (1.5) −525 (1.7)
XNiIIONiIIX d8-d8 −174 (1.7)
CuIIOCuII d9-d9 −36453 (1.0) −4621 (1.6) −5433 (1.8)
CuIIIOCuIII d8-d8 −19616 (1.0) −5671 (1.6) −5688 (1.8)

CuII(OH)2CuII d9-d9 554 (2.85, 97) 207 (2.98, 103)
−175 (3.15, 110) −170 (3.12, 110)

H2CuII(OH)2NiIIH2 d9-d8 −24 (2.85, 95.6) −170 (3.15, 110)
FeIII . . .FeIII d5-d5 −16 (2.70, 75)
FeIIIS2FeIII d5-d5 −926 (2.70, 75)

H2FeIIIS2FeIIIH2 d5-d5 −175 (2.70, 75)
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Cu(II)(OH)2Cu(II) complex with smaller angles (<100 degree). On the other hand, the 
calculated J-values are negative for the Cu(II)(OH)2Cu(II) complex with larger angles 
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Figure 19. (A) The closed-shell HOMO (non-bonding) and LUMO (anti-bonding) for M=O=M
systems and (B) The spin polarized molecular orbitals for the •M-O-M• systems obtained by the
HOMO-LUMO mixing. The BS orbitals are mainly localized on the left (L) and right (R) M-sites,
indicating the 1,3-diradical characters. The effective exchange interactions (J) between the BS orbitals
localized on the L and R sites are given in Table 7 [27]. Several M=O=M and •M-O-M• systems are
also depicted for explanations. The up and down arrows are denoted the up and down spins of
electron, respectively.

The linear (180 degree) Cu(X)-(µ-O)-Cu(X) (X = II, III) unit indicated the large negative
value, indicating the extremely strong AF interaction [27]. This large |J| was used to
estimate the transition temperature of the high-Tc superconductivity of hole doped calcium
copper oxide by partial substitution of Ca(II) with La(III), indicating the hole doping via
the conversion of Cu(II)-O2−-Cu(III) into Cu(II)-O•1−-Cu(II) [220]. The oxyl-radical site for
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Cu(II)-O•1−-Cu(II) was responsible for the oxygenation reaction [27,221]. The hole doping
at the oxygen site of the high-valent M-O•1−-M systems (M = Fe, Cu, etc.) [25,27,29] was not
only one of the guiding principles for understanding of oxygenation reactions [17,221,224],
but also the working hypothesis for theoretical understanding of unusual properties, such as
hole-doped superconductivity [220]. Thus, the concept of the hole-doping in the transition
metal oxides [27,190] was one of the guiding principles for our theoretical investigations of
strongly correlated electron systems (SCES), such as hole-doped copper oxides [27,190].

The J-values calculated for the Cu(II)(µ-OH)2Cu(II) complex indicated the strong Cu-O-Cu
angle (θ) dependence, as shown in Table 7 [28]. The J-values were considered to be positive
for the Cu(II)(X)2Cu(II) (X = O2−, OH−) complex with smaller angles (<100 degree) because
of the contribution of the charge-transfer configuration Cu(I)-O(−•)-Cu(II), where the orthogo-
nal 2p-orbital and 3d-orbital interaction was feasible for the ferromagnetic (F) super-exchange
interaction. The calculated J-values were indeed positive for the Cu(II)(OH)2Cu(II) complex
with smaller angles (<100 degree). On the other hand, the calculated J-values are negative for
the Cu(II)(OH)2Cu(II) complex with larger angles (>110 degree) because of contribution of the
charge-transfer configuration Cu(I)-O(−•)-Cu(II) where the non-zero 2p-orbital and 3d-orbital
interaction is feasible for the antiferromagnetic (AF) super-exchange interaction.

The same mechanism was found to be operative for the Cu(II)(OH)2Ni(II) complexes.
The hole doping on the oxygen site of the high-valent M(X)-(O2−)-M(X) unit is often feasible,
providing the active oxyl-radical site; M(X)-(O−•)-M(X). The oxygen-radical site of the
Fe(IV)-(O−•)-Fe(III) cluster is indeed responding for methane monooxygenase [17,223,224].
Thus, hole doping on the oxygen site is very important for both material sciences [220] and
radical reactions [25–29].

The J-values for the Fe(III)S2Fe(III) unit [25,97] were calculated to be antiferromagnetic
(AF) in consistent with the experiments [34–36]. Indeed, ferredoxin plays an important role
in the electron transfer in P450 enzyme as mentioned in the introduction [36]. The early BS
calculations combined with the Heisenberg model were found to be useful and practical
for the theoretical elucidation of the binuclear transition metal complexes [27], which were
regarded as model complexes for the active sites of several metalloenzymes [221–226].
Recently, BS hybrid DFT methods, such as UB3LYP, have been conveniently used for the
elucidation and computation of the sign and magnitude of J-values for multi-nuclear
transition metal complexes involved in metalloenzymes [80].

5. Theoretical Investigations of Mono-Oxygenation Reactions by P450 and Related Species
5.1. Natural Orbital Analysis of the BS Solutions and Chemical Indices of the Intermediates

In this section, the natures of the chemical bonds of all the intermediates in the P450
cycle have been revisited. The BS hybrid DFT methods are nowadays handy and practi-
cal tools for theoretical investigations of large transition metal complexes. Extended BS
computations, including full geometry optimizations [142,143], were performed to confirm
early BS ab initio computational results for elucidation and understanding of the nature
of chemical bonds of iron-peroxide and iron–oxo intermediates in the P450 reaction cycle
in Figure 1. Both DZ and TZ basis sets [227,228] were used for UB3LYP computations by
available program packages [229,230]. The extended BS UB3LYP computations elucidated
the spin state levels of the key intermediates (A~F in Figure 1), as shown in Figure 20. The
full geometry optimizations were also performed to elucidate the geometric structures of
these intermediates, as shown in Figure 21. The charge and spin densities of the optimized
geometric structures are summarized in Table 8. The natural orbital analysis of the BS
solutions was also performed to elucidate natural orbitals (UNO) and their occupation
numbers (ni). The chemical indices were also obtained by using the relations; ni(HOMO) =
1 + Ti and ni*(LUMO) = 1 − Ti, as shown in Table 9.
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Table 8. Charge and spin densities of the iron complexes generated in the P450 reaction cycle by the
UB3LYP method [143].

Spin State Fe S N O O(2)

A S = 1/2 Charge 0.57 0.22 −0.07 0.10 (H2O)
Spin 1.02 0.06 0.00 0.00 (H2O)

C S = 2 Charge 1.06 −0.15 0.12 -
Spin 3.86 0.23 0.05 -

S = 1 Charge 0.87 −0.15 −0.11 -
Spin 2.01 0.26 −0.01 -

S = 0 Charge 0.70 0.09 −0.11 -
Spin 1.09 −0.14 −0.05 -

D S = 0 Charge 0.17 −0.02 0.23 −0.18 (O1) −0.19 (O2)
Spin 1.08 0.06 0.02 −0.66 (O1) −0.39 (O2)

E S = 1/2 Charge 0.24 −0.13 0.21 −0.20 (O1) −0.25 (O2)
Spin 0.93 −0.02 −0.05 0.38 (O1) 0.59 (O2)

F S = 1/2 Charge 0.20 0.10 0.19 −0.13
Spin 1.19 −0.81 0.04 0.91

Table 9. Chemical indices for iron-peroxides (D and E) and iron-oxo (F) intermediates by the UB3LYP
calculation [143].

Entry Orbital Q U I b Y B

D σ 0.220 0.048 0.970 0.975 0.000 0.999
π 0.966 0.934 0.207 0.257 0.517 0.482

E σ (SP) 0.192 0.037 0.977 0.981 0.000 0.999
π 0.898 0.806 0.380 0.441 0.261 0.738

F π 0.996 0.992 0.067 0.088 0.824 0.175

The optimized Fe-S and Fe-O(H2) distances were 2.04 and 2.10 Å, respectively, for
the intermediate A in Figure 21 [143,144]. The spin density on the Fe(III) was 1.02, in
accordance with the low-spin (S = 1/2) state, as shown in Table 8. The δ1 (δxy) and π1 (dπyz)
were doubly occupied because of porphyrin and thiolate ligands. On the other hand, π2
(dπxz) was singly occupied (SOMO) for A in Figure 21. The energy levels of B are shown in
Figure 20, indicating the high-spin sextet (Sextet) ground state (S = 5/2). The energy gap
between the Sextet and quartet (Quartet) states was calculated to be 11.1 kcal/mol, indicating
Jab(Sextet-Quartet) = 11.1/4~2.8 kcal/mol. The energy gap between Quintet and doublet (D)
states was 7.0 kcal/mol, providing Jab(Quartet-D) =7.0/2 = 3.5 kcal/mol. Therefore, the
average Jab(Sextet-D) is about 3 kcal/mol for B, indicating the ferromagnetic exchange
interaction within the Fe(III) ion. The optimized Fe-S (Fe-Por) distances for C were 2.44
(−0.50), 2.40 (−0.28), and 2.33 (−0.25) Å, respectively, for the ground quintet (Quintet),
excited triplet (T), and singlet (S) states, respectively. The Fe(III) ion bellows the plane
of porphyrin. The spin densities on the Fe ion were 3.9, 2.9, and 0.2 for these states,
respectively, as shown in Table 8. From the energy levels in Figure 20, the Jab(Quintet-T) and
Jab(T-S) values were 2.2 and 3.8 kcal/mol, respectively, for C. The δ1 and π1 orbitals were
doubly occupied in the triplet state (S = 1) of C. On the other hand, π2 and dσ orbitals are
SOMOs for C, as shown in C2 of Figure 21.

The optimized Fe-S, Fe-O1, and O1-O2 distances were 2.38 (2.45), 1.94 (1.98), and 1.37
(1.38) Å, respectively, for the ground singlet (doublet) state of (D,E) in Figure 21. The spin
densities on the S, Fe, O1, and O2 in Table 8 were 0.06 (−0.02), 1.08 (0.93), −0.66 (−0.38),
and −0.39 (−0.59), respectively, mainly indicating the exchange coupled configuration
between the doublet Fe(III) ion and superoxide anion. The energy gap between the triplet
and quintet states of D was calculated to be −7.8 kcal/mol, indicating Jab(T-Quintet) =
−7.8/4 ~ −2.0 kcal/mol. The energy gap between the singlet and triplet states of D was
−12.6 kcal/mol, providing Jab(S-T) = −12.6/2 = −6.3 kcal/mol. Therefore, the average
Jab(S-Quintet) is about −3 kcal/mol for D, indicating the AF exchange interaction, as shown
in Figure 20. The large negative Jab(S-T) value implies the EPR silent singlet ground state of
D [39]. A similar situation was also expected for Cu(II)-O-O− systems with a large negative
Jab(S-T) value [221].

The energy gap between the doublet and quartet states of E was −12.1 kcal/mol,
providing Jab(D-Quartet) = −12.1/2 = −6.1 kcal/mol. The occupation numbers of the MOs
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(UNO) for SH anion group and Fe-O-O σ-bond of (D,E) were about 2.0, indicating the
closed-shell character. On the other hand, the Fe-O-O π2-bond was largely spin polarized
(Ti = 0.26), indicating the large diradical character (Y = 52%), as shown in Table 9, confirming
the early results [26,29]. Therefore, a PorLFe(III)OO intermediate may undergo the radical
addition to the C=C double bond in some cases, as pointed out in Figure 2 [29,116]. On the
other hand, π1 is singly occupied (SOMO) for E in Figure 20. The π2 was largely delocalized
over porphyrin group for E, indicating the non-negligible SP effect, as shown in Table 9.
Therefore, the electronic structure of the O2 part of E is rather similar to superoxide anion
instead of oxygen dianion.

The optimized Fe-S and Fe-O1 distances were 2.38 and 1.94 Å, respectively, for the ground
doublet state of F in Figure 21. The spin densities on the S, Fe, and O1 in Table 8 were−0.81,
1.19, and 0.91, respectively, mainly indicating the electron transfer from the thiolate anion (−SH)
instead of the porphyrin (2Cpd Ia) type configuration in Figure 17. The alkyl thiolate anion
(R-S−) instead of HS– is necessary for the generation of 2Cpd Ia in Figure 17. The energy gap
between the doublet and quartet states of F was calculated to be −0.1 kcal/mol, indicating
Jab(S-T) =−0.1/2 ~−0.05 kcal/mol (−175 cm−1). Therefore, the magnitude of the calculated
Jab(S-T) of F (with the SH anion) is ten times larger than the observed value for 2Cpd Ia in
Table 6. The π1 is singly occupied (SOMO) for F, as shown in F2 of Figure 21. On the other hand,
the π2-bond is largely spin-polarized (Ti = 0.09), indicating the large 1,3-diradical character
(Y = 82%; ↓•S-Fe-O↑), as shown in Table 9. The extended BS computational results in Figure 20;
Figure 21 [143,144] have supported our early computational results [25–28,81,82] for the reaction
cycle of P450 enzymes in Figure 1. Several chemical indices, such as diradical character, are also
found to be useful for elucidation of the nature of chemical bonds of D, E, and F in Table 9.
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Figure 21. The natural orbitals and their occupation numbers of the (A–E) intermediates in the P450
formation cycle by the UB3LYP method [143,144]). Detailed discussions are given in text.

The UHDFT computations [144] were performed for PorLFe=O with different axial ligands
in Figure 17 to elucidate the vibrational frequencies of the Fe=O bonds [63] and Mossbauer pa-
rameters for comparison with the observed results by Cpd I and Cpd II. The calculated frequen-
cies for Fe(IV)=O of Cpd I (Cpd II) were 912 (834), 851 (816), 853 (873), 896 (800), and 857 (863)
cm−1, respectively, for 1, 2a, 2b, 3, and 4 in Figure 17. The calculated ∆Eq (δ) values were 0.71
(0.20), 0.13 (0.16), 0.23 (0.20), 0.99 (0.14), 1.31 (0.31), and 1.29 (0.16) for 1, 2a, 2b, 3, 4, and chloroper-
oxidase, respectively. The observed value for P450(3) was 1.02(0.16) [21]. Thus, UB3LYP was re-
liable enough for computations of spectroscopic parameters of the Fe(IV)=O compounds [21,27].
Thus, UHDFT methods are applicable to elucidate the structure and bonding of the intermedi-
ates in the P450 reaction cycle in Figures 1 and 3.

5.2. Confirmations of the Models of Mono-Oxygenation Reactions by Ab Initio Calculations

Here, the atomic oxygen model for mono-oxygenations by Fe=O have been revisited
on the basis of UHDFT computations of transition structures. The atomic oxygen (O)
models for oxygen insertion and radical rebound mechanisms [27,81] were proposed for
mono-oxygenations by P450 enzymes and related enzymes, as illustrated in Figure 10.
It is well-known that atomic oxygen undergoes insertion reaction into hydrocarbons in the
excited singlet state, whereas triplet atomic oxygen undergoes hydrogen radical abstraction
(HRA) [231,232]. On the other hand, introductions of heteroatoms and polar substituents
are necessary for ET and ET-PT reactions [27,28,94,233–235].

Ab initio BS computations [143] were performed to locate the transition structure (TS)
for hydrogen radical abstraction reaction from methane (I), as shown in Figure 22.

H3-C-HB + ↑•O•↑ → H3-C•↑. . .HBO•↑ → SI→ H3-C•↑. . .↓•OHB → H3-C-OHB (41)

where SI denotes the spin inversion. The optimized C-HB and HB-O distances at TS
are 1.51 and 1.10 Å, respectively. The activation barrier for the hydrogen abstraction
reaction of I by triplet atomic oxygen (3P) was about 16 kcal/mole, providing the triplet
diradical intermediate with the corresponding distances of 2.04 and 1.01 Å followed by
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SI to afford singlet diradical for facile radical coupling, as shown in Equation (41) and in
Figure 22 [143]. On the other hand, the activation barrier for the singlet oxygen insertion
was about 2 kcal/mol [143], supporting the two-state model [27,209–213].

For the elucidation of the isolobal and isospin analogy in Figure 10, we performed
locations of the three transition structures (4TSa, 2TSa, and 2TSb) for hydrogen abstraction
reaction from I by 4Cpd Ia, 2Cpd Ia, and 2Cpd Ib in Equations (36a)–(36c), as shown
in Figure 23 [143–146]. The UB3LYP with the LACVP++** (Fe) and 6-31++G** (others)
were used for this purpose [227,228]. The calculated activation barriers after the zero-
point correction energy for these three configurations were found to be 21.3, 23.1, and
25.4 kcal/mol, respectively. On the other hand, the activation barriers for 4CpdI and
2CpdIa are 22.81 (22.91) and 22.24 (22.34) kcal/mol, by UB3LYP/B1(DZ) calculations by
Shaik group [147], where the corresponding values by B2(TZ) are given in parentheses.
The calculated ∆E‡ value was calculated to be over 21 kcal/mol for methane (I) by the
compound I (Cpd I).

The hybrid DFT (UB3LYP) computational results indicated that the methane mono-
oxygenation by Cpd I was difficult in accordance with available experiments [17,224],
indicating the necessity of guiding principles for the reduction of the activation barriers
(see Section 5.5 later). Nevertheless, the triplet atomic oxygen model [27,81] works well
for qualitative understanding of hydrogen radical abstraction (HRA) reactions by Cpd I.
Indeed, the chemical indices added in Figure 23 are consistent with the radical abstraction
mechanism. The binuclear Fe-oxide (Fe-O-Fe), the so-called methane monooxygenase,
was essential for mono-oxygenation of I in biological systems [17,224,225]. Alternately, a
different binuclear Fe-oxide (Fe(III)-O-Fe(V)=O (Fe(III)-O-Fe(IV)-O•) intermediate might be
formed for the methane mono-oxygenation [226]. Thus, the extended UHDFT computations
have supported our early triplet atomic oxygen (O) model for the high-valent Fe(X)=O
(X = IV, V) of Cpd I and molecular oxygen (O=O) model for Cpd II.

Molecules 2023, 28, x FOR PEER REVIEW 45 of 67 
 

 

 
Figure 22. The optimized geometric parameters for the reactant, transition structure and 
intermediate and product, and the potential energy diagram for hydrogen abstraction reaction of 
methane by triplet atomic oxygen (3O), supporting the triplet O-model for mono-oxygenation by 
Fe(IV)=O in Figure 10B [143,144]. 

 
Figure 23. The geometric parameters for the transition structure of the hydrogen abstraction from 
methane by Por(+•)(S-CH3)3Fe(IV)=O. The doubly occupied (DONO), vacant (VNO), singly 
occupied (SONO), highest-occupied (HONO), and lowest unoccupied (LUNO) natural orbitals are 
depicted to elucidate the DONO-VNO and HONO-LUNO mixings. The radical character (Y) is 
small for DONO, indicating the almost no DONO-VNO mixing. On the other hand, the large Y value 
(53%) and small effective bond order (b) for the π-orbital indicate the hydrogen abstraction reaction 
(HRA) [143,144]. 

5.3. The Oxyl-Radical Character of the High-Valent Fe(V)=O Bonds  
Here, the calculated activation barriers for mono-oxygenation by the heme-type 

Fe(V)=O bond with the significant oxyl-radical character [27,81] have been re-examined in 
relation to recent computational results. Past decades, mono-oxygenation reactions by the 
high-valent iron-oxo compounds Cpd I have been investigated by various broken-
symmetry (BS) UDFT computations [147–158], indicating that the activation energies for 
hydoxylations by Cpd I are reduced to be 15~20 kcal/mol for alkanes. The computational 

Figure 22. The optimized geometric parameters for the reactant, transition structure and intermediate
and product, and the potential energy diagram for hydrogen abstraction reaction of methane by
triplet atomic oxygen (3O), supporting the triplet O-model for mono-oxygenation by Fe(IV)=O in
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Figure 23. The geometric parameters for the transition structure of the hydrogen abstraction from
methane by Por(+•)(S-CH3)3Fe(IV)=O. The doubly occupied (DONO), vacant (VNO), singly occupied
(SONO), highest-occupied (HONO), and lowest unoccupied (LUNO) natural orbitals are depicted to
elucidate the DONO-VNO and HONO-LUNO mixings. The radical character (Y) is small for DONO,
indicating the almost no DONO-VNO mixing. On the other hand, the large Y value (53%) and small
effective bond order (b) for the π-orbital indicate the hydrogen abstraction reaction (HRA) [143,144].

5.3. The Oxyl-Radical Character of the High-Valent Fe(V)=O Bonds

Here, the calculated activation barriers for mono-oxygenation by the heme-type
Fe(V)=O bond with the significant oxyl-radical character [27,81] have been re-examined
in relation to recent computational results. Past decades, mono-oxygenation reactions by
the high-valent iron-oxo compounds Cpd I have been investigated by various broken-
symmetry (BS) UDFT computations [147–158], indicating that the activation energies for
hydoxylations by Cpd I are reduced to be 15~20 kcal/mol for alkanes. The computational re-
sults for mono-oxygenations by 2Cpd Ia and 4Cpd Ia have already been discussed in several
review articles [83–89]. In this section, we only examine the spin polarization (SP) effect of
the high-valent Fe(V)=O core in relation to our early proposal of the metal-oxyl-radical char-
acter of the high-valent Fe=O bonds [25–29]. The detailed computational results [147–158]
were already published for key substrates molecules for the following mono-oxygenations:
ethane (IV), i-propane (V), n-propane (VI), propene (VII), methylphenyl cyclopropane
(VIII), isopropylphenyl cyclopropane (IX), dimethyl aniline (X), and toluene (XI). Table 10
summarizes the populations of spin densities, x-values (see Equation (42)), and ∆E‡ values
for the transition structures for hydrogen radical abstraction (HRA) reactions revealed by
the DFT calculations [147–158]. The transition structure is responsible for the bond breakings
of the Fe=O double bond (•Fe-O•) and C-H single bond (•H-C•), followed by the coupling
between the O• and •H sites to generate metal 1,4-diradical (•Fe-O-H C•) [143–146]. The TS
geometry is determined with a subtle balance between these bond-breaking energies [174].
Therefore, we can define the simple geometrical parameter to express early or late TS [143,144]
as follows:

x = R(H-C)/(R(H-C) + R(Fe-O)) = R2/(R1+R2) = R2/Rt (42)

where R(X-Y) denotes the optimized X-Y length at TS. Small x-values mean early TS in this
definition. Certainly, the x-value was 0.38 (38%) for the insertion reaction of the singlet
atomic oxygen (1O(1D)). On the other hand, the x-value was 0.58 (58%) for abstraction
reactions by 3O.
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Table 10. Spin density populations for the transition structures of hydrogen radical abstraction
reactions from alkanes (II–XI) by the 2CpdIb structure of the cytochrome P450 compound I [147–158].

No. Type Fe O Por SR H C (a) x ∆E‡ (b)

II 2CpdIb 1.93 −0.20 −0.18 −0.09 0.05 −0.51 51.3 15.8
IV 2CpdIb 1.86 −0.07 −0.19 −0.09 0.03 −0.54 52.2 20.3
V 2CpdIb 1.87 −0.05 −0.22 −0.17 0.02 −0.45 52.4 17.7
VI 2CpdIb 1.85 −0.07 −0.19 −0.08 0.03 −0.54 52.1 20.4
VII 2CpdIb 1.82 0.12 −0.31 −0.24 0.01 −0.40 48.6 15.2
VIII 2CpdIb 1.82 −0.03 −0.22 −0.12 0.02 −0.47 51.7 17.3
IX 2CpdIb 1.83 0.11 −0.29 −0.28 0.00 −0.37 45.9 15.1
X 2CpdIb 1.71 0.21 −0.23 −0.15 −0.01 −0.52 47.0 6.65
XI 2CpdIb 1.81 0.11 −0.30 −0.22 0.01 −0.41 53.3 14.8

(a) carbon radical site of alkyl radical (•CR), (b) ∆E‡: Calculated activation barriers (kcal/mol) for hydrogen radical
abstraction (HRA) and hydrogen atom transfer (HAT) (X) reactions by the Cpd Ib (2E) catalyst.

The activation parameters for mono-oxygenations by the UB3LYP computations
[147–158] were about 15~19 kcal/mol in accordance with the hydrogen radical abstraction
(HRA) mechanism with the large kinetic isotope effect [83–90]. From Table 10, the spin
densities on the Fe ion and carbon site were about 2.0 and –0.5, respectively, in accordance
with predictions based on the oxyl-radical character 2↑↑••Fe(IV)-O•↓ of the high-valent
Fe(V)=O species, as illustrated in Figures 10 and 16. In fact, the negative spin density
was populated on the generated alkyl radical site (↓•) of Alk. Thus, early prediction of
the oxyl-radical character by the HOMO-LUMO mixing of the high-valent 3d metal-oxo
bonds [27] is consistent with the available computational results [147–158].

From Table 10, the activation barrier for dimethyl aniline was calculated to be small
(about 7 kcal/mol) when compared with the standard values (15~19 kcal/mol) for HRA
reactions, indicating the electron transfer-coupled proton transfer (ET-PT) process for the
mono-oxygenation of strong electron-donating substrates in accordance with the four dif-
ferent mechanisms in Figure 10. Therefore, the rate-determining step for N-hydroxylation
was found to be the late rebound step for the ET-PT process [21]. The ET process was also
important for singlet oxygen reactions of electron rich olefins, as shown in Figure 10 [25,81].
Thus, the mechanisms of the mono-oxygenations by P450 are variable, depending on the
types of substrates under examination [83–90].

5.4. Mono-Oxygenation by the Non-Heme High-Valent Fe(IV)=O Bonds

Here, the scope and applicability of early atomic oxygen models [27,29] have been examined
in relation to UHDFT computations of non-heme Fe(IV)=O bonds [177–207,216–219]. In the 1980s,
the radical reactivity of the high-valent transition metal oxo compounds was discovered [42,45].
Therefore, we performed the ab initio UHF computations of M=O species in Table 2 to elucidate
their radical reactivity. In fact, the 1,4-diradical mechanism was found to be more favorable than
the concerted mechanisms for M=O (M = Fe, Mn), as shown in Figure 12 [27]. In past decades,
mono-oxygenations by the non-heme compounds [177–207,216–219] were investigated by both
experimental and theoretical methods. The X-ray diffraction of the I-heme KNp4(ACN)Fe(IV)=O
crystal with the Oh ligand field in Figure 8A was performed, elucidating that Fe-O distance is 1.646
Å [181], which is a little longer than the optimized value (1.619 Å) for the naked 5Fe(IV)=O in
Table 2 [78]. On the other hand, the optimized Fe-O distances by UB3LYP [144] were calculated to
be 1.641, 1.657, and 1.646 Å, respectively, for the catalase (CT), peroxidase (PO), and P450 models
in Figure 17. KNp4(ACN)Fe(IV)=O was found to be the ground triplet species in accordance
with the energy levels of the Oh ligand field in Figure 8A [27,181]. The Fe(IV)=O stretch for
KNp4(ACN)Fe(IV)=O was observed at 834 cm−1 by the FTIR experiments [181].

Hybrid DFT computations have been performed for the elucidation of the mono-
oxygenation reactions via Fe(IV)=O of non-heme enzymes by several groups [186,188].
The energy gaps between the singlet (1∆πxπy) (No. 16 in Table 5) and triplet (3Ππxπy)
(No. 13 in Table 5) configurations at the reactant (R) stage are about 8~12 kcal/mole
[186,188]. Therefore, the energy gaps after spin projection by using Equations (34) and (35)
become 16~24 kcal/mol, like in the case of molecular oxygen, which exhibits the variation
of the gap from 11 to 22 kcal/mol after spin projection [81]. Thus, the spin contamination
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effect is not negligible for singlet Fe(IV)=O [145]. On the other hand, the spin projection
effect for the low-spin singlet state is relatively small at the transition structure (TS) and
radical (I) intermediate because of the small ST gaps.

Hirao and Shaik et al., performed extended UB3LYP computations for six non-heme
Fe(IV)=O compounds to locate the transition structures and the potential curves for mono-
oxygenations of organic molecules [186]. Table 11 summarizes the spin density populations
of reactant (R), transition structure (TS) and reaction intermediate, and activation barriers
(∆E#) for [(Bn-TPEN) Fe(IV)=O]2+ [186]. From Table 11, the spin densities on the Fe, O,
and C sites of a singlet state (2S + 1 = 1) of the reactant complex are 0.54, −0.51, and 0.0,
respectively. On the other hand, they are 0.83 (0.90), −0.30 (0.09), and −0.48 (−0.94) for
TS, where the corresponding values for the intermediate are given in parentheses. These
results are wholly compatible with the singlet-type reaction scheme by Fe(IV)=O (1∆πxπy)
in Equation (38a) like the singlet O (1∆xy) model [81]. The calculated activation barrier for
this excited radical reaction is about 14 (9.4) kcal/mol in the excited singlet surface without
(with) solvation effect.

Table 11. Spin densities on the reaction sites of [(Bn-TPEN)Fe(IV)=O]2+ obtained by the UB3LYP
calculations cyclohexane [186].

State Fe O L (a) CR3 ∆E# * (b) ∆E# ** (c)

S = 0
R 0.54 −0.51 −0.03 −0.00 0.0 (9.1) 0.0 (8.5)
TS 0.83 −0.30 −0.05 −0.48 13 (14.0) 9.4 (17.9)
I 0.90 0.09 −0.06 −0.94 −1.3 (−1.8) −8.3 (0.28)

S = 1
R 1.11 0.96 −0.07 0.00 0.0 (0.0) 0.0 (0.0)
TS 0.96 0.64 −0.07 0.49 8.9 (8.9) 12.5 (12.5)
I 0.91 0.22 −0.06 0.93 −1.5 (−1.5) 0.87 (0.87)

S = 2
R 2.98 0.73 0.29 0.00 0.0 (1.14) 0.0 (0.43)
TS 3.71 0.24 0.39 −0.34 0.22 (1.36) 7.1(7.5)
I 3.99 0.38 0.48 −0.85 1.4 (−13.0) 1.4 (−5.6)

(a) L denotes ligand. (b) Relative energies (kcal/mol) among reactant state (R), transition state (TS) and intermediate
(I) in each state (S = 0, 1, and 2) under no solvation (*), where relative energies from R state of the triplet state
(S = 1) are in in parentheses. (c) The corresponding values for the solvation model (**).

The spin densities on the Fe, O, and C sites of the triplet state of reactant are 1.11, 0.96,
and 0.0, respectively. They are 0.96 (0.91), 0.64 (0.22), and 0.49 (0.93) for TS (Intermediate),
respectively. The calculated activation barriers without (with) solvation effect were 8.9
(12.5) kcal/mol in the triplet surface. These results are wholly compatible with the ground
triplet radical reaction scheme by Fe(IV)=O (3Σπxπy) (S = 1) in Equation (38b) like the
triplet O (3P) model [27,81]. The energy gap between the ground triplet (S = 1) and singlet
(S = 0) states was about 9 kcal/mol at the reactant (R) state. Therefore, the singlet state is
destabilized after spin projection [27,81], providing the large singlet (S)-triplet (T) energy
gap (about 12~14 kcal/mol). The triplet-singlet energy gap is about 5 kcal/mol at the TS,
indicating that it becomes about 8 kcal/mol after spin projection. Therefore, the activation
barrier for hydroxylation for the projected singlet state is estimated to be 3~5 kcal/mole,
indicating a significant reduction.

The spin densities on the Fe, O, and C sites of the excited quintet state (S = 2) of
the reactant are 2.98, 0.73, and 0.0, respectively, indicating the spin delocalization (0.29)
at the ligand (L) site. They are 3.71 (3.99), 0.24 (0.23), and −0.34 (−0.85) for the first TS,
respectively, where the corresponding values for the intermediate are given in parentheses.
The corresponding spin density at the L site is 0.39 (0.48), indicating that a positive spin
is delocalized over the O and L sites, which undergoes radical coupling with the alkyl
radical. The activation barriers without and with solvation effects were calculated to be
0.22 and 7.1 kcal/mol, respectively, in the quintet surface. The polar solvent effect was
remarkable in the quintet state [186]. Nevertheless, the spin crossover from the triplet to
the quintet state took place along the reaction coordinate [186]. Available computational
results indeed indicated the greater reactivity of the quintet state (S = 2) than that of the
triplet state for non-heme Fe(IV)=O species with the Oh ligand field in the transition state
(TS) region [193,195,197,199,201].
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The very small activation barrier for hydrogen radical abstraction in the quintet state
is in accordance with the ET-PT process in Equation (37d). The negative spin density on the
carbon site is −0.85 for the intermediate (I), indicating the intermediate overlap Ti = 0.53
and Y = 18% for radical pair: •(Fe(III)-O-H). . .(•R), where the spin densities were calculated
to be about 0.85 on Fe and –0.85 on alkyl radical, respectively. Judging from these chemical
indices, the radical abstraction process is operative for singlet and triplet states. On the
other hand, the ET-PT character in Equation (37d) is contributable to the stabilization of TS
in the quintet state even by the solvation model [181]. The spin polarization (SP) effect in
Figure 18 is also partly contributable to the reaction. However, beyond HDFT computations
such as CASPT2/CC (see later) are necessary for elucidation of the relative contributions
of the ET and SP effects. Interestingly, the activation barrier from the initial triplet state to
the quintet TS for hydrogen abstraction is the smallest (∆E# = 7.1 kcal/mol) after the spin
crossover. Hirao et al. [193] considered three different scenarios for the spin transitions.
The kinetic isotope effect was calculated to be small (4–6) as expected for ET-PT theoretically
against the large experimental results [190,193].

5.5. Reduction of the Activation Barriers for Mono-Oxygenations

Here, the electron transfer (ET)-coupled with the proton transfer (PT) is examined
in relation to the reduction of the activation barriers for mono-oxygenations. The calcu-
lated low activation energy (about 7 kcal/mol) for the mono-oxygenation of the amine
(X) by heme-type iron-oxo catalysts in Table 10 indicates that the ET-PT is one of the prac-
tical procedures for the reduction of the activation barrier, as shown in Equation (37a,b).
The extremely low activation barrier (0.2 kcal/mol) for the ET-PT process in the quintet
(S = 2) state of [(Bn-TPEN)Fe(IV)=O]2+ in the gas phase [181] indicates that the hydropho-
bic environment is also important for its reduction in the non-heme iron-oxo catalysts, as
shown in Equation (37c,d). As discussed previously [80], Val185 plays an important role in
the formation of the hydrophobic environment for the O-O bond formation in PSII.

Soluble methane monooxygenase (sMMO) converts methane to methanol under am-
bient conditions [17,224,236,237]. The diiron active site is buried within a hydroxylase
(MMOH) hydrophobic protein environment, undergoing the mono-oxygenation of CH4
with the bond dissociation energy (BDE) of 105 kcal/mol within the caged reaction field.
Three hydrophobic cavities also link the diiron center to the protein exterior, indicating
the characteristic reaction field of sMMO. Very recently, Fujisaki et al. [238] have reported
the mono-oxygenation of CH4 by the artificial iron-oxo catalysts, [Fe(IV)=O(PY4Cl2Blm)]2+

with the triplet ground state (S = 1). This interesting catalyst consisted of the hexago-
nal ligand field with four bulky ligands (three-linked benzonitrile (3-BN)), exhibiting the
hydrophobic reaction field like sMMO [237].

According to the DFT computations by Fujisaki et al. [238], the activation barrier for
the first hydrogen transfer step was about 19 kcal/mole under the assumption of the S = 1
state. The calculated activation barrier is consistent with the hydrogen radical abstraction
(HRA) from CH4 by present and other computations [143]. This, in turn, indicates the
possibility of the ET-PT mechanism for the reduction of the activation barrier; for example,
8.7 (=8.9 − 0.2) and 5.4 (=12.5 − 7.1) kcal/mole for the hydrophobic and hydrophilic
environments, respectively [181]. Therefore, the activation barrier by the ET-PT mechanism
is estimated to be about 12~16 kcal/mol even for CH4. Thus, we have the following guiding
principle for the ET-PT process for mono-oxygenation by iron-oxo catalysts: (1) construction
of hydrophobic reaction field by bulky ligands, (2) introduction of polar substituents for
reduction of the ET excitation energy, and (3) quantum effect of proton transfer (PT).

Such molecular environments may be important for the native mono-oxygenation by
P450 enzyme [21]. The detailed DFT computations by Isobe et al. [146] have elucidated
that the high-valent Fe(V)=O bond is generated in the native reaction field (see Figure 3),
undergoing a facile mono-oxygenation of H-C bonds. The theoretical reaction profile is
consistent with the ET-PT process. This indicates that methane mono-oxygenations may be
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feasible by the direct evolution [239] and chemical modification (decoy molecules) [214,240]
of P450 enzymes.

6. The Computational Results for Beyond HDFT Results
6.1. Beyond BS Computations

In this section, the scope and reactivity of the computational results by the BS methods
have been revisited in relation to the beyond BS results [103,104]. In the early 1970s, the
unrestricted Hubbard (UHB) model involving the on-site repulsion integral (U) [112] was
used as a practical theoretical model for quasi-degenerated systems as an extended MO
model of the EHMO [126]. The instability condition for the closed shell pair by UHB was
simply given by Equation (14). The ab initio BS UHF model was also used as a first step
toward quasi-degenerated systems such as organic peroxides [26,82]. The UHF coupled
cluster (UCC) method was proposed for the inclusion of dynamical correlation effects,
as shown in Figure 15 [32]. The BS Hartree–Fock–Slater (UHFS) model was also used
for the metal-metal bonds with the magnetic property [25]. The CC model starting from
the natural orbitals (UHFS NO = UNO) of UHFS solutions was proposed for transition
metal clusters [25], although Brillouin’s theorem was not satisfied for UHFS. However,
the theorem was assumed to be recovered by the UCCS cycle [32]. The UHFS model was
later extended to the hybrid UDFT (UHDFT) model, such as the UB3LYP model [117–119],
providing the UNO (UB3LYP) UCCSD(T) approach. However, these methods are based on
the single determinant model [25], indicating the difficulty of theoretical investigations of
the excited states.

In the 1980s, beyond BS models based on the multi-Slater-determinants [31,32] were
proposed as a next step toward the quasi-degenerate systems. To this end, the natural
orbitals (UNO) obtained by the natural orbital (NO) analysis of the BS UHF (UHFS) solu-
tions were used for the construction of a complete active space (CAS) for configuration
interaction (CI) and coupled cluster (CC) calculations, as illustrated in Figure 15 [25,32].
For example, the energy levels of the ground and lower-lying singlet and triplet diradical
states and zwitterionic (ZW) states of CH2OO obtained by the UHF NO (UNO) CI method
are illustrated in Figure 24 [98]. The multi-reference (MR) UNO CI, CC, and many-body
perturbation (MBPT) by the use of UNO of UHFS were proposed for the transition metal
complexes with open-shell character [25,32,100].

Bofill and Pulay [241] later revisited the UNO CI [32] for transition metal systems,
demonstrating its practical utility. The UNO density matrix renormalization group (DMRG)
CAS CI was successfully applied to elucidate the energy levels of the MnO2Mn com-
plex [242]. The UNO was also used for trial orbitals for domain-based localized pair-
natural orbital (DLPNO) CCSD(T0) computations of the CaMn4Ox clusters in PSII [80,104].
Thus, UNO (ULO) obtained by UHDFT is now practically useful for CAS CI, CASCF, and
MR CI (CC) computations of large quasi-degenerated systems [25,100], for which CASSCF
is hardly possible [32,99] (see Section 6.4). Chemical indices are also obtained by these
computations, as shown in Figure 14B (and see later).
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6.2. CASPT2 and RASPT2 Results for Iron-Oxo Compound

In this section, the computational results for heme-type iron-oxo compounds by
hybrid DFT (HDFT) are compared with those of CAS second-order perturbation (PT2)
and restricted active space (RAS) PT2 [243–245]. The HDFT computations were very
useful for full geometry optimizations of the possible reaction intermediates for mono-
oxygenations by P450, as shown in Figure 21. Indeed, the optimized Fe-O and Fe-S
bond lengths were calculated to be 1.61~1.65 (1.74~1.78) and 2.51~2.63 (2.26~2.35) Å for
2[Por(+•)(SCH3)Fe(IV)=O], where the corresponding values for 2[Por(SCH3)Fe(V)=O] (2E)
were given in parentheses [143–146]. The optimized values for the 2Cpd Ia were compatible
with the experiments for Cpd I [21]. The Fe-O distance for 2E was longer than that of 2Cpd
Ia because of the oxyl-radical character [145]. Thus, full geometry optimizations by HDFT
are practical procedures before the beyond DFT computations.

However, the relative energies among the intermediates were variable with the weight of
the UHF component involved in the HDFT solutions such as UB3LYP [103,243–245]. For exam-
ple, the energy gaps between 2[Por(+•)(SCH3)Fe(IV)=O] and 2[Por(SCH3)Fe(V)=O] were 10.3,
11.3, 7.3, 6.4, and 11.5 kcal/mol, respectively, by unrestricted B3LYP, CAM-B3LYP, HSE06, M06,
andωB97X [103]. Therefore, beyond BS HDFT computations were inevitable for elucidation of
scope and reliability of the relative stabilities among them at the DFT level.

Judging from the computational results reviewed, we noticed the following three important
conditions for quantitative calculations of the relative energies among key intermediates for
oxygenation reactions by transition metal oxo and peroxo compounds [25,31,32,99–102]:

1. Use of large active space for construction of the reference states for MR methods;
2. Use of flexible basis sets for inclusion of dynamical correlation effects;
3. Dynamical correlation corrections by higher-order methods than the PT2 level.
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However, it is very difficult to meet these demands. Therefore, as a first step, we
employed the BS computations for transition metal oxides with strongly correlated electron
systems (SCES). As a second step, the natural orbital analysis of the BS solutions has
been performed to elucidate the active natural orbitals for SCES, as shown in Figure 15.
At the moment, as a third step, accurate computational methods may be classified into
three different classes, (1) MR method, (2) single reference (SR) method, and (3) exact
diagonalization method.

Radoń et al. [103] indeed performed the beyond HDFT calculations of two heme com-
pounds; [PorFe=O]+ and PorClFe=O]0 (P = porphyrin) using extensive basis sets. The be-
yond HDFT methods employed by them are the MR ab initio methods, namely, CAS and
RAS self-consistent field (SCF) methods followed by the second-order perturbation calcula-
tions (PT2) for electron correlation corrections. CASSCF/CASPT2 and RASSCF/RASPT2
calculations [103] were performed with Molcas program [246] using a scalar-relativistic
second-order Douglas–Kroll (DK2) Hamiltonian, and the IPEA-shifted zero-order Hamilto-
nian for the PT2 calculations. Single point calculations were performed, assuming the full
optimized structures of the iron-oxo compounds by using the UBP86/def2 TZVP method.
Two types of atomic natural orbitals (ANO) basis sets (basis I and II) were used for their
single point state specific CASPT2 and RASPT2 calculations. The small one (basis set I) was
given by the contracted [7s,6p,5d,2f,1g] for iron, [4s,3p,1d] for C, N, and O, [5s,4p,2d] for Cl,
and [2s] for H. The larger one (basis set II) was composed of the contracted [7s,6p,5d,3f,2g,1h]
for iron, [4s,3p,2d,1f] for C, N, and O, [5s,4p,3d,2f] for Cl, and [3s,1p] for H.

The CAS space crucial for the CASSCF calculations of the PorClFe=O in 4a in Figure 17
was found to be the 15 electrons and 16 orbitals [15e, 16o]. On the other hand, the large
RAS space for the RASSCF calculations was taken to be the [29e, 28o], although the RAS
was necessary for the inclusion of all π bonding and anti-bonding orbitals, namely, full
valence MCSCF in Figure 15. Table 12 summarized the energy differences between
Por(+•)ClFe(IV)=O (4(2)A2) and PorClFe(V)=O (2E) states by UB3LYP/basis set II, CASPT2
[15e, 16o]/basis set II and RASPT2 [29e, 28o]/basis set II, where the corresponding values
for Por(+•)Fe(IV)=O (4(2)A2) and PorFe(V)=O (2E) states without the axial Cl anion are
given in parentheses.

Table 12. Relative energies (kcal/mol) between Por(+•)ClFe(IV)=O (4(2)A2) and PorClFe(V)=O (2E)
states [103].

Methods UB3LYP/Basis Set II CASPT2 [15e, 16o] RASPT2 [29e, 28o]
4A2

(a) 0.0(0.0) 0.0(0.0) 0.0(0.0)
2A2

(a) 0.1(0.4) −1.4 (−0.6) 0.0(0.4)
2E (a) 12.4 (12.7) 1.6 (−3.4) −1.7 (−6.5)
∆ (b) –0.3 5.0 4.8

(a) The corresponding values for Por(+•)Fe(IV)=O (4(2)A2) and PorFe(V)=O (2E) are given in parentheses, (b) the ∆
value denotes the difference between the PorFe=O with and without the fifth ligand (Cl−).

From Table 12, the calculated energy gaps between the quartet (4A2) and doublet
(2A2) states of Por(+•)ClFe(IV)=O were 0.1 (0.4), −1.4 (−0.6), and 0.0 (0.4) (kcal/mol),
respectively, by UB3LYP, CASPT2, and RASPT2, indicating no serious energy differences.
On the other hand, the energy gap between 4A2 and 2E was calculated to be 12.4 kcal/mol
for PorClFe=O (PorFe=O) by UB3LYP, which is consistent with the calculated values by
many other groups [147–173]. The calculated energy gap was 12.7 kcal/mol for PorFe=O
by UB3LYP, indicating no serious difference with and without the fifth ligand (Cl−) at the
UB3LYP level of theory.

Interestingly, the energy gap between 4A2 and 2E was calculated to be 1.6 kcal/mol for
PorClFe=O by CASPT2 [15e, 16o], indicating the small energy difference in a sharp contrast
to the UB3LYP results. Moreover, the 2E state was more stable by 3.4 kcal/mol than 4A2 in
the case of PorFe(V)=O without the axial fifth ligand. The energy gap between 4A2 and 2E
of these species was calculated to be −1.7 (−6.5) kcal/mol for PorClFe(V)=O by RASPT2
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[29e, 28o], indicating the greater stability of 2E than 4A2 in gas phase. The effect of the fifth
ligand (∆) for the energy gap was about 5 kcal/mol by these beyond HDFT methods by the
CAS(RAS) PT2 level of theory, including dynamical electron correlations [103].

Table 13 summarizes the energy gap between 4A2 and 2E states of PorClFe(V)=O, including
the solvation energy correction obtained by UB3LYP COSMO calculations [103]. The average
solvation energy correction ∆∆ is found to be 5.6 kcal/mol. The energy gap (−1.7 kcal/mol) by
RASPT2 in the gas phase in Table 13 may be changed to 3.9 kcal/mol by adding the ∆∆ value, as
shown in Table 13. Judging from the computational results beyond HDFT methods, the energy
gap between 4A2 and 2E states are a few (2~4) kcal/mol for PorClFe=O in the solution phase,
indicating that the 2E state is thermally accessible for the mono-oxygenation reactions by P450,
as shown in Table 13 [83–90]. This means the curve crossings occur along the HRA pathway, as
illustrated in Figure 25A. However, the accurate MR CC and future quantum computation (QC)
approach are inevitable to elucidate the scope and reliability of the RASPT2 result, as shown in
Figure 15; Figure 26 [32]. Nevertheless, beyond HDFT computations [103] have elucidated a
theoretical possibility of the ET-PT process for alkane hydroxylation by the native P450 [146]; 2E
(Fe(V)=O) + H-CR→ 2[Fe(IV)-O− + H+. . .CR] (PT-ET)→ Fe(III) + HOR, instead of the HRA,
followed by the radical rebound process [83–90].

Table 13. Relative energies (kcal/mol) between Por(+•)ClFe(IV)=O (4A2) and PorClFe(V)=O (2E)
states with solvation energy corrections [103].

Methods UB3LYP UB3LYP (a) UB3LYP (a) UB3LYP (b) RAS [29e, 28o]

(ε = 0.0) (ε = 5.7) (ε = 78) (average) RAS2 [6 + SO]
4A2 0.0 0.0 0.0 0.0 0.0
2E 12.4 5.7 7.9 6.8 (d) 3.9 (d) (−1.7)

∆∆ (c) 0.0 6.7 4.5 5.6 (c) 5.6
(a) The ∆ value denotes the difference between the values of UB3LYP (ε = 0.0) and UB3LYP (ε = 5.7, 78), (b) average
∆∆ value by UB3LYP, (c) the estimated value by using the average ∆∆, (d) the estimated value by using the average
∆∆ for the RAS vale (−1.7 kcal/mol).

6.3. Beyond HDFT Computations for Non-Heme Iron-Oxo Compounds

In this section, the computational results for the non-heme iron-oxo species by hybrid DFT
(HDFT) are compared with beyond DFT results [243–245]. The single reference (SR) method is
applicable for transition metal oxides under the BS approximation. The UCCX (X = SD, SD(T),
SDT, etc.) is regarded as an SR method in our classification [25,32]. However, UCCX methods
are hardly applicable for transition metal oxo and peroxo complexes with large ligands such as
porphyrin [78,79]. Local methods such as DLPNO UCCSD(T) are used as practical methods for
them [104]. Recently, Harvey and his collaborators [243–245] have performed extensive beyond
HDFT computations for non-heme iron-oxo Fe(IV)=O enzymes to elucidate activation barriers
for hydrogen radical abstraction (HRA) reactions. They have considered a model complex,
(NH3)5Fe(IV)=O (XII) with the Oh ligand field in Figure 8A, and a synthetic model com-
plex, (N4PyFe(IV)=O) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) (XIII).
Full geometry optimizations have been performed by the UB3LYP/DZ basis set. The one-shot
computations at the optimized geometries were performed with several beyond HDFT methods
using very large basis sets. Table 14 summarizes the computational results [243–245]. The PCM
methods are used for the evaluation of the solvation effects for reaction complex (RC), TS, and
radical intermediate (I) for HRA.

The energy gaps (∆E(T-Q)) between the triplet (S = 1) and quintet (S = 2) states are
highly dependent on the systems and the computational methods. The ∆E(T-Q) values for
XII are in the range of 0.5~3.1 kcal/mol by UB3LYP, UB3LYP-D3, UNO(UB3LYP)-UCCSD(T),
indicating the greater stability of the triplet state than the quintet state. On the other hands, the
corresponding values are in the range of −6.0~−0.5 kcal/mol by UNO(UHF) UCCSD(T),
DLPNO-UCCSD(T), CASSCF, and CASPT2, indicating the reverse tendency as shown in
Table 14. This tendency by CASPT2 is reversed by adding the correlation correction (CC)
of the (3s3p) part of Fe, providing 0.5 kcal/mol for the gap by CASPT2/CC involving
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the 3sp correlation correction (CC). Interestingly, the ∆E(T-Q) values for XII are 7.6 and
10.0 kcal/mol by UB3LYP and UB3LYP-D3, respectively. They are 11.4 and 14.0 kcal/mol
by CASPT2 and CASPT2/CC, indicating the large energy gap for XII, indicating large
ligand field effects.

Table 14. The energy gaps between the triplet (T) and quintet (Q) states, and the activation barriers
for hydrogen abstraction reactions (HAR) by the T- and Q-methods [244–246].

∆E(T-Q) (a) ∆E#(Triplet) (b) ∆E#(Quintet) (c) C/non C (d)

Methods Type (e)

UB3LYP XII 3.1 21.7 10.4 Cross
XIII 7.6 14.3 3.5 Cross

UB3LYP-D3 XII 2.5 21.3 10.9 Cross
XIII 10.0 13.3 3.5 Cross

UB3LYP-
UCCSD(T) XII 0.6 29.6 17.2 Cross

UHF-UCCSD(T) XII −2.0 27.6 17.0 Cross
DLPNO
CCSD(T) XII −6.0 30.4 16.7 Quintet

XIII 1.8 25.4 8.8 Quintet
CASPT2 XII −3.3 31.7 15.7 Triplet

XIII 11.4 24.3 8.4 Triplet
CASPT2/CC XII 0.5 29.2 13.7 Cross

XIII 14.0 23.8 9.0 Triplet
CASSCF
(12e,12o) XII −0.5 27.4 16.7 Cross

(a) ∆E(T-Q): triplet (T) and quintet (Q) energy gap; (b) ∆E#(Triplet: activation barriers for the triplet state;
(c) ∆E#(Quintet): activation barriers for the quintet state; (d) Crossing and or non-crossing between triplet and
quintet potential curves; (e) XII: (NH3)5Fe(IV)=O, XIII: [(N4Py)-Fe(IV)=O].

The activation barriers from the reacting complex (RC) to the transition structure (TS)
for HRA on the triplet surface for XIII are 21.7 (10.4), 21.3 (10.9), and 27.4 (16.7) kcal/mol by
UB3LYP, UB3LYP-D3, and CASSCF (12e, 12o), respectively, the corresponding values for the
quintet state are given in parentheses as shown in Table 14. On the other hand, they are 29.6
(17.2), 27.6 (17.0), 30.4 (16.7), 31.7 (15.7), and 29.2 (13.7) kcal/mol by UNO(UB3LYP) UCCSD(T),
UNO(UHF) UCCSD(T), DLPNO UCCSD(T), CASPT2, and CASPT2/CC. The activation barriers
for HRA by all the computational methods employed are smaller for the quintet state than those
of the triplet state. UB3LYP and UB3LYP-D3 underestimate the activation barriers for XIII by
7.5 (3.3) and 7.9 (2.8) kcal/mol when compared to that of CASPT2/CC, respectively. Judging
from the activation barriers, HRA is not possible for the triplet surface of XIII, whereas those of
the quintet state are 14~17 kcal/mol, which are compatible with the computational results for
P450. Thus, the quintet state of the non-heme Fe(IV)=O have exhibited strong radical reactivity
like the triplet atomic oxygen, as shown in Figure 25B.

The activation barriers from RC to TS for HRA on the triplet (quintet) surface for XIII
are 14.3 (3.5) and 13.3 (3.5) kcal/mol by UB3LYP and UB3LYP-D3, respectively. On the
other hand, they are 25.4 (8.8), 24.3 (8.4), and 23.8 (9.0) kcal/mol by DLPNO UCCSD(T),
CASPT2 and CASPT2/CC, respectively. The activation barriers for HRA by all the compu-
tational methods employed are smaller for the quintet state than those of the triplet state.
UB3LYP and UB3LYP-D3 underestimate the activation barriers for XIII by 9.5 (5.5) and 10.5
(5.5) kcal/mol when compared with that of CASPT2/CC, respectively. Judging from the
activation barriers, HRA is hardly possible for the triplet surface of XIII, whereas those of
the quintet state are 8.4~9.0 kcal/mol, which are compatible with those involving solvation
energies by other groups [104].

The curve crossing between the triplet and quintet states has been proposed for HRA
by the non-heme Fe(IV)=O systems with the Oh ligand field since the triplet state is often
more stable than the quintet state at the reactant complex (RC) stage, and this tendency is
reversed at the transition structure (TS). However, CASPT2 has predicted the ground triplet
surface along HRA, indicating no surface crossing because of the large positive T-Q gap
(14 kcal/mol). On the other hand, the ground quintet surface with no crossing has been
predicted for XIII by DLPNO UCCSD(T) computations starting from UNO of UB3LYP
because DLPNO-CCSD(T) over-stabilizes the quintet state, namely, the large negative
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T-Q gap (−6 kcal/mol). Interestingly, UNO(UB3LYP) UCCSD(T) has provided the S-Q
crossing like CASPT2/CC, as illustrated in Figure 25B. Thus, UCCSD(T) without the local
approximation works well even for the complex non-heme iron systems. The RASPT2
based on large RAS space is desirable for comparisons with CASPT2/CC [243–245].
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Figure 25. (A) Three state models of the P450 and related heme-type iron-oxo compounds [103,146]
and (B) Three state models for non-heme iron-oxo compounds [186,243–245] concluded by the HDFT
and related beyond BS computations.

6.4. Future Perspective and Outlook for Quantum Computations

In this final section, exact quantum computations (QC) of M=O and MOO systems
have been considered for future perspective and outlook. Full valence MCSCF without
ambiguity in Figure 15 is impossible even now for M=O and MOO systems with large
ligands. Therefore, DMRG methods [247] have been used for the construction of important
CAS spaces for these systems [242–245]. The second-order perturbation (PT2) methods,
such as CASPT2 [101], NEVPT2 [248], etc., are employed for the inclusion of the dynamical
correlation corrections, as shown in Tables 10 and 11. Selection of the basis sets is also crucial
for reliable MR PT2 computations [101,102]. MR CCSD(T) computations [249] in Figure 15
are desirable as an extension of the MR PT2 methods. However, Mk-MRCCSD [249]
computation is limited to transition metal complexes with small active space. MRCC
approach [32] remains as a future problem for P450 and related systems with large MR
reference [103].

The exact diagonalization of ab initio Hamiltonians is one of the useful methods, as shown in
Figure 26. Quantum Monte Carlo (QMC) computations [250] based on the ab initio Hamiltonians
have been proposed for SCES. Recently, quantum computations (QC) have been proposed for
the exact diagonalization of large Hamiltonian matrix whose sizes increase exponentially with
the number of electrons of molecules, as shown in Figure 26 [33–36]. The FeMoco and 8Fe-7S
clusters for nitrogen fixation are considered as target molecules for the future QC because of the
large active space [33–36]. However, quantum algorisms are still developing for the well-balanced
inclusion of both non-dynamical and dynamical correlations [251]. Thus, the computational
methods are developing along the line; HF→HDFT→UCCSD(T)→MR PT (CASPT2)→MR
CI(CC)→QMC→QC, as illustrated in Figure 26.

Very recently, Goings et al. [252] have evaluated the runtimes and logical qubit re-
quirements for QC of P450 systems on the quantum phase estimation algorism [33] in
comparison with the computational methods, such as DMRG [247] with 40 active orbitals
on the classical computer, in Figure 26. Their DMRG computations on the classical com-
puter [252] indeed provided the negative Jab value (−21.3 cm−1) for the doublet–quartet
gap in accordance with the HDFT (−20.4 cm−1) and experimental (−18 cm−1) results in
Table 6, confirming three important orbitals, as shown in Figure 16A. Interestingly, they
estimated that 9000 logical qubits are necessary for QC using 500 active orbitals of P450.
We hope for rapid developments of the QC systems for the accurate computations of
metalloenzymes [252]. At the moment, interplay between classical computation and ex-
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periments is considered as a practical and feasible approach to transition metal oxo and
peroxo enzymes embedded in a protein matrix [25–29,99–102,243–245].

In this review, we could not touch the QM/MM/MD computations [105–108] of
mono-oxygenations by the native P450 enzymes to elucidate crucial roles of the native
protein matrix [253–255]. Recently, machine learning (ML) methods have been introduced
for directed evolutions of proteins, providing PorLFe=CHR core in the modified P450
enzymes [256,257]. The isolobal and isospin analogy among O, NH, and CH2 is useful for
understanding the structure and bonding of Fe=X (X = O, CH2, NH) with the optimized
mutational protein matrix [258]. The quantum machine learning (QML) method will
be also necessary for the inclusion of the QM computational results discussed in this
review [259,260]. Developments of the QC methods are expected for several theoretical
approaches to 3d transition metalloenzymes and the design of artificial model systems.
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Figure 26. Computational schemes for strongly correlated electron systems (SCES) such as M=O and
MOO systems starting from full geometry optimizations of them by BS HDFT solutions followed by
the natural orbital analysis to obtain UNO (ULO) CAS space for multi-reference (MR) PT, CI, and
CC computations. UNO(ULO) are useful for QMS and QC computations for SCES. The SR UCC
methods are also applicable for systems without significant MR character since CCSD(T) and CCSDT
computations are reliable.
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Appendix A

A.1. Localized Natural Orbitals (LNO)

In this review, the BS MO (DFT) model was employed for the main theoretical inves-
tigation. Therefore, the theoretical relation between the resonating BS MO (RBS) and the
resonating valence bond (RVB) models is briefly revisited [25]. The broken-symmetry (BS)
molecular orbitals (MO) in Equation (16) are more or less localized on radical sites, provid-
ing largely localized BS MOs at the strong correlation limit (for example, the dissociation
limit) as [25]

ψ+
i

(
θ =

π

4

)
=

1√
2

(
φi,bonding + φi,antibonding

)
= φLMOa (A1a)

ψ−i

(
θ =

π

4

)
=

1√
2

(
φi,bonding − φi,antibonding

)
= φLMOb (A1b)

where φLMOa and φLMOb are mainly localized on the radical sites a and b of the molecular
systems, respectively. Therefore, Equation (A1a,b) is utilized for the derivation of the
localized MO (LMO) and localized natural orbital (LNO) model of unstable molecules such
as exchange-coupled transition metal complexes [27,28]. The LMO(LNO)s are important
as reference orbitals for the MkMRCC approach [249] without size inconsistent error. It is
noteworthy that LMOs (LNOs) are different from the atomic orbitals (AO) in the simple
valence-bond (SVB) theory since LMOs are orthogonal and have the characteristics of
molecular orbitals.

A.2. Resonating BS (RBS) Method and Exchange Coupling

As mentioned above, independent particle models (IPM) often indicate broken-
symmetry (BS) even for finite systems without phase transition. The concept of quan-
tum resonance in quantum mechanics, however, recovers the symmetry breaking in IPM
because of the non-zero overlap between the BS solutions in finite systems. In fact, the
resonance concept is familiar in quantum chemistry in relation to the valence bond (VB)
theory [25]. In order to elucidate the relationship between the BS MO and VB models,
the delocalized MO concept can be transformed into the LMO (LNO) concept for the VB
explanation of strongly correlated electron systems (SCES) in Figure 25. The BS MOs in
Equation (16) are indeed re-expressed with the LMOs (LNOs) as follows [25]

ψ+
i = cos ωφLMOa + sin ωφLMOb (A2a)
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ψ−i = cos ωφLMOb + sin ωφLMOa (A2b)

where the mixing parameterω is given by θ + π/4. Therefore, the BSI MO configuration
with the (↑↓) spin alignment can be expanded using LMOs as:

ΨBSI =
∣∣∣ψ+

i ψ−i

∣∣∣
= |(cos ωφLMOa + sin ωφLMOb)(cos ωφLMOb + sin ωφLMOa)| (A3a)

=
1
2

{√
2 cos 2ωΦSD +

√
2ΦTD + sin 2ω(ΦZWa + ΦZWb)

}
(A3b)

where the pure singlet (S) and triplet (T) covalent terms (SD and TD) are given by:

ΦSD =
1√
2

{∣∣φLMOaφLMOb
∣∣+ ∣∣φLMObφLMOa

∣∣} (A4a)

ΦTD =
1√
2

{∣∣φLMOaφLMOb
∣∣− ∣∣φLMObφLMOa

∣∣} (A4b)

On the other hand, zwitterionic (ZW) configurations result from the charge transfer
(CT) from φLMOa and φLMOb (and vice versa) as follows:

ΦZWa =
∣∣φLMOaφLMOa

∣∣, ΦZWb =
∣∣φLMObφLMOb

∣∣ (A5)

The low-spin (LS) BSI MO configuration involves the pure triplet covalent term,
showing the spin-symmetry breaking property. Similarly, the low-spin (LS) BSII MO
configuration with the (↑↓) spin alignment is expressed by:

ΨBSII =
∣∣∣ψ−i ψ+

i

∣∣∣ = 1
2

{√
2 cos 2ωΦSD −

√
2ΦTD + sin 2ω(ΦZWa + ΦZWb)

}
(A6)

The LS BSII MO solution also involves the pure triplet term. Thus, spin symmetry
breaking is inevitable in the case of the single-determinant (reference) BS solution for
diradical species. However, both the orbital and spin symmetries are conserved in finite
quantum systems, indicating the necessity of recovery of symmetry breaking, as illustrated
in Figure 13.

As shown in Equations (A3a,b) and (A6), the BSI and BSII solutions are degenerate in
energy. Then, the quantum resonance between them becomes feasible as follows:

ΦRBS(+) =
1√
2
(ΦBSI + ΦBSII) (A7a)

=
1
2

{√
2 cos 2ωΦSD + sin 2ω(ΦZWa + ΦZWb)

}
(A7b)

ΦRBS(−) =
1√
2
(ΦBSI −ΦBSII) (A8a)

= ΦTD (A8b)

where the normalizing factor (N) arising from the non-orthogonality between BSI and
BSII is neglected for simplicity. Thus, the in (+)- and out-of-phase (−) resonating BS
(RBS) solutions are the pure singlet (S) and triplet (T) states wave functions, respectively.
The magnitude of the quantum resonance between BSI and BSII is expressed by the energy
gap between the S and T states in Equation (24).
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