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Abstract: In light of the depletion of conventional energy sources, it is imperative to conduct research and
development on sustainable alternative energy sources. Currently, electrochemical energy storage and
conversion technologies such as fuel cells and metal-air batteries rely heavily on precious metal catalysts
like Pt/C and IrO2, which hinders their sustainable commercial development. Therefore, researchers have
devoted significant attention to non-precious metal-based catalysts that exhibit high efficiency, low cost,
and environmental friendliness. Among them, perovskite oxides possess low-cost and abundant reserves,
as well as flexible oxidation valence states and a multi-defect surface. Due to their advantageous structural
characteristics and easily adjustable physicochemical properties, extensive research has been conducted on
perovskite-based oxides. However, these materials also exhibit drawbacks such as poor intrinsic activity,
limited specific surface area, and relatively low apparent catalytic activity compared to precious metal
catalysts. To address these limitations, current research is focused on enhancing the physicochemical prop-
erties of perovskite-based oxides. The catalytic activity and stability of perovskite-based oxides in Oxygen
Reduction Reaction/Oxygen Evolution Reaction (ORR/OER) can be enhanced using crystallographic
structure tuning, cationic regulation, anionic regulation, and nano-processing. Furthermore, extensive
research has been conducted on the composite processing of perovskite oxides with other materials, which
has demonstrated enhanced catalytic performance. Based on these different ORR/OER modification
strategies, the future challenges of perovskite-based bifunctional oxygen electrocatalysts are discussed
alongside their development prospects.

Keywords: perovskite oxide; bifunctional electrocatalyst; oxygen reduction reaction; oxygen evolution
reaction; modification strategy

1. Introduction

With the rapid advancement of science and technology, there has been a notable
enhancement in people’s living standards. However, this progress has also resulted in
excessive consumption of conventional fossil fuels and low energy conversion efficiency,
leading to substantial emissions of carbon dioxide and sulfur dioxide. Consequently,
these emissions have given rise to critical issues such as greenhouse effects, acid rain, and
global warming. Numerous researchers have dedicated their efforts to investigating elec-
trochemical energy storage and conversion devices, such as fuel cells [1–3] and metal-air
batteries [4–7], in response to the exhaustion of resources and environmental deteriora-
tion. However, the kinetics of electrochemical systems in the oxygen reduction reaction
(ORR) and oxygen evolution reaction (OER) during operation are sluggish, necessitating
significant overpotentials to drive their kinetic processes. Until now, the excellent cat-
alytic activities of precious metal (oxide) electrocatalysts, such as platinum-based materials
for ORR and Iridium-based and Ruthenium-based materials for OER, are significantly
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constrained by the scarce resources, high cost, low bifunctional activity, and poor dura-
bility [8–10]. In order to address these challenges, researchers have devoted considerable
efforts to reducing the loading of precious metals in catalysts by employing alloys or carbon
supports [11]. However, reducing the loading of precious metals often leads to a simultane-
ous decline in catalytic activity, posing a significant obstacle for practical applications. At
the same time, methodologies for catalyst morphologies, structural characteristics, physical
and chemical properties, and screening pathways also need to be considered to design the
optimal bifunctional electrocatalysts [12]. Therefore, it is crucial to develop highly efficient
and durable bifunctional electrocatalysts that are not dependent on precious metals, ad-
dressing the urgent need for sustainable and cost-effective alternatives in the large-scale
implementation of renewable energy technologies.

Schuhmann et al. proposed a measure of bifunctional properties, referred to as the
bifunctional index (BI), which quantifies the difference in potential required to achieve an
OER current density of 10 mA/cm2 and an ORR current density of −1 mA/cm2 [13,14]. An
ideal bifunctional catalyst holds great promise as a crucial component in the next generation
of sustainable energy storage devices and shows potential application as a bifunctional
catalyst for both ORR and OER [15–19]. In recent years, ABO3-based perovskite oxides have
attracted significant attention as promising alternatives to high-efficiency bifunctional oxygen
electrocatalysts owing to their unique compositional variability, special physicochemical
properties, low cost, and environmentally friendliness [20–23]. Normally, the A-site is occupied
by large-radius rare earth or alkali metal ions (such as La, Ca, Sr, Ba), which exhibit higher
electronegativity and are 12-fold coordinated with oxygen ions. Meanwhile, the B-site is
occupied by transition metal ions (like Co, Fe, Mn, Ni, etc.) located at the octahedral center of
a cubic compact stack with a 6-fold oxygen coordination. In particular, partial substitution at
the A and/or B sites in perovskite oxides can lead to alterations in the valence states of A- and
B-site cations, as well as the formation of oxygen vacancies.

This crystal structure of perovskite oxides offers an opportunity to flexibly modulate their
electronic and catalytic properties while exhibiting remarkable stability in alkaline environ-
ments [24–28]. However, the electron conductivity of perovskite bifunctional oxygen electrocat-
alysts at room temperature is insufficient, hindering efficient electron transport that is crucial
for ORR/OER reactions and limiting their practical applicability [29,30]. Various strategies have
been investigated to address this issue and enhance the catalytic performance and stability
of perovskite bifunctional oxygen electrocatalysts, including crystallographic structure tuning,
cationic regulation, anionic regulation, nano-processing, and composite processing (Figure 1).
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2. Crystallographic Structure Tuning

Crystallographic structure tuning has been demonstrated as an effective strategy for
enhancing the electrocatalytic performance of perovskite oxides [31–33]. Currently, the
crystal structure and surface properties of perovskite electrocatalysts can be modified by
adjusting the firing temperature of the crystals, thereby effectively improving the catalytic
performance in ORR and OER [34–37]. For instance, tuning the B-O bond property using
variation of the annealing temperature, thereby enhancing the catalytic performance of
perovskite oxides. Zhou et al. proposed that the rhombohedral structure of LaNiO3 per-
ovskite crystal transitions to the cubic structure as the annealing temperature is increased
from 400 ◦C to 600 ◦C (Figure 2a) [38]. This phase transition directly reflects the influence
of annealing temperature on the crystal structure. The length of the O-Ni bond increases
with increasing annealing temperature, accompanied by an increase in the Ni-O-Ni bond
angle, which results in an improvement in the electrocatalytic activity of LaNiO3. Jung et al.
eliminated the inhomogeneous spinel surface that originally existed between the amor-
phous outer layer and the inner cubic phase layer of Ba0.5Sr0.5CoxFe1−xO3−δ (x = 0.2/0.8)
by heat-treating at 950 ◦C in an argon atmosphere (Figure 2b), resulting in a significant
improvement that enables the material to achieve the ORR limiting current density of
6.4 mA/cm2 at 0.1 V versus RHE, slightly surpassing that of commercial Pt/C catalysts [39].
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Figure 2. (a) Correlation of the ORR/OER activity of LaNiO3−δ perovskites with their crys-
tallographic structure [38]. (b) Schematic diagrams of the surface structural changes accord-
ing to heat treatment at 950 ◦C for 24 h in argon atmosphere for Ba0.5Sr0.5Co0.8Fe0.2O3−δ and
Ba0.5Sr0.5Co0.2Fe0.8O3−δ [39].

Tuning the crystallographic structure in perovskite-based oxides is considered an
important factor that affects their electrocatalytic performance [40–42]. Adjusting the
preparation method of perovskite oxides can induce modifications in their crystal structure,
morphology, surface properties, and internal defects, thereby influencing the catalytic
performance of the electrocatalyst. Currently, several methods have been established for
tuning the crystallographic structure of perovskite oxides, including the conventional
solid-state method [43], electrospinning technique [44], hydrothermal and solvothermal
methods [45], sol-gel method [46], and polymer-assisted method [47]. In addition, Gonell
synthesized pure pseudocubic perovskite La0.7Sr0.3MnO3 (pc-LSMO) nanocrystals via the
molten salt method, which exhibited high mass-normalized ORR activity of 21.4 A/g oxide
at 0.8 V/RHE in alkaline conditions [48]. The author proposed that the improvement in
catalytic performance of pc-LSMO can be attributed to its relatively large surface area,
high crystallinity, and electron mobility. Kim et al. employed a glycine-nitrate combustion
method to synthesize three distinct perovskite oxide crystals, among which the triple
perovskite oxide Nd1.5Ba1.5CoFeMnO9-d (NBCFM) exhibited superior ORR/OER activity
characterized by higher current density and lower overpotential owing to its tetragonal
crystal structure [49].



Molecules 2023, 28, 7114 4 of 19

3. Cationic Regulation

Cationic regulation is a widely employed modification technique for perovskite mate-
rials, as reported in previous studies [50–52]. The selection of an appropriate introduced
cation requires consideration of several factors, such as the cationic radius, the valence state
of the cation, and the interaction between the introduced cation and the perovskite parent.
Firstly, it is important for the cationic radius to be close to that of the perovskite parent
since this contributes to both the integrity and stability of the lattice. An excessively large
or small cationic radius has the potential to disrupt the crystal structure of the perovskite
parent. Secondly, the valence state of the cation must also match that of the perovskite
parent in order to ensure effective replacement and maintain electrical neutrality within
the crystal structure. Additionally, accurate control over the ratio of the introduced cation
to that of the perovskite parent is imperative to ensure the desired modification effect.
However, excessive introduction may result in detrimental consequences such as crystal
structure destruction or instability [53,54]. Various approaches have been reported in many
research studies, including A-site cation regulation, B-site cation regulation, A-site and
B-site cation regulation, and cation vacancies.

3.1. A-Site Cation Regulation

The A-site cations of perovskite oxides generally do not directly participate in the
oxygen electrode reaction process for ORR/OER; however, they indirectly enhance the
catalytic reaction [55–57]. The substitution at the A-site has been shown in numerous reports
to result in a significant enhancement of catalytic activity [58–60]. Partial substitution of
A-site cation ions, such as La, Sr, Ca, and Ba, can introduce novel lattice defects that
significantly enhance the catalytic activity and stability of perovskite electrocatalysts. Hu
et al. [61] demonstrated that the catalytic activity of LaMnO3 perovskite oxide-graphene
composites could be effectively modulated by incorporating Ca ions without altering the
structure of the perovskite. Kumar et al. [62] successfully incorporated Gd ions into the
A-site of the double-layer perovskite oxide (GdBa0.5Sr0.5Co1.5Fe0.5O6), resulting in superior
catalytic activity in both ORR and OER, characterized by a high catalytic current density
and low overpotential. Cheng et al. [63] found that partial substitution of Sr ions for La in
LaCoO3 facilitates a preferential arrangement of Co-O-Co bonds, resulting in a transition
from a rhombohedral phase to a cubic phase (Figure 3a). Additionally, this substitution
leads to an increase in the valence state of Co ions (Figure 3b). The density functional
theory calculations indicate that the rearrangement of Co-O-Co bonds and the enhanced
valence state of Co ions facilitate an improved overlap between the occupied O 2p valence
band and unoccupied Co 3d conduction band, thereby enhancing both Ex situ conductivity
of La0.2Sr0.8CoO3 and intrinsic activity for OER.

3.2. B-Site Cation Regulation

Numerous studies have demonstrated that the B-site cations in perovskite oxides
exhibit direct involvement in the catalytic reactions of ORR and OER [64–67]. Therefore,
partial substitution of B-site cations is a promising strategy for enhancing the catalytic ac-
tivity of perovskite-based oxide [68–71]. Ni-doped perovskite oxide La0.8Sr0.2Mn1−xNixO3
(LSMN) was synthesized using the sol-gel method, as reported by Yuan [72] et al. In
comparison to undoped La0.8Sr0.2MnO3, LSMN exhibits a higher concentration of oxygen
vacancies and demonstrates enhanced bifunctional catalytic activity (Figure 3c,d). In partic-
ular, the overall overpotential of LSMN in ORR and OER is significantly low, approaching
that of commercial Pt/C.
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Figure 3. (a) Evolution of the pseudocubic (x ≤ 0.4) and cubic (x ≥ 0.6) Co–O–Co angle as a function
of the Sr fraction [63]. (b) Co-K-edge XANES spectra of the La1−xSrxCoO3 (x = 0, 0.2, 0.8) at room
temperature; the inset shows the main peak region [63]. (c) ORR (negative scan) and (d) OER (posi-
tive scan) polarization profiles of Glassy carbon (GC), VC, La0.8Sr0.2MnO3, La0.8Sr0.2Mn0.8Ni0.2O3,
La0.8Sr0.2Mn0.6Ni0.4O3, Pt/C at 1600 rpm [72].

Wang et al. utilized the metal cation Ta5+ to dope SrCoO3 with a cubic perovskite struc-
ture, resulting in the formation of SrCo1−xTaxO3−δ (x = 0.05/0.1) [73]. This doping strategy
effectively compensated for the deficiency of lattice oxygen during high-temperature syn-
thesis and significantly enhanced the phase stability of the material. Duan [74] et al.
synthesized a Fe-doped LaCoO3 electrocatalyst and optimized the electronic structure of
LaCoFeO3 catalysts by adjusting the amount of Fe doping. The results demonstrate that the
catalytic activity towards OER of LaCo0.9Fe0.1O3 electrocatalyst is significantly enhanced
by a doping amount of 0.1 Fe. Furthermore, the authors employed density functional
theory simulations and calculations to elucidate the underlying reasons for this improved
catalytic activity. It has been discovered that a 10% Fe doping leads to an increase in the
strength of covalent bonds between Co 3d and O 2p orbitals, thereby effectively reducing
OER overpotential and promoting enhanced OER activity. Sun et al. utilized the metal
ions Mn-Ni pairs as dual dopants at B-site cations in lanthanide perovskite-based oxides
LaMnxNiyCozO3 (x + y + z = 1) to enhance the bifunctional ORR and OER activities [75].
The findings demonstrate that the enhanced bifunctional performance of the optimized
LaMnxNiyCozO3 (x:y:z = 1:2:3) catalyst can be attributed to a reduction in the number of eg
orbital electron and the modulation of the O 2p-band closer to the Fermi level.

3.3. A-Site and B-Site Cation Regulation

The co-regulation of A-site and B-site cations represents a unique approach to en-
hancing the electrocatalytic performance of perovskite oxide catalysts for ORR and OER.
This strategy involves the substitution of cationic components in the A and B sites of the
perovskite crystal structure, thereby altering its properties and catalytic behavior [76–78].
Li et al. [79] incorporated Bi2+ and Fe3+ ions into the A and B sites of SrCoO3, respec-
tively, exploiting the disparity in ionic radii between Bi2+, Fe3+, and the original A/B sites.
The synthesized Bi0.15Sr0.85Co0.8Fe0.2O3−δ powder possesses a surface area of 5.81 m2g−1

and exhibited excellent ORR and OER activity, low overpotential and favorable chemical
kinetics. The specific co-doping strategy induced alterations in surface properties and
valence states, leading to enhanced electrocatalytic performance. Shao et al. developed a
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triple-conducting nanocomposite material, BaCe0.16Y0.04Fe0.8O3−δ, using a sol-gel method.
This material in cathode exhibited remarkable properties for intermediate-temperature
proton ceramic fuel cells (IT-PCFCs). It’s important to note that this composition involved
co-doping with Ce and Y at the B-site of BaFeO3−δ. This co-doping strategy was employed
to stabilize the phase structure and introduce proton conductivity simultaneously. The
optimized nanocomposite material in the cathode demonstrated excellent activity and
stability for the ORR [80].

Yuan et al. [81] synthesized a bifunctional catalyst, Fe-doped mangan-based perovskite
(La0.8Sr0.2)0.95Mn0.7Fe0.3O3 with A-site defect, using the traditional CA-EDTA method.
Compared to the pristine La0.8Sr0.2MnO3 catalyst, this modified catalyst demonstrated
superior ORR and OER activity under alkaline conditions owing to increased surface
oxygen vacancies as well as adjustments in Mn and Fe valence states within the per-
ovskite structure, thereby enhancing catalytic performance. Wei et al. [82] prepared a novel
La1.7Sr0.3Co0.5Ni0.5O4+δ with a layered perovskite structure that was synthesized using the
sol-gel method. In comparison with undoped La2NiO4+δ, La1.7Sr0.3Co0.5Ni0.5O4+δ exhibits
significantly enhanced catalytic activity for both ORR and OER, characterized by higher
limiting current density, larger positive onset potential, improved half-wave potential, as
well as enhanced stability.

3.4. Cation Vacancies

The introduction of cation vacancy defects is also regarded as an effective strategy for
enhancing the catalytic activity of perovskite oxides [83–86]. Cation vacancies primarily
occur at the A-site in perovskite oxides. By precisely adjusting the cation stoichiometry at
the A-site, it is possible to effectively modulate the valence state of ions at the B-site, thereby
exposing a greater number of active sites. This adjustment reduces the energy barrier
for oxygen migration, enhances oxygen vacancy formation, alters the electronic structure,
and ultimately enhances the bifunctional catalytic activity of the perovskite oxides [87,88].
Cheng et al. [89] introduced appropriate A-site cation defects into SrxCo0.8Fe0.2O3−δ to
optimize the occupancy of eg orbitals in B-site transition metals and enhance the generation
of oxygen vacancies, thereby improving the bifunctional catalytic performance of perovskite
under alkaline conditions, specifically in terms of OER activity.

Zhu [90] et al. introduced A-site cation defects into LaFeO3 perovskite oxides to
improve their catalytic activity for ORR/OER in alkaline environments. This phenomenon
can be attributed to the perturbation of transition metal valence states caused by the
introduction of A-site defects. In perovskite-based oxides, A-site defects not only modify the
valence states of B-site elements but also influence particle size, surface oxygen vacancies,
and the number of active sites available for ORR and OER. Yuan [91] et al. synthesized
A-site cation-deficient (La0.8Sr0.2)1−xMnO3 (x = 0.02, 0.05) via the sol-gel method, which
demonstrated superior bifunctional catalytic activity in alkaline electrolytes compared to
La0.8Sr0.2MnO3. The observed outcomes were ascribed to the presence of cation deficiency,
which led to a reduction in particle size, an increase in oxygen vacancies, and the attainment
of an appropriate Mn valence state. Consequently, these factors facilitate the transport of
oxygen ions and improve ORR/OER performance.

4. Anionic Regulation

The incorporation of anionic defect engineering, such as oxygen vacancies or anion
doping, has been previously demonstrated to positively influence the bifunctional elec-
trocatalytic activity and stability towards ORR/OER in in perovskite oxides [92–96]. The
presence of anionic defects can enhance the capability of electron trapping, fine-tune energy
band structures, and optimize catalytic reaction pathways in perovskite oxides. Oxygen va-
cancies are intricately linked to the electronic structure and valence state of B-site transition
metals within the perovskite framework, with a substantial abundance of oxygen vacancies
serving as active sites for adsorption and reaction processes. These introduced vacancies
interact with adsorbed intermediates during catalytic reactions, facilitating efficient charge
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transfer. Chen et al. synthesized a new type of oxygen-deficient BaTiO3−x perovskite
electrocatalyst with a unique hexahedral crystal structure via the sol-gel method followed
by reductive heat treatment at 1300 ◦C in vacuum [97]. They proposed that the presence of
oxygen vacancies in h-BaTiO3−x crystal structures facilitates the adsorption of reactants
and enhances charge transfer. The results indicated that the oxygen-deficient BaTiO2.76
electrocatalyst exhibited excellent bifunctional catalytic activity, particularly surpassing
the performance of the IrO2 catalyst in terms of OER activity at relatively low potential
(<1.6 V).

Heat treatment under moderately reducing conditions enables the controlled incorpo-
ration of varying concentrations of oxygen vacancies in perovskite oxides while preserving
their original crystal structure. Wang [98] et al. successfully transformed Pr0.5Ba0.5MnO3−δ

(PBM), a perovskite oxide, into layered PrBaMn2O5+δ (H-PBM) by annealing PBM in H2
at 800 ◦C for 15 h. This method allowed for the generation of a high concentration of
oxygen vacancies in the layered H-PBM material without altering its chemical composition.
Remarkably, H-PBM exhibited exceptional catalytic activity towards both ORR and OER,
as evidenced by significant enhancements in onset potential and catalytic limiting current
density (Figure 4b,c).
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Figure 4. (a) Unit cell structures of Pr0.5Ba0.5MnO3−δ (PBM, left) and PrBaMn2O5+δ (H-PBM, right);
Oxygen vacancies are represented by arrows. (b) ORR and (c) OER polarization curves of PBM,
H-PBM, RuO2, C, PBM/C, Pt/C, and H-PBM/C [98]. (d) Unit cell structures of CaMnO3 (left) and
Ca2Mn2O5 (right); (e) OER performance of Ca2Mn2O5/C, CaMnO3/C, and Vulcan carbon XC-72;
(f) mass activities at various applied potentials [99].

A single phase of Ca2Mn2O5 was synthesized by Kim [99] et al. at 350 ◦C and 5%
H2/Ar, resulting in the formation of oxygen-deficient perovskite oxide Ca2Mn2O5 with
intrinsic molecular-level pores at the oxygen-deficient sites (Figure 4d), facilitating favorable
ion transport for OER [100–102].

Introducing non-metallic ions such as N, P, and S is an effective method to optimize
the electron configuration, alter the valence state of ions, and enhance the activity of
perovskite electrocatalysts [103–106]. Peng et al. [107] prepared sulfur-doped perovskite
CaMnO3 (CMO/S) nanotubes using an electrospinning technique followed by calcination
and sulfurization treatment (Figure 5a). These catalysts exhibit enhanced bifunctional
oxygen electrocatalytic activity and stability in alkaline solutions compared to the pristine
CaMnO3 (Figure 5b,c). The authors proposed that these results were attributed to sulfur
doping, which can substitute oxygen atoms to enhance intrinsic electrical conductivity and
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introduce abundant oxygen vacancies to provide adequate catalytically active sites. The
sulfur-doped perovskite oxides LaCoO3 (S-LCO), synthesized by Ran et al., exhibited sig-
nificantly enhanced bifunctional oxygen electrocatalytic activities, which can be attributed
to the introduction of S-dopants and oxygen defects [108]. First-principles calculations
and experiments were employed to demonstrate that the S-dopant enhances the lattice
distortion while simultaneously regulating the electronic filling of Co3+ eg states.
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Figure 5. (a) Scheme of the formation of CMO/S. (b) OER polarization curves of CMO, CMO/S-200,
CMO/S-300, CMO/S-400, Pt/C, and Ir/C measured in N2-saturated 0.1 M KOH solution at a scan
rate of 5.0 mV s−1. (c) ORR polarization curves of Vulcan XC-72, CMO, CMO/S-200, CMO/S-300,
CMO/S-400, and Pt/C in O2-saturated 0.1 M KOH solution at a scan rate of 5 mV s−1 and rotation
rate of 1600 rpm [107].

5. Nano-Processing

Nano-processing has been demonstrated as an effective strategy for enhancing the
bifunctional catalytic activity of perovskite-based oxide electrocatalysts, owing to their high
specific surface area and well-defined pore structure. These characteristics facilitate efficient
electron and oxygen transfer processes while also providing stability to specific oxygen-
containing intermediates [109–112]. However, the conventional synthesis methods for
preparing perovskite oxides, such as solid-phase synthesis and sol-gel method, often suffer
from drawbacks, including large particle size and unclear morphological characteristics.
The challenge lies in the precise design of particle size, morphology, composition, surface
properties, and porosity of nanostructured materials to achieve nanoporous perovskite
electrocatalysts.

At present, the main synthetic approaches employed for the preparation of per-
ovskite nanomaterials include soft template [113], hard template [114], colloid crystal
template [115], electrospinning [116], and hydrothermal methods [117]. These approaches
effectively yield perovskite nanomaterials with reduced particle size, thereby increasing
their surface area and exposing a greater number of active sites, consequently enhancing
their bifunctional catalytic activity [118].

The hollow structure of porous perovskite oxide nanotubes La0.75Sr0.25MnO3 (PNT-
LSM) was fabricated by Xu et al. using the electrospinning technique, followed by cal-
cination at 650 ◦C for 3 h (Figure 6a–c) [119]. This unique structure of the perovskite



Molecules 2023, 28, 7114 9 of 19

electrocatalyst facilitates an increased specific surface area and exposes a greater number of
active sites, thereby enhancing bifunctional catalytic activity. Liu et al. [120] have devel-
oped a mesoporous/macroporous nanotube-structured perovskite oxide, La0.5Sr0.5CoO3−x
(HPN-LSC) via electrospinning, serving as a bifunctional electrocatalyst for both ORR and
OER in Li-oxygen batteries. This electrocatalyst structure enhances both electron conduc-
tion and the specific surface area, providing more space for product precipitation or storage
(Figure 6d,e).
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and (c) PNT-LSM after calcination at 650 ◦C for 3 h [119]. (d) As-obtained electrospun composite
nanofibers and (e) HPN-LSC after thermal treatment at 750 ◦C for 3 h in air [120].

The nanoscale perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) was synthesized via the
sol-gel method by Cheng et al. [121], and its potential as a cathode catalyst for non-aqueous
lithium-air batteries was investigated. The results indicate that the LSCF nanoparticles,
with an average particle size of 60 nm, are beneficial for both ORR and OER processes, re-
sulting in a significant reduction in charge–discharge overpotential. Mesoporous nanofibers
(PBSCF-NF) were successfully synthesized by Bu et al. [122] and exhibited excellent electro-
chemical performance in a 6 mol/L KOH electrolyte. At a current density of 300 mA/cm2,
PBSCF-NF demonstrated a higher power density of 127 mW/cm2 compared to the pristine
air electrode (109 mW/cm2). This enhancement can be attributed to the increased number
of catalytic sites and enhanced reactant-catalyst contact facilitated by the nanostructures.
Jung et al. synthesized Lax(Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (BSCF) nanoparticles with a size of
approximately 50 nm by precisely controlling the lanthanum concentration and calcination
temperature to manipulate oxide defect chemistry and particle growth mechanisms [123].
The resulting electrocatalyst demonstrated a more than twenty-fold increase in gravimetric
activity (A/g) compared to IrO2 during half-cell testing using 0.1 M KOH electrolyte while
also surpassing the charge/discharge performance of Pt/C (20 wt%) in zinc-air full-cell
testing employing 6 M KOH electrolyte.

6. Composite Processing

In general, composite electrocatalysts derived from the combination of perovskite
oxides with carbon materials, transition metals, noble metals, etc., exhibit significantly
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enhanced catalytic activity compared to pristine perovskite electrocatalysts [124–126]. This
composite processing facilitates the modification of both the electronic structure and active
sites of catalysts, thereby serving as an effective strategy for enhancing the electrocatalytic
activity of perovskite oxides.

6.1. Dual Components Integrated Electrocatalyst

To tackle the significant challenge of poor electrical conductivity in perovskite oxides,
the researchers propose a strategic approach for fabricating perovskite/carbon-based dual
components integrated electrocatalysts using composite processing [127–131]. The bifunc-
tional activity of perovskite/carbon-based dual components integrated electrocatalysts
has been consistently demonstrated to surpass that of single-component perovskite or
carbon materials in numerous reports. For instance, Park et al. have developed a bifunc-
tional composite electrocatalyst composed of porous perovskite oxide La0.5Sr0.5Co0.8Fe0.2O3
(LSCF-PR) nanorods and nitrogen-doped reduced graphene oxide (NRGO) [132]. In this
study, LSCF-PR is embedded between NRGO sheets to form an efficient composite mor-
phology of LSCF-PR/NRGO, which exhibits excellent catalytic performance for both ORR
and OER in alkaline media.

In addition, the utilization of in situ grown perovskite/carbon-based dual compo-
nents integrated electrocatalyst represents an effective strategy to further enhance cat-
alytic performance. Following this concept, Wu et al. first synthesized cobalt-free oxide
SrFe0.85Ni0.05Ti0.1O3−δ using chemical vapor deposition, and subsequently, modified car-
bon nanotubes were formed in situ on its surface [133]. The resulting perovskite/carbon-
based dual components integrated electrocatalyst exhibit superior catalytic activity in
alkaline media compared to single-component parent perovskite SrFe0.85Ni0.05Ti0.1O3−δ

or carbon nanotubes alone, due to the potential synergy between the perovskite/carbon
nanotube phases that facilitate rapid charge transfer rates, increased surface areas, and
exposed active sites. Furthermore, numerous perovskite/carbon-based dual components
integrated electrocatalysts have been extensively documented in the literature. For example,
perovskite La(Co0.55Mn0.45)0.99O3−δ nanorods integrated with N-doped reduced graphene
oxide composites [134] and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) combined with g-C3N4-Vulcan
Carbon composites [135] have also been investigated.

To date, a range of carbon-supported perovskite oxides have been synthesized, ex-
hibiting enhanced ORR and OER activity compared to pure perovskite oxides or carbon
alone. Numerous studies attribute this phenomenon to the synergistic effect resulting from
the interfacial interaction between these two components, leading to superior performance
than that of each individual component [136,137]. To elucidate the synergistic effect of
perovskite/carbon-based dual components integrated electrocatalyst, Shao et al. [138]
classified it into three aspects: the ligand effect (Figure 7a), the formation of interfacial
heterostructure (Figure 7b) and the spillover effect (Figure 7c). Ligand effects pertain to the
modification of electronic structure by ligand molecules in a material, thereby facilitating
electron transfer. For instance, Fabbri’s group observed this phenomenon in the BSCF
perovskite/acetylene black (AB) carbon composite, where AB was found to modulate the
Co oxidation state of BSCF, reduce it, enhance its inherent conductivity, and improve its
oxide adsorption capacity [139]. Consequently, the composite catalyst exhibited heightened
ORR/OER activity. The formation of interfacial heterostructures, such as covalent bonds or
new phases at the interface, serves as the underlying mechanism for synergistic improve-
ments in both ORR and OER performance. The well-dispersed perovskite-based LaMnO3
nanoparticles were synthesized by Liu et al. via physical mixing of carbon and LaMnO3
nanoparticles, followed by loading onto modified carbon black and subsequent sintering
at various temperatures [140]. Among these catalysts, the carbon-LaMnO3 hybrid with
a mass ratio of 2:3 exhibited superior electrocatalytic activity for ORR. This remarkable
enhancement in ORR electrocatalytic activity can be attributed to the formation of C-O m
(M = La, Mn) covalent bonds between metal oxide nanoparticles and the carbon support,
which effectively enhances ORR kinetics. The spillover effect involves the diffusion and
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transport of reactants at the perovskite/carbon interface. Perovskite materials adsorb and
catalyze reactants while carbon materials facilitate their diffusion to a wider area, increasing
coverage on catalyst surfaces and enhancing reaction rates. These aforementioned effects
synergistically enhance the overall catalytic activity of the composite catalyst, thereby
significantly improving its efficiency in facilitating both ORR and OER [138].
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6.2. Multiple Components Integrated Electrocatalyst

Multiple components integrated electrocatalysts consist of at least three components,
wherein the electrocatalytic activity for ORR and OER originates from distinct active sites.
The composite nature of these catalysts provides opportunities to independently design
and construct specific ORR and OER active sites, thereby benefiting from a wider range
of available active sites, more versatile regulation strategies, and potentially additional
assistance in fine-tuning the ORR/OER activities. Consequently, composite electrocatalysts
generally exhibit superior performances compared to their single-component counterparts.
In addition to interacting with carbon-based materials, perovskites can also be combined
with transition metal compounds or precious metals to load onto carbon-based materials,
thereby enhancing the catalytic activity of composites for ORR/OER.

Perovskite/carbon/transition metal integrated electrocatalysts have attracted signifi-
cant attention as bifunctional catalysts for ORR and OER [141–145]. Hua et al. reported that
a three components-integrated catalyst consisting of La0.45Sr0.45Mn0.9Fe0.1O3−δ perovskite
and Fe3C and Carbon exhibited excellent catalytic activity for both ORR and OER under
alkaline conditions [146]. A bifunctional electrocatalyst composed of perovskite oxides
LaCoO3 and transition metal oxide MnO2 and Vulcan XC-72 was developed by Benhangi
et al. in saturated 6 M KOH, the synergistic effect between these materials is evident as the
bifunctional activity of MnO2/LaCoO3/Vulcan XC-72 surpasses that of MnO2 or LaCoO3
alone [147].
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Furthermore, the researchers synthesized composite materials of perovskite oxides
with precious metals such as Pt/C or IrO2. Platinum is widely recognized as an exceptional
electrocatalyst for ORR, despite its drawbacks, including high cost and limited durability.
By integrating perovskite oxides with precious metals to load onto carbon-based mate-
rials, it becomes possible to design a bifunctional electrocatalyst that exhibits superior
performance [148–150]. The potential of Perovskite/carbon/precious metals integrated
electrocatalyst has been demonstrated in relevant literature [151,152]. The precious metal
Pt and Sr(Co0.8Fe0.2)0.95P0.05O3−δ (SCFP) and C-12 were physically mixed via ball milling
by Wang et al. [153], resulting in the synthesis of a bifunctional ORR/OER electrocata-
lyst with exceptional performance. This apparent enhancement in catalytic activity can
be attributed to accelerated electron transfer, an abundance of surface oxygen vacancies,
increased active sites, and reduced energy barriers due to the spillover effect between Pt
and SCFP. Zhu [154] et al. employed a facile ultrasonic mixing technique to combine the
Pt/C catalyst with the perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) at an optimal ratio,
resulting in a composite that exhibits excellent ORR activity. This integration of Pt/C and
BSCF enhances the electron transfer mechanism of BSCF and facilitates synergistic catalysis
between the two catalysts, thereby significantly boosting the bifunctional oxygen catalytic
performance of BSCF.

In addition to the aforementioned methods of compounding perovskite materials, it is
also feasible to effectively compound perovskite materials with other substances such as
metal-organic frameworks (MOF), perovskites [155], and spinels [156], thereby enhancing
their bifunctional oxygen catalytic activity.

The potentials of various perovskite-based bifunctional electrocatalysts with different
modification strategies are presented in Table 1, at a current density of 10 mA/cm2 for ORR
and −1 mA/cm2 for OER, along with the corresponding potential difference (∆E). In a
way, a smaller potential difference (∆E) indicates superior bifunctional catalytic activity.
These data revealed that the activity of perovskite-based bifunctional electrocatalysts can be
significantly influenced by cationic regulation, composite processing, and nano-processing.
Specifically, the regulation of B-site cations tends to have a more pronounced effect on the
catalytic activity of perovskite bifunctional electrocatalysts. Taking the LaMnxNiyCozO3
(x:y:z = 1:2:3) electrocatalyst as an example, its potential difference (∆E) was calculated as
0.76 V (1.60–0.84 V), which is lower than the other samples listed in Table 1. This remarkable
performance is attributed to the dual Mn-Ni dopant at the B-site, which allows precise
tuning of the catalyst’s electronic structure. Consequently, this electrocatalyst not only
exhibits outstanding activity for both ORR and OER but also serves as a model for further
investigations into structure–activity relationships.

Table 1. Assessment of perovskite-based bifunctional catalysts in 0.1 M KOH for the above reported.

Catalyst Modification
Strategy

ORR Potential (V)
@ −1 mA cm−2

OER Potential (V)
@ 10 mA cm−2 ∆E (V) Reference

LaNiO3−δ
Crystallographic
Structure Tuning

−0.25 vs.
Ag/AgCl 0.73 vs. Ag/AgCl 0.98 [38]

La0.8Sr0.2Co0.4Mn0.6O3 B-site regulation 0.81 vs. RHE 1.72 vs. RHE 0.91 [52]

La0.75Sr0.25Mn0.5Fe0.5O3
nano-processing and

B-site regulation 0.74 vs. RHE 1.66 vs. RHE 0.92 [69]

LaMnxNiyCozO3
(x:y:z = 1:2:3) B-site regulation 0.84 vs. RHE 1.60 vs. RHE 0.76 [75]

(La0.8Sr0.2)0.95Mn0.5Fe0.5O3
A-site deficiency and

B-site regulation 0.12 vs. Ag/AgCl 0.89 vs. Ag/AgCl 0.77 [91]

Vacancy-induced LaMnO3 anionic regulation 0.94 vs. RHE 1.84 vs. RHE 0.90 [96]
nsLaNiO3/NC nano-processing 0.74 vs. RHE 1.62 vs. RHE 0.88 [110]

Ni3S2/PrBa0.5Sr0.5Co2O5+δ composite processing 0.81 vs. RHE 1.63 vs. RHE 0.82 [124]
La(Co0.55Mn0.45)0.99O3−δ/NrGO composite processing 0.84 vs. RHE 1.72 vs. RHE 0.88 [134]

10%g-C3N4-LaNiO3 composite processing -0.32 vs. SCE 0.76 vs. SCE 1.08 [136]
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7. Conclusions and Perspectives

In this paper, we provided an overview of the recent progress in bifunctional perovskite-
based electrocatalysts for both oxygen reduction and oxygen evolution reactions under
alkaline conditions. We present and analyze various modification strategies for manipulat-
ing perovskite-based oxides to enhance their bifunctional catalytic activity and stability,
including crystallographic structure tuning, cationic regulation, anionic regulation, nano-
processing, and composite processing. Among these strategies, the regulation of B-site
cations has demonstrated the most significant influence on enhancing the catalytic activity
of perovskite-based bifunctional electrocatalysts. Further, cationic regulation, composite
processing, and nano-processing have also exhibited a greater impact on improving their
catalytic activity. Despite this, related studies are still in the experimental stage, and there
are still numerous challenges that remain for large-scale commercial applications. The
practical applications often necessitate the comprehensive utilization of multiple modi-
fication strategies to attain superior performance owing to the multifactorial nature that
influences the catalytic activity of perovskite-based oxides. Therefore, the integration of
these strategies in the development of perovskite-based oxides has the potential to signifi-
cantly enhance their electrocatalytic performance. Furthermore, it is imperative to conduct
additional experimental investigations and theoretical calculations in order to comprehen-
sively explore the bifunctional catalytic mechanism of perovskite oxides and to design
more efficient nanostructured perovskite-based electrocatalysts. With the advancement of
research, widespread applications of bifunctional perovskite-based electrocatalysts can be
anticipated in the foreseeable future.
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