
Citation: Yang, P.; Yuan, Y.; Zhang,

D.; Yang, Q.; Guo, S.; Cheng, J.

Nanocapsule of MnS

Nanopolyhedron Core@CoS

Nanoparticle/Carbon Shell@Pure

Carbon Shell as Anode Material for

High-Performance Lithium Storage.

Molecules 2023, 28, 898. https://

doi.org/10.3390/molecules28020898

Academic Editor: Grzegorz D. Sulka

Received: 19 December 2022

Revised: 8 January 2023

Accepted: 11 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Nanocapsule of MnS Nanopolyhedron Core@CoS
Nanoparticle/Carbon Shell@Pure Carbon Shell as Anode
Material for High-Performance Lithium Storage
Peng Yang 1, Yongfeng Yuan 1,* , Dong Zhang 2, Qiuhe Yang 3, Shaoyi Guo 1 and Jipeng Cheng 4,*

1 College of Machinery Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 Hang Zhou City of Quality and Technical Supervision and Testing Institute, Hangzhou 310019, China
3 Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational & Technical College,

Hangzhou 310018, China
4 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University,

Hangzhou 310027, China
* Correspondence: yuanyf@zstu.edu.cn (Y.Y.); chengjp@zju.edu.cn (J.C.)

Abstract: MnS has been explored as an anode material for lithium-ion batteries due to its high
theoretical capacity, but low electronic conductivity and severe volume change induce low reversible
capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhe-
drons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by
embedding MnCO3 nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfu-
rization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C
shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cy-
cling performance (674 mAh g−1 at 1 A g−1 after 300 cycles; 481 mAh g−1 at 5 A g−1 after 300 cycles)
and superior rate capability (1133.3 and 650.6 mAh g−1 at 0.1 and 4 A g−1), compared to the control
materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal
a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and
TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C
during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy
demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material.

Keywords: lithium-ion batteries; anode; MnS; CoS

1. Introduction

With the increasing demands of consumable electronics and pure/hybrid electric vehi-
cles and other energy applications, the requirement for advanced energy storage devices,
such as lithium-ion batteries (LIBs), becomes higher and higher. It is well-known that
anode materials play a significant role in LIBs [1–4]. However, the traditional graphite
material is limited by its low theoretical capacity. Therefore, it is highly urgent to explore
advanced anode materials with superior properties. Among the alternative anodic materi-
als, transition metal sulfides (TMSs) have attracted wide interest due to the improved safety,
satisfactory theoretical capacity, higher conductivity and lower voltage hysteresis than their
metal oxides counterparts [5–9]. In addition, the weak metal–sulfur bond can induce faster
reaction kinetics [10,11]. Among TMSs, manganese sulfide (MnS) has the advantages of
being ecofriendly, low cost and has a high theoretical capacity (616 mAh g−1). Especially,
its redox potential is lower than those of other TMSs [12–17]. In spite of these advantages,
MnS is still subjected to common problems of TMSs. During the charge/discharge process,
the volume variation of MnS is large, which results in a serious pulverization problem and
poor cycling stability [18,19]. In addition, the low electronic conductivity and sluggish Li+

mobility also gives rise to an unsatisfactory rate capability [20–24]. These issues limit the
application of MnS as anode material in LIBs.
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Many strategies have been proposed to overcome the above shortcomings of MnS.
One of the most effective strategies is to combine a wide variety of MnS nanostructures
with conductive materials, such as various carbonous materials [25–31]. On the one hand,
the well-designed nanostructures can not only alleviate the volumetric change of MnS,
but also shorten diffusion paths of Li+ in MnS. On the other hand, hybridizing MnS with
carbonous materials can effectively improve the electrical conductivity of MnS, and even
suppress volumetric changes of MnS to a certain extent [32,33]. The related works have
been extensively reported in recent years. For example, X.J. Xu et al. in-situ synthesized
MnS hollow microspheres on reduced graphene oxide sheets. The composite could de-
liver a reversible capacity of 640 mAh g−1 after 400 cycles at 1 A g−1 [34]. S. Gao et al.
reported flexible MnS–carbon fiber hybrids, and the reversible capacity of 257 mAh g−1

was delivered after 1000 cycles at 1 A g−1 [26]. L. Zhu et al. prepared MnS/Co9S8/carbon
heterostructures through the chemical vapor deposition treatment of flower-like Mn/Co-
glycerate and achieved a high reversible capacity of 608 mAh g−1 after 300 cycles at
500 mA g−1 [27]. These research findings demonstrate that the composite structure is a
key factor for electrochemical performance of MnS [35,36]. It has been found that in most
of the composite structures, MnS is either exposed outside carbon materials, or tightly
wrapped by various carbon materials without any gap. For the former, it is easy for MnS
to fall off from the composite during the discharge–charge process. For the latter, the
contact between MnS and the electrolyte is greatly limited. Compared with the above
two kinds of composite structures, their intermediate structures are seldom explored. If
MnS is locked in an independent, closed and conductive microspace, shortcomings of the
above two composite structures can be effectively overcome. Therefore, the innovative
research of the composite structure of MnS is still highly desired.

Inspired by the above considerations, herein, we design the independent, closed and
conductive hollow polyhedral nanospheres composed of two layers of heterogeneous
shells, a CoS/C inner shell and a pure C outer shell. Several MnS nanopolyhedrons are in-
situ grown inside the hollow polyhedral nanospheres, constructing a unique nanocapsule
structure. The composite is denoted as MnS@CoS/C@C. Compared with other composite
strategies, the hollow polyhedral nanospheres can not only improve electronic conductivity
of MnS, but also avoid MnS from aggregating or falling off from the composite. More
importantly, it can also effectively buffer volume change of MnS. Herein, the detailed
structural features and the electrochemical properties of MnS@CoS/C@C nanocapsules
have been systematically explored. As expected, MnS@CoS/C@C exhibits superior Li
storage performance in terms of reversible capacity, cycling performance and rate capability.
The unique nanocapsule structure is also expected to be applied in other fields.

2. Results and Discussion

The synthetic procedure of MnS@CoS/C@C nanocapsule is schematically illustrated in
Figure 1. First, MnCO3 nanopolyhedrons are prepared via a hydrothermal co-precipitation
reaction. Under the hydrothermal conditions, citric acid acts as a reducing agent, and
reduces Mn7+ in KMnO4 to Mn2+. On the other hand, citric acid is decomposed, and
carbonate ions are released. Mn2+ combines with CO3

2−. Accordingly, MnCO3 is formed.
The relevant reactions are shown as follows:

KMnO4 + C6H8O7 →Mn2+ + CO3
2− + H2O

Mn2+ + CO3
2− →MnCO3 ↓

Afterword, via the unique bridge effect of PVP between MnCO3 and ZIF-67, several
MnCO3 nanopolyhedrons are assembled into ZIF-67. Furthermore, RF resin is coated on
the surface of MnCO3@ZIF-67 through a polymerization reaction between resorcinol and
formaldehyde. Finally, a gaseous sulfurization and carbonization procedure are performed.
MnCO3 nanopolyhedrons are sulfurized into MnS nanopolyhedrons. The solid ZIF-67 is
sulfurized into the hollow inner shell composed of CoS nanoparticles and a small amount
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of amorphous carbon. RF resin is decomposed into the outer shell composed of pure
amorphous carbon. The above structural changes are accomplished by one-step calcination.
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Figure 1. Synthetic procedure for the preparation of MnS@CoS/C@C nanocapsules.

Figure 2a,b show SEM and TEM images of MnCO3 nanopolyhedrons. MnCO3
nanopolyhedrons present solid structure, uniform size and sharp edges. Although the size
is only about 30 nm, they do not aggregate, which ensures the successful embedding of
MnCO3 nanopolyhedrons into ZIF-67. Through controlling the reaction conditions, MnCO3
is restricted to an inadequate growth state, that is, an intermediate morphology close to
the cube. Figure 2c exhibits the SEM image of MnCO3@ZIF-67. The product presents
the typical rhombic dodecahedron, suggesting good crystallinity of ZIF-67. The size of
ZIF-67 is also uniform, about 250–450 nm. It can be seen that there is very little scattered
MnCO3 nanopolyhedrons outside ZIF-67. The TEM image (Figure 2d) reveals that there
is several MnCO3 nanopolyhedrons inside a ZIF-67 dodecahedron. When MnCO3@ZIF-
67 is directly sulfurized, the sulfurized product is denoted as MnS@CoS/C. SEM image
(Figure 2e) indicates that most of MnS@CoS/C is intact. The surface is smooth. TEM image
(Figure 2f) reveals that the sulfurized particles transform from the solid embedded structure
into a hollow core-shell structure, resembling a nanocapsule. The thickness of the shell is
about 30–40 nm. Inside the hollow sulfurized particles, there exists some more larger solid
particles, and they are MnS. Figure 2g shows a local magnified TEM image of the shell. It
is found that the shell is composed of CoS nanoparticles. The size of CoS nanoparticles is
very small, about 4 nm. The edges of CoS nanoparticles and the interior of the shell are
blurred, which is attributed to the existence of a small amount of amorphous carbon.
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Figure 2. (a) SEM and (b) TEM images of MnCO3 nanopolyhedrons; (c) SEM and (d) TEM images of
MnCO3@ZIF-67; and (e) SEM, (f) TEM and (g) local TEM images of MnS@CoS/C.

Figure 3a shows the SEM image of MnCO3@ZIF-67@RF resin. Since ZIF-67 may
solve in water, the particles transform from the rhombic dodecahedron into smoother
polyhedron. The size also becomes smaller. All particles are covered by a layer of uniform
smooth resin. Even some particles are stuck together by the resin. This confirms successful
coating of RF resin. TEM image (Figure 3b) reveals their internal microstructure. RF resin
is outside the particles. Inside the particles, there are some MnCO3 that still maintain the
initial nanopolyhedron morphology. Among MnCO3 nanopolyhedrons, between MnCO3
nanopolyhedrons and the RF resin shell, there is no gap. Although most of ZIF-67 is
dissolved, MnCO3 nanopolyhedrons are still embedded in ZIF-67. Figure 3c shows a SEM
image of MnS@CoS/C@C. After the sulfurization and carbonization, the outer RF resin
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shell is decomposed to a smoother amorphous carbon shell. The TEM mage (Figure 3d)
verifies that the internal structure becomes hollow, and MnS nanopolyhedrons exist inside.
The composite also becomes a nanocapsule-like core-shell structure. However, in the inside
of the shell, many nanoparticles exist. They are CoS nanoparticles formed by sulfurization
of ZIF-67. In the outside of the shell, CoS nanoparticles are few, and there is mainly
the amorphous carbon wall formed by the carbonization of RF resin. Figure 3d clearly
demonstrates that the shell of MnS@CoS/C@C is a two-layer structure. The square box
area in Figure 3d is further observed by HRTEM. In Figure 3e, some lattice fringes show d-
spacing of 0.301 nm, consistent with the (111) crystal plane of MnS. At the same time, other
lattice fringes show d-spacing of 0.292 nm, matching well with the (100) crystal plane of CoS.
In addition, the amorphous structure of carbon can be also distinguished simultaneously.
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(e) HRTEM images of MnS@CoS/C@C.

The phases of MnS@CoS/C@C are examined through XRD (Figure 4a). All the charac-
teristic peaks can be assigned to (111), (200), (220), (311), (222) and (400) crystal planes of
the cubic phase α-MnS (JCPDS No. 88-2223) and (100), (101), (102) and (110) crystal planes
of CoS (JCPDS 75-0605). Diffraction peaks of MnS are relatively strong, which demonstrates
high crystallinity and the slightly large size of MnS. On the contrary, diffraction peaks of
CoS are very weak, which is consistent with low crystallinity and a very small size of CoS.
α-MnS has a cubic rock-salt crystal structure and superior thermal stability, and is the best
phase of MnS for lithium storage. There are no other detectable peaks corresponding to
ZIF-67, MnCO3, RF resin, S and other impurities. This suggests complete sulfurization and
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carbonization of MnCO3@ZIF-67@RF resin. Raman spectrum is conducted to elucidate
the degree of graphitization of MnS@CoS/C@C (Figure 4b). At 1355 and 1553 cm−1, the
two significant Raman scattering peaks appear, known as the D band (the breathing vi-
bration of sp3-type carbon) and G band (the stretching modes of sp2-type carbon). This
demonstrates that RF resin is successfully decomposed to carbon. The intensity ratio of D
band and G band (ID/IG) is 0.89, confirming that RF resin-derived carbon is amorphous.
Additionally, the two peaks located at 642 and 347 cm−1 can be indexed to MnS [26]. The
other two weak peaks located at 472 and 517 cm−1 are related to Eg and F2g peaks of
CoS [37]. XRD and Raman results reveal the presence of MnS, CoS and amorphous carbon
in the composite.

Figure 4c shows the EDS pattern of MnS@CoS/C@C. In the composite, there are only
four elements: Mn, Co, S and C. The atomic ratio of Mn and Co is 4.26. To determine the
contents of MnS and CoS in the composite, the TGA of MnS@CoS/C@C is measured under
flowing air. As shown in Figure 4d, from the room temperature to 170 ◦C, a slight weight
loss occurs, which is associated with evaporation of adsorbed water in the composite. From
170 ◦C to 390 ◦C, an obvious weight increase appears, which is attributed to oxidation of
MnS and CoS to MnSO4 and CoSO4. The weight loss in 390–540 ◦C is attributed to the
combustion of carbon in air. The second weight loss in 615–860 ◦C is more significant. It
is related to the decomposition of MnSO4 and CoSO4 into Mn2O3 and Co3O4. Based on
the atomic ratio of Mn and Co provided by EDS, the contents of MnS, CoS and carbon are
calculated to be 60%, 14.61% and 25.39%, respectively.
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Figure 4. (a) XRD pattern, (b) Raman spectrum, (c) EDS pattern and (d) TGA curve in air of
MnS@CoS/C@C.

The electrochemical properties of MnS@CoS/C@C as anode material for LIBs are
studied in coin-type half-cell. Figure 5a shows CV curves of MnS@CoS/C@C at a scan
rate of 0.1 mV s−1 in the first three cycles. CV curves present a lot of reduction peaks
and oxidation peaks from MnS and CoS, indicating that both MnS and CoS participate
in electrochemical reactions, and the reactions of MnS and CoS are multi-step. The first
cathodic scanning curve exhibits five reduction peaks located at 1.63, 1.20, 0.58, 0.25 and
0.01 V, corresponding to the intercalation of Li+ into MnS, conversion of CoS to metallic Co,
conversion of Li2MnS into metallic Mn and Li2S, the formation of the SEI film and intercala-
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tion of Li+ into carbon, respectively. The subsequent anodic scanning curves are relatively
stable, and show seven oxidation peaks located at 0.25, 1.12, 1.28, 1.90, 2.06, 2.27 and 2.35 V,
related to the deintercalation of Li+ from carbon (0.25 V), re-conversion of metallic Mn
to Li2MnS (1.12 V), re-conversion of metallic Co to LixCoS (1.28 V), deintercalation of Li+

from Li2MnS (1.9 and 2.35 V) and deintercalation of Li+ from Li2CoS (2.06 and 2.27 V),
respectively [17,38,39]. The subsequent cathodic scanning curves also become stable, and
six peaks are presented at 1.92, 1.61, 1.31, 0.76, 0.35 and 0.01 V. The cathodic peaks at 1.61,
0.76 and 0.33 V are associated with intercalation and conversion reactions of MnS. The
cathodic peaks at 1.92 and 1.31 V correspond to intercalation and conversion reactions
of CoS. Except for the first scanning, changes in CV curves are negligible, indicating the
excellent structure stability and electrochemical reversibility of MnS@CoS/C@C.

To further elucidate the electrochemical behavior of MnS@CoS/C@C, the charge/discharge
curves at the current density of 1 A g−1 at the 1st, 2nd and 5th cycle are investigated. The
control material of MnS is prepared by the sulfurization of MnCO3 nanopolyhedrons. The
control material of CoS/C is prepared by sulfurization of ZIF-67. The charge/discharge
curves (Figure 5b,c) of MnS and CoS exhibit multiple potential plateaus. These plateaus
well coincide with oxidation peaks and reduction peaks of CV curves of MnS@CoS/C@C,
which confirms that the electrochemical reactions of MnS@CoS/C@C are composed of those
of MnS and CoS. This point can be further confirmed by the charge/discharge curves of
MnS@CoS/C@C (Figure 5d). It is found that potential plateaus of MnS@CoS/C@C basically
correspond to oxidation and reduction peaks of CV curves of MnS@CoS/C@C, meanwhile
coincide with potential plateaus of the control materials of MnS and CoS. Furthermore,
compared with MnS and CoS, the charge/discharge curves of MnS@CoS/C@C almost
overlap, indicating the better stability and reversibility. It is worth noting that the initial
capacity loss of MnS@CoS/C@C is lower than those of the control materials of MnS and
CoS/C, which is attributed to the RF resin-derived carbon shell that greatly improves the
initial Coulomb efficiency [20].
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Figure 6a shows rate performance of MnS@CoS/C@C nanocapsule. At the current
densities of 0.1, 0.2, 0.5, 1, 2, 4 A g−1, MnS@CoS/C@C delivers average discharge capacities
of 1133.3, 1082.6, 1039.6, 952, 823.4, 650.6 mAh g−1. The discharge capacities at different cur-
rent densities are extraordinary, which suggests excellent rate capability of MnS@CoS/C@C.
When the current comes back to 1 and 0.1 A g−1, the discharge capacity can recover to
890 and 1244 mAh g−1. This demonstrates outstanding stability of MnS@CoS/C@C. For
comparison, rate performance of MnS@CoS/C is also provided in Figure 6a. Its average
discharge capacities stabilize at 814, 755, 671, 605, 509, 333 mAh g−1 at 0.1, 0.2, 0.5, 1, 2,
4 A g−1. It is found that discharge capacity of MnS@CoS/C is 300–400 mAh g−1 lower
than that of MnS@CoS/C@C. This huge difference demonstrates significance of the outer
pure carbon shell. It greatly improves electronic conductivity and structural stability of
MnS@CoS/C. Figure 6b compares rate performance of MnS@CoS/C@C and other advanced
MnS and CoS composites. MnS@CoS/C@C is superior to many previous reported compos-
ites, demonstrating its structural superiority. Figure 6c displays charge/discharge curves of
MnS@CoS/C@C at different current densities. As the current increases from 0.1 to 1.0 A g−1,
the potential plateaus of the charge/discharge curves shift very slightly. Only at 2 and
4 A g−1 does the overpotential become slightly greater. This further exhibits high electronic
conductivity, low polarization and excellent charge–discharge ability of MnS@CoS/C@C.

Figure 6d compares cycling performance of MnS@CoS/C@C and the control materials
of MnS@CoS/C and MnS at 1 A g−1 over 300 cycles. MnS prepared by direct sulfurization
of MnCO3 nanopolyhedron is not protected by any substance, and the conductivity is not
improved. As a result, its initial discharge capacity is 713 mAh g−1. After 3 cycles, the
discharge capacity rapidly drops to 225 mAh g−1. Afterwards, it maintains a stable, but
low capacity. At the 300th cycle, the discharge capacity is only 118 mAh g−1. When MnS
is protected by the CoS/C hollow body, the initial capacity increases to 1200 mAh g−1.
Nevertheless, after 50 cycles, the capacity of MnS@CoS/C becomes like MnS. This is because
the CoS/C shell easily pulverizes during cycling, and cannot provide adequate structural
support for the inner MnS core. As for MnS@CoS/C@C, its discharge capacity is several
times those of MnS and MnS@CoS/C. At the 74th cycle, the discharge capacity reaches
1033 mAh g−1. At the 300th cycle, it still delivers a discharge capacity of 674 mAh g−1. This
comparison clearly reveals the importance of the inner CoS/C shell and the outer pure C
shell, especially the outer pure C shell, for improving the cycling performance of MnS. The
outer pure C shell remarkably enhances the electronic conductivity and structural stability
of the composite. The cycling performance of MnS@CoS/C@C is further explored at a
higher current of 5 A g−1 (Figure 6e). The discharge capacity of MnS@CoS/C@C slowly
decreases from 673 mAh g−1 at the 1st cycle to 481 mAh g−1 at the 300th cycle, with a
capacity retention ratio of 71.5%. The cyclability at 5 A g−1 is also impressive. Table 1
compares cycling performance of MnS@CoS/C@C and other advanced MnS composites,
demonstrating that MnS@CoS/C@C has excellent cycling performance in terms of reversible
capacity and stability.
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Figure 6. (a) Rate performance of MnS@CoS/C@C and MnS@CoS/C, (b) Comparison of rate capa-
bility of MnS@CoS/C@C and α-MnS [21], MnS@C-800 [25], MnS/RGO [34], CoS/CNTs [40], CoS
NFs-rGO [41], γ-MnS [42], MnS@C [43], γ-MnS/rGO [44], CoS2 [45], CoS2 NP@G-CoS2QD [46],
(c) Galvanostatic charge–discharge curves of MnS@CoS/C@C at various current densities, (d) Longer-
term cyclic performances and coulombic efficiency of MnS@CoS/C@C and the control materials of
MnS@CoS/C and MnS at 1 A g−1 and (e) Longer-term cyclic performances and coulombic efficiency
of MnS@CoS/C@C at 5 A g−1.

Table 1. Cycling performance comparison between MnS@CoS/C@C and other reported MnS,
CoS composites.
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Cycling
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CoS/CNTs 0.3 465 100 [40]
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α-MnS 0.1 870 200 [21]
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MnS@C-800 0.5 200 100 [25]

CoS2 1 737 200 [45]
CoS2 NP@G-CoS2 QD 1 831 300 [46]
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The reaction kinetics of MnS@CoS/C@C is further investigated by CV curves at
various scan rates in order to find out the reason for the high specific capacity and excellent
rate capability. In Figure 7a, as scan rate increases from 0.1 to 1.0 mV s−1, CV curves always
keep the similar shapes, and all oxidation and reduction peaks shift very slightly. This
suggests that the polarization of MnS@CoS/C@C is very small. Three distinct peaks are
selected to analyze the relationship between peak current (i) and scan rate (v), according
to the equation (i = avb). Herein, a and b are the variable parameters. It is known that the
value of b can be used to estimate the type of the reaction kinetics. In general, a b-value
of 0.5 means that diffusion completely controls the electrochemical reaction, whereas a
b-value of 1.0 represents that the capacitive effect dominates the electrochemical reaction.
a and b can be determined by the plot of log i vs. log v, as shown in Figure 7b. The
three groups of peaks present good linear correlation. The b value of the cathodic peak
(Peak 1) is fitted as 0.79. The b values of the two anodic peaks (Peak 2 and 3) are fitted as
0.74 and 0.80. The values suggest that the pseudocapacitive effect controls electrochemical
reaction of MnS@CoS/C@C. To quantitatively elucidate the contribution ratios of the
pseudocapacitive effect and the diffusive effect in the electrochemical reaction, another
equation (i = k1v + k2v1/2) is used to separate the current response (i) of CV curves. In the
equation, k1v indicates the pseudocapacitive current, and k2v1/2 represents the diffusive
current. k1 and k2 are two parameters related to the potential and can be determined
by plotting i/v1/2 vs. v1/2 and then performing linearly fitting. k1 and k2 are the slope
and the intercept of the fitting line. In this way, the CV curve at scan rate of 1.0 mV s−1

can be decomposed to the pseudocapacitive current and the diffusive current, as shown
in Figure 7c. It can be seen that the pseudocapacitive contribution accounts for 88.75%
of the total charge storage (highlighted by green). At other scan rates of 0.1, 0.2, 0.4
and 0.8 mV s−1, the pseudocapacitive contributions are 63.06, 67.56, 74.53 and 83.31%,
respectively, as illustrated in Figure 7d. The results confirm that the pseudocapacitive
effect is dominant. The significant pseudocapacitive contribution is mainly attributed to
the nanocapsule structure. In the nanocapsule, the sizes of MnS and CoS are very small,
and they do not aggregate. The abundant inner void exists in the nanocapsule, facilitating
electrolyte infiltration and ionic transfer. The above factors remarkably enhance reaction
kinetics, and improve rate performance of MnS@CoS/C@C.

The reaction kinetics of MnS@CoS/C@C are further studied by EIS. Figure 7e exhibits
the Nyquist plots before cycling and after the 5th cycle. The equivalent circuit is also
inserted. The inclined straight line in the low-frequency region corresponds to the lithium-
ion diffusion process inside the electrode material, represented by the Warburg impedance
(Zw). In the high and medium frequency regions, the compressed semicircles are associated
with the interfacial SEI film resistance (Ri) and charge transfer resistance (Rct). RΩ represents
internal resistance. CPE is a constant phase element. At the 5th cycle, the semicircle becomes
smaller, which means that Rct decreases. The fitted results indicate that Rct decreases from
64.6 Ω before cycling to 38.2 Ω at the 5th cycle. The low Rct suggests rapid charge transfer
and a rapid interface reaction. RΩ is only 5.7 Ω, which indicates that the outer pure carbon
shell and the inner CoS/C shell improve the electronic conductivity of the composite. EIS
results demonstrate that the reaction kinetics of MnS@CoS/C@C are fast, which is beneficial
to obtain high capacity and good rate performance.
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Figure 7. (a) CV curves of MnS@CoS/C@C at scan rates of 0.1, 0.2, 0.4, 0.8 and 1.0 mV s−1, (b) linear 
fitting of log (i) vs. log (v) of three oxidation/reduction peaks, (c) capacitive contribution (green re-
gion) and diffusive contribution (black region) to charge storage at scan rate of 1.0 mV s−1, (d) the 
normalized contribution ratios of the capacitive effect at different scan rates and (e) Nyquist plots 
and the fitting curves before cycling and after 5 cycles, with the equivalent circuit model. 

To ascertain structural stability of MnS@CoS/C@C during long-term charge/discharge 
cycles, the MnS@CoS/C@C electrode after 300 cycles at 5 A g−1 is observed. SEM image (Fig-
ure 8a) shows that there are numerous spherical particles on the electrode. These particles 
are intact. The TEM image (Figure 8b) reveals that MnS nanoparticles do not pulverize and 
are still well confined inside the nanocapsules. Colloid-like polymer fills the inner void of 
the nanocapsules. Overall, the nanocapsule structure of MnS@CoS/C@C is well maintained. 
This convincingly verifies that MnS@CoS/C@C is extremely stable. The excellent structural 
stability is attributed to the two shells. The inner CoS/C shell increases the capacity of the 
composite, promotes ion transport and enhances the structural strength of the composite. 

Figure 7. (a) CV curves of MnS@CoS/C@C at scan rates of 0.1, 0.2, 0.4, 0.8 and 1.0 mV s−1, (b) linear
fitting of log (i) vs. log (v) of three oxidation/reduction peaks, (c) capacitive contribution (green
region) and diffusive contribution (black region) to charge storage at scan rate of 1.0 mV s−1, (d) the
normalized contribution ratios of the capacitive effect at different scan rates and (e) Nyquist plots
and the fitting curves before cycling and after 5 cycles, with the equivalent circuit model.

To ascertain structural stability of MnS@CoS/C@C during long-term charge/discharge
cycles, the MnS@CoS/C@C electrode after 300 cycles at 5 A g−1 is observed. SEM image
(Figure 8a) shows that there are numerous spherical particles on the electrode. These
particles are intact. The TEM image (Figure 8b) reveals that MnS nanoparticles do not
pulverize and are still well confined inside the nanocapsules. Colloid-like polymer fills
the inner void of the nanocapsules. Overall, the nanocapsule structure of MnS@CoS/C@C
is well maintained. This convincingly verifies that MnS@CoS/C@C is extremely stable.
The excellent structural stability is attributed to the two shells. The inner CoS/C shell
increases the capacity of the composite, promotes ion transport and enhances the structural
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strength of the composite. For the outer pure C shell, its role is more important. It
significantly enhances the structure strength and electronic conductivity of the composite.
Furthermore, the internal abundant void space can well buffer volume variation of MnS
and the two shells, and meanwhile store electrolyte for electrochemical reaction.
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3. Experimental
3.1. Material Synthesis

Synthesis of MnCO3 nanopolyhedrons: 0.2 g KMnO4 and 0.2 g citric acid were dis-
solved in 40 mL deionized water, and then stirred for 4 h at the ambient temperature. The
mixed solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave, and then
heated to 160 ◦C for 4 h. The precipitate was collected via centrifugation, and then washed
with ethanol several times. The product was dried in an oven overnight at 50 ◦C.

Synthesis of MnCO3@zeolitic imidazolate framework (ZIF)-67: 0.55 g MnCO3 nanopoly-
hedrons were ultrasonically dispersed in 50 mL methanol. 1.1 g polyvinylpyrrolidone (PVP,
Mw = 58,000) was added under stirring to prepare solution A. Solution B was prepared
by dissolving 2.96 g 2-methylimidazole in 50 mL methanol. Solution C was prepared
by dissolving 0.20 g Co(NO3)2·6H2O in 25 mL methanol. The solution B and solution C
were poured into solution A under stirring. After reaction for 45 min, the mixed solution
was aged at room temperature for 12 h. The dark purple precipitate was separated by
centrifugation, washed repeatedly with methanol, and dried overnight at 50 ◦C in vacuum.

Synthesis of MnCO3@ZIF-67@resorcinol-formaldehyde (RF) resin: Solution D was
prepared by ultrasonically dispersing 0.35 g MnCO3@ZIF-67 in 12.5 mL ethanol. Solution E
was prepared by dissolving 0.23 g cetyltrimenthylammonium bromide (CTAB) in 30 mL
deionized water. Solution E was poured into solution D under stirring. After 15 min,
0.12 g resorcinol and 0.2 mL ammonium hydroxide were added to the mixed solution.
After 20 min, 0.017 mL formaldehyde solution was added. After reaction for 12 h at room
temperature, the product was separated, washed with ethanol 3 times, and finally dried.

Synthesis of MnS@CoS/C@C: MnCO3@ZIF-67@RF resin and sulfur powder were
placed in a horizontal quartz tube furnace, with a weight ratio of 1:6. The sulfur powder
was at upstream. The mixture was then annealed at 600 ◦C for 2 h with a heating rate of
2 ◦C min−1 under flowing argon with a flowing rate of 150 sccm.

3.2. Materials Characterizations

Scanning electron microscopy (SEM, Ultra-55) and transmission electron microscope
(TEM, JEOL JEM-2100) were utilized to observe morphology and microstructure. Informa-
tion about the crystal structure were obtained by Rigaku D/max2550VL/PC system X-ray
diffractometer (XRD) with Cu-Kα radiation. The chemical composition was determined
by INCA energy dispersive X-Ray spectroscopy (EDS) equipped in SEM. Raman spectra
were collected from DXR Raman microspectrometer with a 633 nm laser. Thermogravi-
metric analysis (TGA) curve was collected with a thermogravimetric analyzer (NETZSCH
TG209F3) under air flow at a heating ramp of 10 ◦C min−1.
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3.3. Electrochemical Measurements

The working electrodes were made by mixing active material (70 wt%), carbon black
(Super-P) (20 wt%) and polyvinylidene fluoride (PVDF) (10 wt%) to form a homogeneous
slurry. N-methylpyrrolidone was used as solvent. The slurry was then spread onto copper
foils with a diameter of 1.2 cm, followed with drying in vacuum at 70 ◦C overnight
to remove NMP. The CR2025 coin-type half-cells were assembled in an Ar-filled glove-
box under the contents of moisture and oxygen less than 0.5 ppm. The polypropylene
membrane (Celgard 2400) was used as separator. The electrolyte was the mixture of
dimethyl carbonate and ethylene carbonate (1:1 in volume) dissolved with 1 M LiPF6. Li foil
was used as counter electrode. The galvanostatic charge–discharge cycling measurements
were operated in the voltage range of 0.01–3.0 V at room temperature on NEWARE CT-3008
battery test systems. The electrochemical impedance spectroscopy (EIS) with a frequency
range of 0.01 HZ—100 KHz and the cyclic voltammetry (CV) curves over the potential range
from 0.01 to 3.0 V (vs. Li+/Li) were tested on VersaSTAT 3 electrochemical measurement
system. After a certain cycling numbers, the MnS@CoS/C@C electrode was taken out
from the cell, rinsed with dimethyl carbonate, and then dried in vacuum for SEM and
TEM observation.

4. Conclusions

In summary, we developed a facile in-situ assembling and gaseous sulfurization/carbonization
strategy to construct MnS@CoS/C@C, in which several MnS nanopolyhedrons as cores
are perfectly confined inside hollow polyhedral nanospheres composed of an inner CoS/C
shell and outer pure C shell. As an anode material for LIBs, the MnS@CoS/C@C electrode
exhibits high specific capacity (1133.3 mAh g−1 at 0.1 A g−1), improved cycling stability
(481 mAh g−1 at 5 A g−1 after 300 cycles) and excellent rate capability, as well as rapid
reaction kinetics, including a high proportion of pseudocapacitive effect and low reaction
impedance. The improved electrochemical performance is associated with the unique
nanocapsule structure. Two layers of shells, especially outer pure C shell, not only increase
electronic conductivity, but also improve structural stability. Abundant void space in the
nanocapsule also facilitates electrolyte storage. The synthesis strategy and structure features
proposed in this work can motivate innovative exploration of novel hybrid composites for
high-performance energy storage applications.
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