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Abstract: An organoboron small-molecular acceptor (OSMA) MB←N containing a boron–nitrogen
coordination bond (B←N) exhibits good light absorption in organic solar cells (OSCs). In this work,
based on MB←N, OSMA MB-N, with the incorporation of a boron–nitrogen covalent bond (B-N), was
designed. We have systematically investigated the charge-transport properties and interfacial charge-
transfer characteristics of MB-N, along with MB←N, using the density functional theory (DFT) and the
time-dependent density functional theory (TD-DFT). Theoretical calculations show that MB-N can
simultaneously boost the open-circuit voltage (from 0.78 V to 0.85 V) and the short-circuit current due
to its high-lying lowest unoccupied molecular orbital and the reduced energy gap. Moreover, its large
dipole shortens stacking and greatly enhances electron mobility by up to 5.91 × 10−3 cm2·V−1·s−1.
Notably, the excellent interfacial properties of PTB7-Th/MB-N, owing to more charge transfer states
generated through the direct excitation process and the intermolecular electric field mechanism,
are expected to improve OSCs performance. Together with the excellent properties of MB-N, we
demonstrate a new OSMA and develop a new organoboron building block with B-N units. The
computations also shed light on the structure–property relationships and provide in-depth theoretical
guidance for the application of organoboron photovoltaic materials.

Keywords: organoboron; non-fullerene acceptor-based organic solar cells; density functional theory;
charge transport; charge transfer

1. Introduction

Organoboron plays a crucial role in the field of optoelectronic materials applications [1–3].
Over the past few years, the emerging strategy of the incorporation of boron-nitrogen
(BN) units into organic structures has been widely applied in optoelectronic devices, at-
tracting great attention due to their interesting electronic and optical properties [4,5]. In
2011, Nakamura et al. synthesized a series of BN-fused polycyclic aromatic compounds
with high mobility, especially 4b-aza-12b-boradibenzo[g,p]chrysene, which predicted that
BN-substituted aromatic hydrocarbons were potential candidates for organic electronic
materials [6]. In 2013, Pei and Wang et al. reported two novel tetrathienonaphthalene
derivatives incorporating a BN unit, namely BN-TTN-C3 and BN-TTN-C6, signifying
that a boron nitride fused ring had been applied to organic electronic devices for the first
time [7]. Later, they developed and studied many BN-embedded compounds with excel-
lent properties which could be applied to organic semiconductor materials in the field of
electronics [7–9]. In 2015, Liu et al. reported the first BN-based acceptor applied in the
field of organic solar cells (OSCs) through replacement of a C-C bond by a boron–nitrogen
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coordination bond (B←N) [10], which sparked great research interest in the chemistry of
organoboron acceptors. In 2022, Liu et al. reported an organoboron compound (SBN-1)
based on N-B←N units with a balanced resonance hybrid of boron–nitrogen covalent bond
(B-N) and B←N, which can be used as an effective building block to construct small band
gap conjugated polymers for OSCs [11].

Organoboron provides a new idea to design optoelectronic materials [12–22]. How-
ever, the development of n-type organoboron small-molecular acceptors (OSMAs) with
advantages of facile synthesis, synthetic versatility, and simplified purification lags far
behind that of their polymer counterparts [23,24]. Therefore, it is necessary to further
increase the research on OSMAs. The BN unit is one of effective building structures for
the construction of OSMAs, which contain two kinds of chemical bonds between B and
N, a boron–nitrogen coordination bond, B←N, and a boron–nitrogen covalent bond, B-N.
The former has been widely applied to construct non-fullerene acceptors and has achieved
great success. The typical representative form is M-BNBP4P-1, which exhibits superior
sunlight harvesting capability because of its unique wide absorption spectrum, with two
strong bands in the long-wavelength region (771 nm) and the short-wavelength region
(502 nm) [25,26]. Besides, Piers et al. devoted their efforts to synthesizing a series of novel
cores with BN units for use in optoelectronic devices [27,28]. Nevertheless, the latter is
rarely used in OSCs. Recently, Duan et al. developed a novel OSMA called BNTT2F, which
was the first reported B-N covalent bond-based electron acceptor for OSCs, achieving the
highest power conversion efficiency (PCE) among OSMAs [29]. At this stage, there are
not many computational studies regarding OSMAs at the atomistic level, especially con-
cerning their homojunction interfacial charge-transport characteristics and heterojunction
interfacial charge-transfer properties [25]. Inspired by the remarkable characteristics of
M-BNBP4P-1 (called MB←N in this work) and the fact that the core of the acceptor could
effectively regulate its performance, we introduced the B-N bonds into the core group to
design a B-N-containing OSMA MB-N and studied whether the derivative containing B-N
bond would prove to be an excellent OSMA. The structures of B←N-based OSMA MB←N,
the B-N-containing compound (MB-N), and their carbon-counterpart (MC-N) are shown in
Figure 1; density functional theory (DFT) and time-dependent density functional theory
(TD-DFT) were used to systematically investigate their electronic, optical, and interfacial
properties, particularly their charge-transport properties and charge-transfer characteristics.
Our results show that the B-N-embedded compound MB-N is regarded as an excellent
OSMA, which is expected to improve open-circuit voltage (VOC), short-circuit current
(JSC), and fill factor (FF) originated from the upshifted frontier molecular orbitals, as well
as to exhibit superior charge-transport properties with enhanced electron mobility up to
5.91 × 10−3 cm2·V−1·s−1, outstanding optical absorption, and sterling interfacial charge-
transfer characteristics. This theoretical work will provide useful guidance for the applica-
tion of OSMAs in OSCs.
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Figure 1. Molecular structures of the investigated acceptors and donor PTB7-Th. Figure 1. Molecular structures of the investigated acceptors and donor PTB7-Th.

2. Results and Discussion
2.1. Monomolecular Characteristics

In OSCs, determining the energy-level alignment of an acceptor is particularly im-
portant since the key photovoltaic parameter VOC is dependent on the difference (∆EDA)



Molecules 2023, 28, 811 3 of 15

between the LUMO energy level of the acceptor and the HOMO energy level of the donor
(∆EDA = ELUMO(A)−EHOMO(D)) [30,31], which is essential to drive devices [32]. As shown
in Figure 2a, MB←N and MB-N possess relatively higher-lying HOMO levels than that
of MC-N, indicating less energy loss (Eloss) in the boron-containing acceptors. Moreover,
the empty 2p orbital of the boron atom adopts sp2 hybridization in the tri-coordination
B-N compounds and sp3 hybridization in the tetra-coordination B←N molecules [15,33].
Therefore, the p-π* conjugation with the π system of MB-N due to the empty 2p orbital of
the boron atom upshifts the LUMO energy level (−3.85 eV) in comparison with MB←N
(−3.92 eV) and then increases ∆EDA [33–35], which equates to a higher VOC in OSCs de-
vices. According to the formula evaluated, VOC (eVOC = ∆EDA−Eloss) and the experiment
value of MB←N (0.78 V), the Eloss is estimated as 0.52 eV. Therefore, MB-N yields a high
VOC of 0.85 V, which is enhanced by about 9% compared to the reference acceptor. The
energy gap is related to the planarity of the geometry, and organoboron compounds shows
a smaller dihedral angle off the plane. In comparison with MC-N, the energy gaps of
organoboron compounds greatly decrease because of the substantially upshifted HOMOs;
thus, improved absorptions are expected [36]. In terms of MB-N, on one hand, its relatively
high-lying LUMO levels can result in high VOC due to increased ∆EDA; on the other hand,
high JSC may be realized because of the reduced energy gaps with upshifted HOMOs
compared to those of MC-N [37]. The orbital delocalization index (ODI) can quantitatively
investigate the degree of orbital delocalization. The smaller the value, the higher the de-
gree of orbit delocalization. As displayed in Figure 2b, the ODI values of the LUMOs are
smaller than those of the HOMOs, indicating that the studied molecules have good electron
transport properties.
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Figure 2. (a) Frontier molecular orbital energy levels, (b) orbital delocalization index, (c) orbital
interaction diagram, and (d) absorption spectra of MB←N, MB-N, and MC-N (H: the highest occu-
pied molecular orbital; L: the lowest unoccupied molecular orbital; green texts indicate the major
contribution of the molecular orbitals from the fragments to the orbitals of the complex).

Molecular orbital correlation (MOC) analysis has been proven to be an effective
method for analyzing the contribution of each molecular orbital fragment to the entire
molecular orbital and further exploring the intramolecular orbital interactions [38–40]. To
study the influence of different forms of boron and nitrogen substitution on the distribution
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and energy of frontier molecular orbitals, we carried out MOC analysis on these molecules.
The studied molecules can be divided into central cores and electron-withdrawing units on
both sides. The results (Figure 2c) show that the contributions of the LUMO of the studied
molecules are mainly from the electron-withdrawing groups, and the contributions of the
HOMO are mainly from the central cores, which explains why the LUMO energy levels of
these molecules show little change, but the HOMO exhibits a large shift. Compared with
MC-N, the introduction of B atoms into the system increases the contribution of the HOMO
of the central cores to the whole molecular HOMO, and slightly reduces the contribution
of the LUMO of the electron-withdrawing group to the overall LUMO. As an important
photovoltaic parameter, the absorbance of materials in OSCs equals the power input, which
significantly determines the performance of OSCs [41]. Thus the optical characteristics of
molecules are widely impacted [42,43]. As depicted in Figure 2d, the maximum absorption
wavelengths of MB←N, MB-N, and MC-N are calculated as 696 nm, 654 nm, and 527 nm,
respectively. The absorption spectra of the organoboron acceptors MB←N and MB-N are
red-shifted relative to that of their carbon-counterpart as a result of the reduced energy gaps
mentioned previously. MC-N exhibits the strongest absorption at 527 nm, which loses the
energy of the long-wavelength region, thus hindering the increase in JSC. MB←N presents
two peaks in the UV-Vis region, which is consistent with previously reported experimental
results [25]. Similar to MB←N, there are two unique peaks from 400 nm to 800 nm in MB-N.
Different from MB←N, MB-N exhibits stronger absorption at the long wavelength of about
650 nm, while the strongest peak of MB←N is located at 450 nm. In terms of absorption
spectra, MB←N and MB-N are expected to be excellent acceptors because they meet the
absorption demands of long wavelengths [44,45]. Particularly, MB-N not only exhibits
a wide absorption range covering the entire visible region and extending to the near-
infrared region with two unique absorption peaks in the visible region, but also presents
relatively high absorption intensity, which is expected to improve JSC [46].

2.2. Acceptor/Acceptor Charge Transport Properties

Electron mobility (µe) is the most important property for acceptors in OSCs, which
reflects the electron transport behavior [47–49]. In this work, the semi-classical Marcus
electron-transfer theory, combined with the Einstein relation (Table S1), was employed to
assess µe based on the crystal structures predicted by the polymorph module in Materials
Studio [50]. According to the Marcus theory, the one factor affecting the rate is reorga-
nization energy (λ): a large λ value will lead to a decrease in mobility, subsequently, to
poor electron transport [51,52]. As summarized in Figure 3a, introductions of the boron
atoms increase λ values (0.16 eV for MB←N and 0.26 eV for MB-N). The larger λ values in
organoboron compounds compared with those in MC-N (0.13 eV) indicate larger energy
barriers during the electron transfer process [53]. We have to admit that the introductions
of boron atoms are disadvantageous in terms of λ. The other factor is the electron transfer
integral v (see Table S1), which reflects the electronic coupling between two neighboring
molecules and depends on the relative orientations of adjacent molecules. As shown
in Figure 3d, the MC-N molecular stacking includes face-to-face hopping pathways with
long distances and edge-to-edge hopping pathways, resulting in relatively small v values.
Meanwhile, all hopping pathways in MB←N are face-to-edge stacking, but with a small
dipole of 0.61 Debye, giving rise to moderate v values. The large dipole of the B-N unit
is expected to shorten the π-π stacking and construct good molecular packing for the
transport charge [54–56]. Owing to the large dipole of 3.51 Debye in MB-N due to B-N
substitution, the stacking exhibits a compact face-to-face π-stacking pattern, leading to large
v values and thus, excellent charge transporting properties. As described in the Einstein
formula, the maximum electron transfer integral (vmax) plays an important role in µe, which
is attributed to its large weight in the investigated pathways. It can be seen from Figure 3b
that vmax values of molecules MB←N and MB-N are one order of magnitude larger than
those of MC-N, with a vmax of 3.68 × 10−4 eV. MB-N has the largest vmax of 5.36 × 10−3 eV,
which is about four times that of MB←N (1.23 × 10−3 eV, Figure 3a). Interestingly, despite
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a larger λ, MB-N possesses as high as µe of 5.91 × 10−3 cm2·V−1·s−1 (Figure 3c), which is
one order of magnitude larger than that of MC-N (1.03 × 10−4 cm2·V−1·s−1), as a result of
its excellent vmax. In addition, MB←N delivers a large µe of 2.43 × 10−3 cm2·V−1·s−1, also
thanks to its large vmax. In conclusion, although the large λ values of MB←N and MB-N are
disadvantageous factors, the significant enhancements of vmax values help to achieve high
µe values, especially for B-N-containing MB-N with the largest µe, which are conducive
to charge transport and thus, are expected to improve the JSC and FF parameters of the
devices. The results show that µe of organoboron compounds are mainly determined by the
vmax in this work. Although the active layer is amorphous, the small range of the ordered
domains of the non-fullerene acceptor is the key to the charge transport characteristics [57].
Here, the information and calculation results are of significance and of reference value.
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2.3. Donor/Acceptor Interfacial Charge Transfer Performance

In OSCs, the excitons photogenerated within the donor or acceptor components disso-
ciate at the donor/acceptor (D/A) interfaces, which significantly control the photocurrent
and thus affect the PCE of the devices [58–61]. To gain a deeper insight into the interfacial
optical properties of the organoboron acceptors, the interfaces between the donor PTB7-Th
and the investigated organoboron molecules, namely PTB7-Th/MB←N and PTB7-Th/MB-N,
were constructed, and the excited-state properties of the D/A interfaces were assessed.
These excited states can be divided into three classes, namely, charge-transfer (CT) state,
local-excitation (LE) state, and hybrid charge-transfer (HCT) state. Among these, the CT
state between the donor and the acceptor at the D/A interface is a paramount intermediate
state to realize charge separation [58,62,63], which is characterized by the fact that the two
singly occupied molecular orbitals separately locate on the donor and the acceptor. There
are generally three mechanisms agreed upon by scientists to form the CT state, namely,
the direct excitation mechanism, the intermolecular electric field (IEF) mechanism, and
the hot exciton (HE) mechanism [62,64,65]. The LE state refers to an electron excitation
localized on the donor or the acceptor, with high transition probability, but which is diffi-
cult to separate. The HCT state is another important state which possesses a high exciton
utilization, resulting from the CT state, and a large oscillator strength, originating from
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the LE component; it effectively becomes the CT state in the subsequent process, but only
given the relevant mechanisms.

Given that the lower excited states are essential in photo-physical and photochemical
processes [66], Figure 4 provides the crucial parameters for the three lowest excited states
(S1–S3), including the transition density matrix (TDM), the charge difference density (CDD)
map, the net transferred charges (∆q), D index, and the oscillator strength (f ), which are
widely used to evaluate the features of excited states. Among these, the TDM and CDD
maps are usually used to visually study the spatial span and primary sites of electron
transitions. A large TDM value in the off-diagonal term denotes that a strong electron-hole
coherence presents between the donor and the acceptor, which corresponds to the CT state,
while a large value in the diagonal region indicates a strong charge coherence within the
donor or acceptor, which represents the LE component. Parameter ∆q can quantitatively
express electrons transferring from the donor to the acceptor [67]. The degree of charge
separation can be represented by the D index, which is defined as the distance from the
hole centroid to the electron centroid [68]. Parameter f indicates the transition probability;
an excited state with a high f value means strong absorption. The direct excitation process is
a paramount mechanism to generate a CT state, that is, charge carriers of D/A interface are
directly excited into the CT state manifolds upon illumination [66]. According to Figure 4a,
the TDM of the first excited state (S1) shows that the photoexcitation of PTB7-Th/MB←N
is mainly distributed on the off-diagonal part. In addition, as shown in the CDD map
(Figure 4b), the electron distributes on the MB←N, and the hole distributes on the PTB7-Th;
therefore, the S1 of PTB7-Th/MB←N is the CT1 state. However, the S1 of PTB7-Th/MB-N is
regarded as the HCT1 state, since the photoexcitation of interface PTB7-Th/MB-N distributes
not only in the off-diagonal region, but also in the diagonal part. It can be proven by the
CDD map, in which the hole only locates in PTB7-Th, and the electron and hole locate in
MB-N. Note that, in the studied distributions of the second excited state (S2), two interfaces
are reserved to their S1 states, according to the TDM and CDD maps; thus, the S2 states
are HCT1 in the PTB7-Th/MB←N interface and CT1 in the PTB7-Th/MB-N interface. PTB7-
Th/MB←N and PTB7-Th/MB-N exhibit similar transition characteristics in the third excited
states (S3), and S3 are CT2 states in both of the two interfaces. For CT1 and CT2, the ∆q of
PTB7-Th/MB-N are larger than those of PTB7-Th/MB←N. MB-N transfers more charge to
PTB7-Th compared to MB←N, reflecting stronger charge-separation ability. The calculated D
indexes (Figure 4c) follow the order of PTB7-Th/MB←N (2.37 Å) < PTB7-Th/MB-N (3.14 Å)
for the CT1 states and PTB7-Th/MB←N (2.58 Å) < PTB7-Th/MB-N (2.81 Å) for the CT2
states. The larger ∆q and D index of PTB7-Th/MB-N lead to stronger CT characteristics,
which are favorable to the charge separation. In the case of HCT1, PTB7-Th/MB-N has
the strongest light-harvesting ability, with an f of 1.17, which is about 1.5 times larger
than that of PTB7-Th/MB←N. Our results show that the organoboron MB-N has excellent
charge-transfer characteristics of direct excitation into the CT state manifold.

In addition to the interfacial direct excitation mechanism discussed above, the inter-
molecular electric field (IEF) mechanism is one of the main ways, which separate exciton
by producing more CT states [62,69,70]. Two key factors determine the realization of the
IEF mechanism, namely energy difference and molecular electrostatic potential (ESP) [71].
The low energy state, with a small energy difference, can generate the CT state through
the IEF mechanism driven by the difference in molecular ESP between the donor and
the acceptor [72]. The energy difference and average ESP values of these molecules were
calculated and summarized in Figure 5. The smaller energy difference of 0.05 eV between
the HCT and CT state in PTB7-Th/MB-N can be easier to overcome in comparison with
PTB7-Th/MB←N, thus promoting interfacial exciton dissociation. In addition, compared
to the value of 3.08 kcal/mol in MB←N, the average ESP values of MB-N are enhanced
to 3.28 kcal/mol. The greatly enhanced ESP of MB-N is favorable for attracting negative
electrons and improving charge separation, which is expected to improve JSC and FF.
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interfaces (IEF: intermolecular electric field mechanism; HE: hot exciton mechanism; ESP: molecular
electrostatic potential).

Another frequently discussed mechanism producing the CT state—the hot exciton
(HE) mechanism—can generate the CT state from higher-lying states with close energy
resonance, which requires the energy difference between adjacent excited states to be as
small as possible [43,73–75]. For PTB7-Th/MB←N (Figure 5), the energy difference between
the high-lying HCT1 and the lower CT1 state is 0.12 eV, which prevents the production of
CT from HCT1 through the HE mechanism due to the lack of close energy resonance.

3. Computational Methods
3.1. Computational Details

The energy minima geometries of the investigated molecules were performed at the
B3LYP/6-31G (d, p) level [76], which was confirmed to be suitable for the geometrical
parameters [77]. It is well known that the highest occupied molecular orbital (HOMO) eigen-
values are relatively sensitive to the fraction of the Hartree–Fock exchange in the exchange-
correlation functional; seven functionals (MPWLYP1M, TPSSH, B3PW91, MPW1B95, PBE38,
and M06-2X) with a broad range of Hartree–Fock exchange ratios (from 5% to 54%)
were used to calculate the HOMO of MB←N to obtain more accurate HOMO eigenval-
ues (Figure S1). Note that the computed HOMO energy level using the B3PW91 functional
(−5.31 eV) was in very good agreement with the experimental value (−5.34 eV) [25]; thus,
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functional B3PW91 was chosen to calculate HOMOs in this work. Considering that the
virtual orbitals are generally more difficult to describe theoretically than the occupied
orbitals, the lowest unoccupied molecular orbital (LUMO) eigenvalues were obtained by
adding the corrected HOMO energies to the TD-DFT HOMO-LUMO gap (E1), namely
ELUMO = EHOMO + E1 [78]. The molecular packings of the acceptors were obtained from
the crystal structure prediction at the DREIDING force field [79], which was considered to
be a more appropriate force field for molecular crystal prediction [80]. Crystal structure
predictions of the studied molecules were performed by using the polymorph predictor
module in Materials Studio [50]. Electrostatic potential charges of all atoms were obtained
by the DMol3 module, and the crystal structure prediction was then carried out by em-
ploying the Perdew–Burke–Ernzerhof (PBE) [81] exchange-correlation energy functional.
Finally, we sorted the obtained crystal structures in terms of their total energies and se-
lected crystal structures with the lowest energies for further DFT calculations regarding
their electron mobilities. The M06-2X functional is a high nonlocality functional with
a double amount of nonlocal exchange (2X), which provides a good description of the
non-covalent interaction [82,83]. Thus, the M06-2X functional was employed to calculate
the transfer integrals of all hopping pathways based on the direct coupling approach. To
obtain a reliable method, the maximum absorption wavelength of MB←N was calculated
by functionals B3LYP, PBE33, PBE38, M06-2X, CAM-B3LYP, and wB97XD (Figure S2). The
maximum absorption wavelength (696 nm) obtained by PBE38 is in good agreement with
the experimental result of 698 nm [25]. Therefore, the excited-state properties of the investi-
gated compounds were characterized at the TD-PBE38/6-31G (d, p) level. The empirical
D3 dispersion corrections were included using the Becke−Johnson damping potential in
DFT and TD-DFT calculations [84,85]. The polarizable continuum model was employed
in the single molecules to consider the solvation effect in chlorobenzene [86]. The above
calculations were performed with the Gaussian 16 code [87]. The large overlap between
the donor and the acceptor enhances the interface interactions, thus reducing the overall
energy [88]. Therefore, the donor PTB7-Th was stacked face-to-face, stacking MB←N and
MB-N, respectively, at a distance of 3.5 Å to form the donor/acceptor (D/A) interfaces,
which has been proven to obtain essential results [62,89,90]. Then, these D/A interfaces
containing a donor/acceptor pair were simulated by molecular dynamics (Figure S3).
The equilibrated simulation time was set to 10 ns, with an integration time of 1 fs, using
a universal force field [91], which is suitable for organic molecules [92]. The NVE ensemble
was performed at 298K using the Forcite module of the Materials Studio software [50]. After
reaching equilibrium, the D/A interfacial configuration containing a donor/acceptor pair
remained relatively stable, and the lowest energy configurations obtained by equilibrated
dynamic simulations were fully optimized at the B3LYP-D3/6-31G (d, p) level with the
Gaussian 16 code. Given the slight effect of side chains on the electronic properties, the
long alky chains were substituted by the methyl groups in the subsequent computations in
order to balance the time and accuracy. The analysis of optical properties was performed
using the Multiwfn software [93].

3.2. Orbital Delocalization Index

The orbital delocalization index (ODI) can quantitatively investigate the degree of
orbital delocalization, which is expressed as [93]:

ODIi = 0.01×∑ A(ΘA,i)
2, (1)

where ΘA,i represents the composition of the A atom in the i orbital.
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3.3. Electron Mobility

The Marcus theory, with the hopping model, was employed to describe the electron
transport behavior [94,95]. The charge hopping rate (k) between two identical molecules
is [96,97]:

k =
2π

h
υ2 1√

4πkBT
exp

(
−λ

4kBT

)
, (2)

where kB, T, and h are the Boltzmann constant, the temperature in Kelvin, and the Planck
constant, respectively (T = 300 K in our work). λ denotes the reorganization energy, which is
calculated using the adiabatic potential energy surface method. In this work, only internal
reorganization energy, which mainly originates from the geometrical relaxation during
the charge transfer process and reflects the barriers from one molecule to another, was
considered. The reorganization energy can be expressed as follows [98]:

λ = (E∗0 − E0) + (E∗− − E−) , (3)

where E−* and E0 are the energies of neutral species in the anionic and neutral geometries,
respectively. E0

* and E− represent the energies of the anionic species with the geometries
of neutral and anionic molecules, respectively.

The transfer integral (v) is obtained by adopting a direct approach at the M06-2X/6-
31G (d, p) level [30], which has been proven to be suitable in describing the non-covalent
interaction. In our work, v can be calculated by [99]:

υ = 〈Ψi
LUMO

∣∣∣SCεC−1
∣∣∣Ψj

LUMO〉 , (4)

where Ψi
LUMO and Ψj

LUMO represent the LUMOs of the isolated molecules i and j. The
Kohn–Sham orbital C and eigenvalue ε are evaluated by diagonalizing the zeroth-order
Fock matrix. S denotes the overlap matrix for the dimer. The electron mobility of the
investigated molecules was calculated using the Einstein relation [99,100]:

µ =
1

2d
e

kBT ∑ r2
i kiPi , (5)

where d represents the spatial dimensionality and is 3 in our work, i is a selected hop-
ping pathway, and ri and ki are the charge hopping centroid-to-centroid distance and
charge hopping rate, respectively. Pi is defined as the hopping probability, which can be
obtained using:

Pi =
ki

∑ ki
, (6)

3.4. Net Transferred Charge

The net transferred electrons from donor (D) to acceptor (A) can be obtained by using
the following formula [67,93]:

∆q = QD,A −QA,D , (7)

where QD,A (QA,D) corresponds to the electron transfer from D (A) to A (D) during the
excitation, which can be calculated from:

QD,A = ∑OCC
i ∑vir

a

[
(wa

i )
2 − (w′ai )

2
]
∑R∈D ΘR,i ∑S∈A ΘS,a , (8)

where wi
a and wi

′a are the configuration coefficient of the excitation molecular orbital i to
a and the de-excitation molecular orbital a to i, respectively; ΘR,i (ΘS,a) is the contribution
of atom R (S) to the molecular orbital i (a).
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3.5. D Index

The distance from the hole centroid to the electron centroid can be expressed from the
following equation [68]:

D =
√

D2
X + D2

Y + D2
Z , (9)

The charge transfer (CT) length in X/Y/Z can be measured by the centroid distances
between the hole and the electron in corresponding directions:

DX/Y/Z = |Nele − Nhole| , (10)

The electron centroid (Nele) and hole centroid (Nhole) can be calculated from the
following equation:

Nele/hole =
∫

nρele/hole(r)dr , (11)

where n is the X (Y or Z) component of position vector r. ρele/hole presents the spatial charge
distribution.

4. Conclusions

Our studies on two organoboron small-molecular compounds and their carbon coun-
terpart provide an in-depth understanding of the relationship between structures and
their electronic, optical, and charge-transport characteristics, as well as their interfacial
charge-transfer properties. In comparison with the carbon-counterpart MC-N, the introduc-
tion of boron strongly lowers the optical gaps and concurrently, dramatically enhances
electron mobility due to the unique characteristics originating from the presence of a va-
cant p orbital on the B atom. The results show that boron atoms are necessary, and that
the MB-N containing a boron–nitrogen covalent bond outperforms the MB←N compris-
ing the boron–nitrogen coordination bond due to increased VOC (enhanced by about 9%
compared to the MB←N) as the result of its high-lying LUMO, and its enhanced JSC and
FF because of excellent absorption and significantly increased electron mobility of up to
5.91×10−3 cm2·V−1·s−1. Further, more CT states originating from the direct excitation
mechanism and the IEF process help to improve the interfacial charge-transfer properties
of PTB7-Th/MB-N; thus, MB-N-based OSCs are expected to achieve a high VOC, JSC, and
FF. Our results not only predict an excellent organoboron small-molecular acceptor MB-N
by explaining the internal mechanisms, but also provide a theoretical description of the
structure–property relationships.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28020811/s1, Figure S1: The EHOMO of MB←N at
the different functionals; Figure S2: Maximum absorption wavelength of MB←N employed different
functionals; Figure S3: The potential energy evolutions as a function of simulation time; Figure
S4: The dihedral angles of studied molecules; Table S1: Electron transfer intervals of the studied
molecules; Table S2: Net transferred charge and D index of the studied interfaces; Table S3: Charge
difference density maps of the studied interfaces.
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