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Abstract: Wet chemical methods are usually employed in the analysis of macronutrients such as Potas-
sium (K) and Phosphorus (P) and followed by traditional sensor techniques, including inductively
coupled plasma optical emission spectrometry (ICP OES), flame atomic absorption spectrometry
(FAAS), graphite furnace atomic absorption spectrometry (GF AAS), and inductively coupled plasma
mass spectrometry (ICP-MS). Although these procedures have been established for many years,
they are costly, time-consuming, and challenging to follow. This study studied the combination of
laser-induced breakdown spectroscopy (LIBS) and visible and near-infrared spectroscopy (Vis-NIR)
for the quick detection of PK in different varieties of organic fertilizers. Explainable AI (XAI) through
Shapley additive explanation values computation (Shap values) was used to extract the valuable
features of both sensors. The characteristic variables from different spectroscopic devices were com-
bined to form the spectra fusion. Then, PK was determined using Support Vector Regression (SVR),
Partial Least Squares Regression (PLSR), and Extremely Randomized Trees (Extratrees) models. The
computation of the coefficient of determination (R2), root mean squared error (RMSE), and residual
prediction deviation (RPD) showed that FUSION was more efficient in detecting P (R2p = 0.9946,
RMSEp = 0.0649% and RPD = 13.26) and K (R2p = 0.9976, RMSEp = 0.0508% and RPD = 20.28) than
single-sensor detection. The outcomes indicated that the features extracted by XAI and the data fusion
of LIBS and Vis-NIR could improve the prediction of PK in different varieties of organic fertilizers.

Keywords: chemometrics; phosphorous; potassium; data fusion; explainable AI; spectroscopy

1. Introduction

The excessive use of chemical fertilizers in the agricultural sector has led to nutri-
ent pollution. This pollution is one of the world’s most tenacious, costly, and complex
environmental issues [1,2]. In order to rectify the situation, researchers have thought of
adopting organic fertilizers, which are more environmentally friendly. Organic fertilizers
can improve soil texture, water retention, and erosion reduction. The nutrients in organic
fertilizers are available in a form the plant can use, aiding plant growth while causing no
root burn or soil microorganism destruction. Compared to chemical fertilizer, which is
more industrialized and tightly regulated, organic fertilizers are typically made domes-
tically utilizing various basic materials. These types of fertilizers pose a problem since
the production in a domestic way does not allow strict control of the different nutrients,
particularly phosphorus (P) and potassium (K). These two macronutrients are essential in
fertilizers because they promote plant growth but can also be a source of problems based on
their amount. Indeed, a high PK content might cause nutrient pollution, especially water
(surface or ground) contamination [3], while a low level can cause a reduction in product
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quality [4]. It is important to note that P is not only an essential plant macronutrient but
also a nonrenewable and strategic resource [5]. Agricultural production depends heavily
on phosphate rock, which has been the principal source of phosphorus for the past 50 years.
However, phosphate rock reserves are limited. Therefore, a shortage of P may pose a threat
to food production and security [5].

Given the above main problems, a rapid technique to characterize their amount is
crucial for sustainable PK management.

In place of a long chemical process combined with traditional sensors techniques
such as FAAS, GF-AAS, ICP-OES, and ICP-MS, sensor techniques such as laser-induced
breakdown spectroscopy (LIBS) and visible and near-infrared reflectance spectroscopy (Vis-
NIR) enable the rapid screening of the PK content in various organic fertilizers. LIBS is an
emission spectroscopy technique where atoms and ions are created in exciting conditions
due to the interaction between a tightly focused laser beam and the material sample.
This technology has become popular as it can analyze different materials, such as food,
soil, and fertilizer [6–8]. Conversely, Vis-NIR is another alternative tool that offers more
and better advantages than standard chemistry. This method is non-invasive, has a high
penetration rate of radiation beams, is suitable for inline use, and does not require sample
preparation [9]. It has also been used to analyze numerous samples, such as food and
soil [10,11]. Both methods are inexpensive, easy, non-destructive, and rapid to execute.
However, they generate a tremendous amount of data, necessitating the application of
chemometrics.

Chemometrics involves utilizing mathematical techniques to extract useful informa-
tion and knowledge from chemical data. In previous works, the prediction of P in fertilizer
with the LIBS approach primarily depended on simple chemometrics techniques such as the
calibration curve method, which employed simple linear regression. This technique is unfit
for the quantitative analysis of complicated samples because of the matrix effect, leading to
the development of alternative chemometric techniques such as the partial least squares
method for regression (PLSR), a robust technique for performing quantitative spectral
analysis by selecting latent variables, and the support vector machine (SVM), a method
based on hyperplanes separation. Using LIBS and PLSR, Zhang et al. [12] suggested a
univariate and multivariate analysis of P elements in fertilizers. Their findings suggested
that the LIBS methodology paired with PLSR may be a dependable and accurate tool for
quantitatively measuring P elements in complicated samples compared to the calibration
curve. Nicolodelli et al. [13] proposed a single-pulse (SP) and a double-pulse (DP) LIBS to
detect P and K at different emission lines (PI = 214.91, 213.61, 255.3 nm, and KI = 769.9 nm)
using PLSR. An improved support vector machine for regression was combined with LIBS
to detect NPK at different ranges of 740–890 nm for N, 210–260 nm, 770–885 nm for P,
and 400–410 nm, 770–885 nm for K [14]. The authors compared four different optimiza-
tion techniques: the grid search method (GSM), genetic algorithm (GA), particle swarm
optimization (PSO), and least squares (LS). They discovered that LS-SVM was the most
accurate. Vis-NIR technology was used by Lin et al. [15] to detect P and K in chemical
fertilizers. The authors first applied a genetic algorithm to extract the relevant features
and used PCR for modeling. In addition, Vis-NIR has been combined with a competitive
adaptive reweighted sampling algorithm (CARS) and extreme learning machine (ELM) to
detect PK. [16]. However, it can be noticed that the previous works focused on chemical
fertilizer; organic fertilizer has received no or little attention. In addition, LIBS has limited
utility and attractiveness due to its significantly lower measurement precision. Vis-NIR
may be limited under specific situations, such as extremely high or low concentrations.
Consequently, further optimization strategies are required to enhance the efficacy of these
two technologies.

The spectral data fusion approach is an innovative technology that merges many
spectral signals [17,18]. By providing complementary information, the combined spectral
data can boost the accuracy of the prediction. There are many different types of data fusion,
and the specific techniques used can vary depending on the application and the data being
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fused. So far, spectral fusion has shown great promise in a wide range of applications,
including the identification of soil components [19,20], the identification of hybrid rice [21],
and the evaluation of aromatic plants [22]. To our knowledge, there have been no prior
attempts to combine LIBS and Vis-NIR for PK assessment in different varieties of organic
fertilizers. Moreover, there is no work using explainable AI (XAI) to extract LIBS and
Vis-NIR essential features. The concept of XAI is developing faster because it is no longer
just a question of predicting and having the result, but the model must be understood
and interpreted by humans. This technique has been used in medical fields such as drug
discovery [23] and diagnostics [24] and other fields such as finance [25] and industry [26].

Consequently, this study aimed to examine the effectiveness of Vis-NIR, LIBS, and
spectral fusion to predict PK in different organic fertilizers using XAI. The specific objectives
were: (i) to compare LIBS and Vis-NIR to determine PK in different organic fertilizers; (ii) to
use XAI to explain the best model and extract features for LIBS and Vis-NIR. (iii) to propose
a spectral data fusion and compare the result of single- and multi-sensor detection.

2. Results and Discussion
2.1. Descriptive Analysis

The different concentrations of P and K determined with ICP-MS for the diverse
variety are shown in Figure 1a. The descriptive statistics demonstrated that P’s highest
concentration was category four, and the lowest was two. The central tendency (Mean)
measure was 1.53%, while the standard deviation (Std) was 0.58%. The lower quartile (Q1)
and the upper quartile(Q3) were estimated to be 1.71% and 2.34%. The K values ranged
from 1.44% to 3.16%, with category one as the highest and category three as the lowest. The
mean reached 1.44%, and Std obtained 0.66%. The interquartile Q1 reached 1.54%, and Q3
received 2.26%. It can be seen that the concentration of P and K were distributed between
classes and were heterogeneous.
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obtained by LIBS; (c) Preprocessed data obtained by Vis-NIR.

2.2. LIBS and Vis-NIR Spectra

The LIBS spectra of various organic fertilizer samples are shown in Figure 1b. The
different spectra have similar curves and emit the same emission lines. Some atomic
emission lines, such as Ca II (393.4 nm, 396.8 nm, 854.2 nm), Ca I (422.7 nm, 616.2 nm),
Mg II (280 nm), Mg I (383.2 nm, 518.4 nm), Al II (288.1 nm), and Al I (396.1 nm), were
identified through the database of the National Institute of Standards and Technology (NIST:
https://physics.nist.gov/PhysRefData/ASD/lines_form.html) accessed on 15 April 2021.

https://physics.nist.gov/PhysRefData/ASD/lines_form.html
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Figure 1c shows representative Vis-NIR spectra recorded for various organic fertilizers.
In contrast to LIBS, Vis-NIR can identify absorption peaks, and the four varieties also
have similar curves. The spectra-wide disparity of the baseline shifts was related to the
loading density and the particle size. The absorption peaks associated with the vibration
of molecular bonds C–H, O–H, and N–H, which were from water and carbohydrates,
were situated between 1350 nm and 1600 nm in the NIR region [27]. The absorption
peaks at 1887–2200 nm, which are the most substantial absorbance peaks, can also be seen
in the spectra. Overall, the differences between the LIBS and Vis-NIR data spectra for
the various categories are difficult to discern. As a result, chemometrics is required for
further processing.

2.3. Prediction of P and K Using Full Spectra

LIBS and Vis-NIR organic fertilizer spectra were correlated with P and K reference data
using SVR, PLSR, and Extratrees. The created models utilized 96 samples for calibration
and 24 for prediction. We chose to perform k-fold cross-validation on the calibration data
with k = 10. Table 1 displays the model statistics for each modeling strategy. Compared
to other conventional models, the results obtained using Extratrees were efficient for both
calibration and prediction set to predict PK using the complete LIBS and Vis-NIR spectra.
Indeed, the detection of P with Extratrees using the LIBS spectra for the calibration set
yielded 0.9707 for R2c,0.1749% for RMSEc, and the prediction set, R2p, was 0.9942, RMSEc
produced 0.0673%, and its RPD was 13.15. Meanwhile, Extratrees’ findings for P prediction
using Vis-NIR data were R2c = 0.9894, RMSEc = 0.1052%, and for the prediction, R2p
achieved 0.9529, RMSEp = 0.1922% and RPD = 4.60. Figure 2a,c depicts the prediction error
of the Extratrees model’s correlation between the P actual values and the P predicted using
full LIBS and Vis-NIR. Based on the relationship between the predicted concentrations by
Extratrees and their reference concentrations using LIBS and Vis-NIR shown in Figure 2a,c,
it can be seen that the calibration curves generated with LIBS outperformed Vis-NIR in
terms of prediction.

Table 1. Prediction of PK with full spectra LIBS and Vis-NIR using PLSR, SVR, Extratrees.

Calibration Prediction

Data Elements Models R2c RMSEc R2p RMSEp RPD

LIBS P SVR 0.9774 0.1535 0.9736 0.1439 6.15
P PLSR 0.9547 0.2174 0.8787 0.3086 2.87
P EXTRA 0.9707 0.1749 0.9942 0.0673 13.15
K SVR 0.9618 0.1918 0.8430 0.4086 2.52
K PLSR 0.7406 0.4998 0.8379 0.4152 2.48
K EXTRA 0.9904 0.0960 0.9770 0.1563 6.59

Vis-NIR P SVR 0.9849 0.1255 0.9466 0.2047 4.32
P PLSR 0.9806 0.1424 0.9008 0.2790 3.17
P EXTRA 0.9894 0.1052 0.9529 0.1922 4.60
K SVR 0.9866 0.1135 0.9722 0.1719 5.99
K PLSR 0.9862 0.1152 0.8894 0.3429 3.00
K EXTRA 0.9971 0.0532 0.9882 0.1121 9.19

R2c: Coefficient of determination for calibration; R2p: Coefficient of determination for prediction; RMSEc: Root mean
square error for calibration; RMSEp: Root mean square error for prediction; RPD: Residual prediction deviation.

Regarding K prediction using the LIBS spectra, the Extratrees resulted in 0.9904 for R2c,
0.0960% for RMSEc, and its prediction set results were R2p = 0.9770, RMSEp = 0.1563%, and
RPD = 6.59. When the Vis-NIR spectra were used as input, the calibration result reached
0.9971 for R2c, and 0.0532% for RMSEc, while the prediction R2p produced 0.9882, RMSEp
attained 0.1121%, and RPD reached 9.19. However, compared to P prediction, different
phenomena appeared for K prediction as Vis-NIR performed better than data collected by
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LIBS. Figure 2b,d shows the prediction error plots for the reference value and the prediction
value for K using LIBS and Vis-NIR.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 15 
 

 

R2c: Coefficient of determination for calibration; R2p: Coefficient of determination for prediction; 
RMSEc: Root mean square error for calibration; RMSEp: Root mean square error for prediction; 
RPD: Residual prediction deviation. 

Regarding K prediction using the LIBS spectra, the Extratrees resulted in 0.9904 for 
R2c, 0.0960% for RMSEc, and its prediction set results were R2p = 0.9770, RMSEp = 0.1563%, 
and RPD = 6.59. When the Vis-NIR spectra were used as input, the calibration result 
reached 0.9971 for R2c, and 0.0532% for RMSEc, while the prediction R2p produced 0.9882, 
RMSEp attained 0.1121%, and RPD reached 9.19. However, compared to P prediction, dif-
ferent phenomena appeared for K prediction as Vis-NIR performed better than data col-
lected by LIBS. Figure 2b,d shows the prediction error plots for the reference value and 
the prediction value for K using LIBS and Vis-NIR. 

 
Figure 2. Prediction error plot of PK reference value and predicted value using Extratrees model; 
(a) Prediction error plot of P using full LIBS spectra; (b) Prediction error plot of K using full LIBS 
spectra; (c) Prediction error plot of P using full Vis-NIR spectra; (d) Prediction error plot of K using 
full Vis-NIR spectra. The red area means 95% of the prediction interval. 

2.4. Prediction of PK with the Selected Wavelength of LIBS and Vis-NIR, and Their FUSION 
Many high-dimensional datasets, such as those obtained with LIBS and Vis-NIR 

spectroscopy, exhibit a remarkable property known as colinearity, implying that some of 
the spectral variables are exact linear combinations of others. The existence of colinearity 
can cause several problems, including overfitting. As a result, it is necessary to compress 
the correlated or redundant information to preserve the essential data before modeling. 
Moreover, as seen before, it is crucial to reduce the data before constructing a midlevel 
fusion approach. This study computed Shap values to interpret and extract the critical 
features from the Extratrees model since the model predicted PK better using full spectra 
than any other model (Table 1). The different wavelengths with a powerful positive influ-
ence derived from Shap values computation for LIBS spectra (LIBS-Shap) and Vis-NIR 
ranges (Vis-NIR-Shap) and their fusion (FUSION) were utilized to estimate PK in order to 
improve quantification findings. To know the minimum number of variables to take 
among the essential variables with the highest Shap, we calculated the prediction of PK 

Figure 2. Prediction error plot of PK reference value and predicted value using Extratrees model;
(a) Prediction error plot of P using full LIBS spectra; (b) Prediction error plot of K using full LIBS
spectra; (c) Prediction error plot of P using full Vis-NIR spectra; (d) Prediction error plot of K using
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2.4. Prediction of PK with the Selected Wavelength of LIBS and Vis-NIR, and Their FUSION

Many high-dimensional datasets, such as those obtained with LIBS and Vis-NIR
spectroscopy, exhibit a remarkable property known as colinearity, implying that some of
the spectral variables are exact linear combinations of others. The existence of colinearity
can cause several problems, including overfitting. As a result, it is necessary to compress
the correlated or redundant information to preserve the essential data before modeling.
Moreover, as seen before, it is crucial to reduce the data before constructing a midlevel
fusion approach. This study computed Shap values to interpret and extract the critical
features from the Extratrees model since the model predicted PK better using full spectra
than any other model (Table 1). The different wavelengths with a powerful positive
influence derived from Shap values computation for LIBS spectra (LIBS-Shap) and Vis-NIR
ranges (Vis-NIR-Shap) and their fusion (FUSION) were utilized to estimate PK in order
to improve quantification findings. To know the minimum number of variables to take
among the essential variables with the highest Shap, we calculated the prediction of PK
using 5 variables, 10 variables, 20, and 30 variables for Vis-NIR-Shap and LIBS-Shap with
Extratrees. The results for PK showed us that 30 wavelengths were the optimal variable
and could lead to satisfactory results. The different samples were split into 96 samples for
calibration and 24 for prediction. The results of PK prediction using features selected by
Shap and the fusion on predicting PK are shown in Table 2.
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Table 2. Prediction of PK with PLSR, SVR, and Extratrees using features selected by Shap computation
for LIBS and Vis-NIR and the fusion spectra.

Calibration Prediction

Data Elements Models R2c RMSEc R2p RMSEp RPD

LIBS-Shap P SVR 0.9806 0.1423 0.9732 0.1450 6.11
P PLSR 0.9369 0.2566 0.8812 0.3054 2.90
P EXTRA 0.9843 0.1282 0.9943 0.0668 13.26
K SVR 0.9798 0.1396 0.9500 0.2306 4.47
K PLSR 0.8729 0.3498 0.7987 0.4626 2.22
K EXTRA 0.9967 0.0562 0.9870 0.1177 8.75

Vis-NIR-
Shap P SVR 0.9881 0.1114 0.9605 0.1762 5.02

P PLSR 0.9564 0.2134 0.8531 0.3396 2.60
P EXTRA 0.9961 0.0637 0.9719 0.1486 5.96
K SVR 0.9917 0.0893 0.9838 0.1311 7.86
K PLSR 0.9832 0.1273 0.8871 0.3465 2.97
K EXTRA 0.9981 0.0429 0.9941 0.0792 13.01

FUSION P SVR 0.9843 0.1280 0.9784 0.1416 6.48
P PLSR 0.9664 0.1873 0.9046 0.2737 3.23
P EXTRA 0.9909 0.0975 0.9946 0.0649 13.65
K SVR 0.9915 0.0903 0.9872 0.1168 8.82
K PLSR 0.9746 0.1564 0.8838 0.3515 2.93
K EXTRA 0.9966 0.0576 0.9976 0.0508 20.28

R2c: Coefficient of determination for calibration; R2p: Coefficient of determination for prediction; RMSEc: Root mean
square error for calibration; RMSEp: Root mean square error for prediction; RPD: Residual prediction deviation.

A comparison of Tables 1 and 2 clearly shows an improvement in the models for
predicting P content utilizing LIBS-Shap and Vis-NIR-Shap data. The Extratrees model was
the most accurate predictor of P for both LIBS-Shap (R2p = 0.9943, RMSEp = 0.0668%, and
RPD = 13.26) and Vis-NIR-Shap (R2p = 0.9715, RMSEp = 0.21486%, and RPD = 5.96) among
the models tested. Moreover, when comparing the LIBS-Shap and Vis-NIR-Shap results,
it is evident that LIBS-Shap provides superior P prediction results. The prediction error
graphs for LIBS-Shap and Vis-NIR-Shap utilized to forecast P are shown in Figure 3a,b.
The combination of both sensor data for forecasting P led to better results in comparison
to using single-sensor data for all three models, with the highest (Extratrees) reaching
0.9946 for R2p, 0.0649 % for RMSEp, and its RPD equaling 13.65. The prediction error
curve for FUSION employed to forecast P with Extratrees is shown in Figure 3c. In
summary, the ranking of P contents prediction using different spectra was as follows:
FUSION > LIBS-Shap > Vis-NIR-Shap.

In contrast to the full data prediction (Table 1), the LIBS-Shap and Vis-NIR-Shap data
significantly improved the outcomes of K prediction (Table 2). According to our estimation
results, Extratrees produced an excellent prediction result for both LIBS-Shap (R = 0.9870,
RMSEp = 0.1177%, and RPD = 8.75) and Vis-NIR-Shap (R2p = 0.9941, RMSEp = 0.0792%,
and RPD = 13.01). Figure 3d,e shows the prediction error plots for LIBS-Shap and Vis-NIR-
Shap used to forecast K. On the other hand, it has also been observed that the fusion of the
two datasets produced a better prediction of K (R2p = 0.9976, RMSEp = 0.0508, RPD = 20.28)
than LIBS-Shap and Vis-NIR-Shap. Figure 3f depicts the prediction error curve for the
fusion used to predict K. Overall, the prediction of K contents with different input factors
was listed as follows: FUSION > Vis-NIR-Shap > LIBS-Shap.
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2.5. Discussion

This paper investigated the fusion of Vis-NIR and LIBS spectra on PK prediction in
different varieties of organic fertilizers using Extratrees and XAI. The full spectra of LIBS
and Vis-NIR were used first to predict PK using SVR, PLSR, and Extratrees models. Table 1
summarizes the calibration and prediction results from the three models. The results for
the two sensors demonstrate that Extratrees is the most efficient model. This result was
expected since Extratrees’ machine learning model is nonlinear and composed of many
decision trees (Ensemble model). The previous study on fertilizer to determine PK was
all based on simple linear regression or a simple machine learning model (SVR, PLSR) for
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both LIBS [12,28,29] and Vis-NIR [15,16]. However, the accuracy and applicability of these
simple methods are often less than suitable since they focus only on the lines of interest
and discard the spectral information provided by other lines [30].

On the other hand, Extratrees, an ensemble machine learning model, can learn from
a large-scale band and decrease variance while increasing bias compared to standard
trees [31]. Extratrees have been shown in a few papers to have the potential to lead to
favorable results over simple machine learning models [32,33]. In addition to Extratrees,
SVR was superior to PLSR in this study for predicting PK using LIBS and Vis-NIR spectra.

In addition, to the ability to predict, interpretability is another crucial characteristic
of the model. It is pertinent to note that even though the model developed in this study
demonstrated excellent nonlinear regression performance. There is still a disagreement as
to how to interpret these findings. Thus, Shap was used to obtain directly interpretable
data about the PK content predicted by the machine learning model, which avoided the
problems caused by “black box” predictions [34]. Model predictions combined with the
Shap algorithm produced robust, interpretable, and transparent data, which is critical for
chemometrics. As part of this example, we found that the range of variables influencing
P prediction in Vis-NIR was between [542–1092 nm]. This region was similar to the iron
oxide absorption region presented by Gholizadeh et al. [35]. From this range, we observed
that variables at 542 nm and 588 nm with Shap > 0.01 were the most significant features
(Figure 4b). While for K detection using Vis-NIR, variables at NIR positions such as
2086 nm, 1110 nm, 1221 nm, 792 nm, and 833 nm were the most impactful, with Shap >0.005
(Figure 4c). A similarity was found between the detected regions and those corresponding
to clay minerals and water [9]. The different ranges where the highest contributing features
were observed are similar to those reported in [16,36]. However, no information is available
in the literature on direct absorption by K and P in the Vis-NIR region.

Regarding the LIBS sensor, the variables significantly contributing to predicting P
were 324.81 nm and 285.35 nm with Shap values > 0.01. A number of significant features
were also found within the interval [251.48–461.48 nm]. In contrast, 327.47 nm, 394.47 nm,
251.47 nm, 250.73 nm, 251.66 nm, 257.66 nm, and 309.32 nm were substantially linked with
the prediction of K.

It should be noted that the wavelengths that drove both P and K’s LIBS prediction
were unexpected. Indeed, some literature has reported that P-sensitive wavelengths can be
found around 214 nm and 253 nm [12,37]. Furthermore, K was scheduled to be at 766.13 nm
or 769.68 [13,14]. However, according to the NIST website and the Kurucz database,
the values 324.81 nm and 285.35 nm that contribute to the prediction of P correspond
to the elements Fe II [38] and Mg I [39]. This finding leads us to deduce a relationship
between P and Mg and between P and Fe. This assertion is endorsed by Fageria [40],
who explained that interactions between P and Mg could occur since Mg contributes to
activating several enzymes.

Additionally, it has been demonstrated that a small amount of P increases the con-
centration of Mg [41]. Moreover, two variables among the features, namely 330.9 nm and
324.74 nm, were determined to be P II [42]. Regarding K prediction, the number of reported
high contributing variables was mainly in the 230–300 nm wavelength range, which was
determined to be KCl and KOH absorption [43].

Full-range spectroscopic data necessitate a complex model development and a long
training period. Numerous studies proved that a wide range of features in the Vis-NIR [9]
and LIBS [14,44] might make prediction difficult. Thus, we tested the performance of
predicting PK using only the variables contributing significantly to the model for LIBS(LIBS-
Shap) and Vis-NIR(Vis-NIR-Shap). It turned out that the results for both enhanced the
prediction of PK as compared to the full spectrum. Additionally, both sensors’ reduced
variables were combined to create a mid-level fusion. It was discovered that combining the
two sensors, to some extent, improved the calibration and prediction results. Extratrees’
prediction of P using FUSION data achieved 0. 9946 for R2p, 0. 0649% for RMSEp, and
13.65 for RPD, which was marginally better than the predictions using LIBS-Shap and
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Vis-NIR-Shap, respectively. Similar results were seen for K prediction by Extratrees, with
FUSION-Shap (R2p = 0. 9976, RMSEp = 0.0508%, RPD = 20.28) outperforming Vis-NIR-
Shap and LIBS-Shap in terms of precision. The results obtained from combining Vis-NIR
and LIBS were expected because data fusion approaches have demonstrated improved
outcomes in predicting some other materials [21,45].
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Figure 4. Important features contributing to PK detection using Extratrees; (a) Important features
for Vis-NIR with a red dot representing P features and a blue dot representing K features; (b) Ten
features with highest Shap values for P using Vis-NIR; (c) Ten features with highest Shap values for K
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representing K features; (e) Ten features with highest Shap values for P using LIBS; (f) Ten features
with highest Shap values for K using LIBS.

Overall, the experimental findings demonstrate that the computation of Shap values
may aid in a better understanding of the model and the identification of high-impact
wavelengths that can enhance the detection of PK in organic fertilizers utilizing LIBS
and Vis-NIR technologies. A further finding of the study was that the combination of
both sensors might be used to provide a more accurate and reliable prediction of PK,
although additional samples may be required to support this idea. XAI has the potential
to significantly impact chemometrics by promoting confidence in analyses, especially in
applications where decisions made based on the analysis have significant consequences
for individuals or society. Moreover, as XAI can help to merge LIBS and Vis-NIR data,
it can therefore enable the creation of a powerful new sensor technology that could be
helpful in characterizing elements in complex samples. Lastly, the study will contribute to
environmental conservation and the viability of local agriculture.
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3. Material and Methods
3.1. Samples

The College of Biosystem Engineering and Food Science at Zhejiang University in
Hangzhou (China) provided the organic fertilizers used in this study. Four distinct cate-
gories of organic fertilizers were utilized in this investigation. For category one (1), the
raw materials are fermented and digested by earthworms. At the same time, category two
(2) is a mix of rice straw and earthworm manure. Category three (3) raw materials are pure
sheep manure fermented and decomposed by microbial fungus. The last category (4) is
made through the fermentation and decomposition of chicken manure as raw materials.
Each type was composed of thirty samples, resulting in a total of 120. The various fertilizer
samples were dried and ground into powders in a grinder, then sieved through a 60-mesh
screen. Finally, pellets with a 30 mm diameter and a 2 mm thickness were created with a
pressure machine (pressure = 20 MPa, time = 15 s) for all 120 samples.

3.2. Chemical Reference Values Measurement through ICP-MS

The exact concentrations of phosphorus(P) and potassium(K) were determined us-
ing inductively coupled plasma mass spectrometry (ICP-MS), which is an effective and
widely used technique for analyzing environmental materials for multiple elements and
isotopes. Each organic fertilizer was digested in 2.5 mL of nitric acid (HNO3), 1 mL of
hydrogen peroxide(H2O2), and hydrofluoric acid (HF). We then combined these solutions,
microwaved (MARS 6, CEM, Mathews, VA, USA) at 240 ◦C, 80 bar for 10 min, then heated
and cooled. Approximately 0.25 g of each sample was weighed and placed into 50 mL
Falcon tubes along with 25 mL Milli-Q water. All of the samples were centrifuged, and
the supernatants were transferred to Falcon tubes after being agitated for 1 h on an orbital
shaker. If particles could be detected in the supernatant, they were filtered using filter pa-
pers. The extractions were performed in triplicate to guarantee total analyte extraction, and
the Chinese national standards (CNS), which are technical norms issued by the National
Standardization Administration of China, were employed as reference materials. In the
end, the solution was analyzed by ICP-MS (ELAN DRC-e, PerkinElmer, Beijing, China) to
measure the amount of P and K, especially isotopes P-31 and K-39. It should be noted that
the dynamic reaction cell (DRC) of the ICP-MS is filled with argon gas in order to remove
interferences. The obtained result of P is reported as the percentage (%) of pentoxide oxide
(P2O5), commonly referred to as the element phosphate, in order to distinguish it from
phosphorus (P). In contrast, K is reported as a percentage of potassium oxide (K2O), called
potash. However, we will use P and K in the whole manuscript, referring to P2O5 and K2O.

3.3. Spectral Measurement and Preprocessing
3.3.1. LIBS Measurement and Preprocessing

In this study, the LIBS equipment (Figure 5) employed to generate plasma was made
of a Q-switch pulsed laser (Vlite 200, Beamtech, Beijing, China) with parameters such as
maximum energy, pulse duration, and wavelength, the same as reported by Zhao et al. [7].
The obtention and the record of the emission spectra have been made possible through a
spectrograph (ME5000, Andor, Belfast, UK) and an image charge-coupled device (ICCD-
DH334T-18U-03, Andor, Belfast, UK). At the same time, the delay generator helped to
control the ICCD camera and the laser Q-switch. The overall system has a spectral range of
229–876 nm. The LIBS spectra were obtained by applying 16 laser pulses to five randomly
chosen positions of each sample. A total of 80 spectra were obtained and averaged for
each sample to eliminate heterogeneity. The median filter was used to minimize noise first.
Then, area normalization was employed to normalize the smoothed spectra to the same
scale. In the end, iteratively reweighted penalized least squares were used to remove the
spectral background.
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3.3.2. Vis-NIR Measurement and Preprocessing

Vis-NIR spectra were collected by suspending a 50 W halogen lamp of a Fieldspec3
spectral analytical device (Analytical Spectral Devices, Boulder, CO, USA) directly above
each experimental Petri dish. However, Unlike LIBS, which uses pelletized samples, Vis-
NIR uses raw and unpelletized samples. The spectrometer was calibrated once per fifteen
measurements with a white plate using a Spectralon (Malvern Panalytical Ltd., Malvern,
UK), and the sample was measured three times. In the end, 360 spectra were acquired
and averaged to obtain 120 spectra. The multiplicative scatters correction (MSC) and the
first-order derivative were applied to eliminate the baseline offset [9].

3.4. Chemometrics
3.4.1. Conventional Machine Learning

Two conventional machine learning models were used to estimate the PK content:
SVR and PLSR. Many papers have discussed and explained these two algorithms [9,46].
The best parameters for each model were found through grid search computation.

3.4.2. Ensemble Machine Learning

Extremely Randomized Trees, also known as Extratrees, is a machine learning en-
semble algorithm proposed by Geurts et al. [31]. Extra trees generate a massive number
of decision trees from the training dataset and use majority voting for classification. In
contrast, regression uses the average of the different predictions for each decision tree.
Contrary to Random Forest, which uses the tree bagging step to obtain the training subset
for each tree, Extra tree uses the whole training set. Furthermore, it chooses the best feature
and value to split the node, making the extra trees less likely to overfit and reporting better
results. The Extratrees model was used to detect the PK contents.

3.5. Wavelength Selection through Shapley Additive Explanation Values

XAI helps to visualize, explain, and interpret the machine learning models. There
are many XAI approaches [47]. However, in this study, we will focus on Shapley additive
explanation values (Shap), which Lundberg and Lee [48] described. The Shap algorithm
is a combination of game theory [49] and local explanation [50]; its primary purpose is to
know the contribution of each feature in a particular prediction. In order to better allocate
the contribution of each feature (φi), its Shapley values were calculated through:

φi = ∑
S⊆F{i}S

|S|!(F− |S| − 1)!
F!

[
fSU{i}

(
xSU{i}

)
− f s(xs)

]
(1)



Molecules 2023, 28, 799 12 of 15

The purpose is to retrain all features subsets S of the model. S is included in vari-
able F, which represents all features, fSU{i} is the model used to train the feature sub-
set, and f s is the model used to train the retains feature. To compare both predictions
fSU{i}

(
xSU{i}

)
− f s(xs) were calculated, and this is repeated for all subsets. Furthermore,

the explainability of the additive feature attribution represented by a linear function g was
determined through:

g
(
z′
)
= φ0 +

M

∑
i=1

φiz′i (2)

The coalition of the vector Z′ is between the interval {−1, 1}, and M is the number
of features. Moreover, as the Shap values only emphasize the importance and mention
whether the importance has a positive or negative impact on the model, we modified it in
order to be able to extract relevant features. In order to be able to extract features, we will
calculate the correlation between Shap φi and the data used to calculate the Shap noted Xi.
Both must have the same shape size (P*n) and should have the same feature number M.
Then, for each feature number Mi, we calculate the correlation noted in Corr (φi, Xi). In the
end, we will pose a constraint to select only Corr > 0 in order to select the relevant features.

3.6. Data Fusion Approach

Data fusion aims to create a more comprehensive and detailed set of information by
integrating data from multiple sources. There are three methods of implementing data
fusion, namely low-level, mid-level, and high-level, according to the fusion level between
the different data forms. In this study, we will focus on mid-level fusion, which is achieved
by merging the features extracted from the Vis-NIR and LIBS spectra. In order to obtain the
best features for LIBS and Vis-NIR, the Shap values were computed to extract the essential
features that contribute the most to predicting P and K in organic fertilizer. The variables
with the highest Shap value were considered essential.

Overall, the features with the highest Shap values for LIBS, called LIBS-Shap, were
concatenated to the features with the highest Shap values for Vis-NIR, called Vis-NIR-Shap,
to improve the quantification of P and K. The Scheme of the data fusion process of mid-level
using Shap values can be found in Figure 6.
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4. Conclusions

This study aimed to explore the potential of explainable AI on chemical analytics in
predicting PK in various organic fertilizers using LIBS and Vis-NIR sensors. First, the full
spectra of LIBS and Vis-NIR were used to predict PK using Extratrees, SVR, and PLSR. The
quantification results showed that Extratrees provided better results than SVR and PLS
for both sensors. Secondly, XAI through Shap computation was used to explain Extratrees
and select important characteristics. The results of different features demonstrated that
P’s important features were mainly at the visible part while K’s main characteristics were
located at the NIR part for Vis-NIR. For LIBS, the spectra’s main features for both P and K
were between [251.48–461.48 nm]. The computation of Shap values assisted in interpreting
the model and helped select features, improving the detection performance of PK for both
sensors (LIBS-Shap and Vis-NIR-Shap). Meanwhile, the fusion of the reduced spectra ob-
tained with the two sensors (FUSION) resulted in slightly better results than a single sensor.
The performance of the model for P with FUSION achieved 0.9946 for R2p, 0.0649% for
RMSEp, and 13.65 for RPD, slightly better than LIBS-Shap (R2p = 0.9943, RMSEC = 0.0668%
and RPD = 13.26) and Vis-NIR-Shap data (R2p = 0.9719, RMSEp = 0.1486%, and RPD = 5.96).
While for K prediction FUSION with R2p = 0.9976, RMSEp = 0.0508% and RPD = 20.28
outperformed better than Vis-NIR-Shap (R2p = 0.9941, RMSEp = 0.0792%, and RPD = 13.01)
and LIBS-Shap (R2p = 0.9870, RMSEp = 0.1177%, and RPD = 8.75). Finally, the outcomes
of these results serve as a step toward understanding the usefulness of explainable AI in
analytical chemistry to build a robust model for detecting chemical elements using LIBS,
Vis-NIR, and fusion spectra.

Author Contributions: Conceptualization, F.L. and M.L.G.; Data curation, M.L.G., M.H.K., R.C. and
X.L.; Formal analysis, M.L.G.; Funding acquisition, F.L. and H.F.; Investigation M.L.G.; Methodology,
M.L.G.; Project administration, F.L.; Resources, F.L. and H.F.; Software, M.L.G.; Validation, F.L.;
Visualization, F.L.; Writing—original draft, M.L.G.; Writing—review and editing, F.L., M.L.G., M.H.K.,
R.C., J.H., X.L. and H.F. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Science and Technology Department of Zhejiang Province
(2022C02034, 2021C02023) and the Natural Science Foundation of China (61975174).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kang, Y.; Hao, Y.; Shen, M.; Zhao, Q.; Li, Q.; Hu, J. Impacts of supplementing chemical fertilizers with organic fertilizers

manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotoxicol. Environ. Saf. 2016,
130, 279–288. [CrossRef] [PubMed]

2. Nadarajan, S.; Sukumaran, S. Chapter 12—Chemistry and toxicology behind chemical fertilizers. In Controlled Release Fertilizers for
Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S., KR, R., Eds.; Academic Press: New York, NY, USA, 2021; pp. 195–229.

3. Puckett, L.J. Identifying the major sources of nutrient water pollution. Environ. Sci. Technol. 1995, 29, 408A–414A. [CrossRef]
4. Butler, H.J.; Adams, S.; McAinsh, M.R.; Martin, F.L. Detecting nutrient deficiency in plant systems using synchrotron Fourier-

transform infrared microspectroscopy. Vib. Spectrosc. 2017, 90, 46–55. [CrossRef]
5. Huang, J.; Glaesner, N.; Triolo, J.; Bekiaris, G.; Bruun, S.; Liu, F. Application of Fourier transform mid-infrared photoacoustic

spectroscopy for rapid assessment of phosphorus availability in digestates and digestate-amended soils. Sci. Total Environ. 2022,
832, 155040. [CrossRef] [PubMed]

6. Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M.P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C.
Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review. Trends Food Sci. Technol. 2017, 65, 80–93. [CrossRef]

7. Zhao, Y.; Guindo, M.L.; Xu, X.; Sun, M.; Peng, J.; Liu, F.; He, Y. Deep learning associated with laser-induced breakdown
spectroscopy (LIBS) for the prediction of lead in soil. Appl. Spectrosc. 2019, 73, 565–573. [CrossRef]

http://doi.org/10.1016/j.ecoenv.2016.04.028
http://www.ncbi.nlm.nih.gov/pubmed/27152658
http://doi.org/10.1021/es00009a743
http://doi.org/10.1016/j.vibspec.2017.03.004
http://doi.org/10.1016/j.scitotenv.2022.155040
http://www.ncbi.nlm.nih.gov/pubmed/35385760
http://doi.org/10.1016/j.tifs.2017.05.005
http://doi.org/10.1177/0003702819826283


Molecules 2023, 28, 799 14 of 15

8. Nicolodelli, G.; Cabral, J.; Menegatti, C.R.; Marangoni, B.; Senesi, G.S. Recent advances and future trends in LIBS applications to
agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part I. Soils and
fertilizers. TrAC Trends Anal. Chem. 2019, 115, 70–82. [CrossRef]

9. Guindo, M.L.; Kabir, M.H.; Chen, R.; Liu, F. Potential of Vis-NIR to measure heavy metals in different varieties of organic-fertilizers
using Boruta and deep belief network. Ecotoxicol. Environ. Saf. 2021, 228, 112996. [CrossRef]

10. Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators
commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010,
29, 1073–1081. [CrossRef]

11. Kabir, M.H.; Guindo, M.L.; Chen, R.; Liu, F. Geographic origin discrimination of millet using Vis-NIR spectroscopy combined
with machine learning techniques. Foods 2021, 10, 2767. [CrossRef]

12. Zhang, B.; Ling, P.; Sha, W.; Jiang, Y.; Cui, Z. Univariate and multivariate analysis of phosphorus element in fertilizers using
laser-induced breakdown spectroscopy. Sensors 2019, 19, 1727. [CrossRef] [PubMed]

13. Nicolodelli, G.; Senesi, G.S.; de Oliveira Perazzoli, I.L.; Marangoni, B.S.; De Melo Benites, V.; Milori, D.M.B.P. Double pulse laser
induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral
fertilizers. Sci. Total Environ. 2016, 565, 1116–1123. [CrossRef] [PubMed]

14. Sha, W.; Li, J.; Xiao, W.; Ling, P.; Lu, C. Quantitative analysis of elements in fertilizer using laser-induced breakdown spectroscopy
coupled with support vector regression model. Sensors 2019, 19, 3277. [CrossRef]

15. Lin, Z.; Wang, R.; Wang, Y.; Wang, L.; Lu, C.; Liu, Y.; Zhang, Z.; Zhu, L. Accurate and rapid detection of soil and fertilizer
properties based on visible/near-infrared spectroscopy. Appl. Opt. 2018, 57, D69–D73. [CrossRef] [PubMed]

16. Shen, J.; Qiao, W.; Chen, H.; Zhou, J.; Liu, F. Application of visible/near infrared spectrometers to quickly detect the nitrogen,
phosphorus, and potassium content of chemical fertilizers. Appl. Sci. 2021, 11, 5103. [CrossRef]

17. Zhang, Y.; Hartemink, A.E. Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties. Eur. J. Soil
Sci. 2020, 71, 316–333. [CrossRef]

18. Sanaeifar, A.; Li, X.; He, Y.; Huang, Z.; Zhan, Z. A data fusion approach on confocal Raman microspectroscopy and electronic
nose for quantitative evaluation of pesticide residue in tea. Biosyst. Eng. 2021, 210, 206–222. [CrossRef]

19. Sánchez-Esteva, S.; Knadel, M.; Kucheryavskiy, S.; de Jonge, L.W.; Rubæk, G.H.; Hermansen, C.; Heckrath, G. Combining Laser-
Induced Breakdown Spectroscopy (LIBS) and Visible Near-Infrared Spectroscopy (Vis-NIRS) for Soil Phosphorus Determination.
Sensors 2020, 20, 5419. [CrossRef]

20. Bricklemyer, R.S.; Brown, D.J.; Turk, P.J.; Clegg, S. Comparing vis–NIRS, LIBS, and combined vis–NIRS-LIBS for intact soil core
soil carbon measurement. Soil Sci. Soc. Am. J. 2018, 82, 1482–1496. [CrossRef]

21. Wang, H.; Zhang, P.; Xu, Z.; Cheng, W.; Li, X.; Yang, Y.; Wu, Y.; Wang, Q. An authenticity method for determining hybrid rice
varieties using fusion of LIBS and NIRS. Microw. Opt. Technol. Lett. 2022, 1–10. [CrossRef]

22. Ercioglu, E.; Velioglu, H.M.; Boyaci, I.H. Chemometric evaluation of discrimination of aromatic plants by Using NIRS, LIBS. Food
Anal. Methods 2018, 11, 1656–1667. [CrossRef]

23. Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2,
573–584. [CrossRef]

24. Zhang, Y.; Weng, Y.; Lund, J. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics 2022, 12, 237.
[CrossRef] [PubMed]

25. Bussmann, N.; Giudici, P.; Marinelli, D.; Papenbrock, J. Explainable AI in fintech risk management. Front. Artif. Intell. 2020, 3, 26.
[CrossRef] [PubMed]

26. Brito, L.C.; Susto, G.A.; Brito, J.N.; Duarte, M.A. An explainable artificial intelligence approach for unsupervised fault detection
and diagnosis in rotating machinery. Mech. Syst. Signal Process. 2022, 163, 108105. [CrossRef]

27. Kaur, H.; Künnemeyer, R.; McGlone, A. Correction of temperature variation with independent water samples to predict soluble
solids content of kiwifruit juice using NIR spectroscopy. Molecules 2022, 27, 504. [CrossRef] [PubMed]

28. Dib, S.R.; Senesi, G.S.; Gomes Neto, J.A.; Ribeiro, C.A.; Ferreira, E.C. Phosphorous determination in biochar-based fertilizers by
spark discharge-laser-induced breakdown spectroscopy. Chemosensors 2021, 9, 337. [CrossRef]

29. Liao, S.Y.; Wu, X.L.; Li, G.H.; Wei, M.; Zhang, M. Quantitative analysis of P in Fertilizer by laser-induced breakdown spectroscopy
with multivariate nonlinear method. Spectrosc. Spectr. Anal. 2018, 38, 271–275.

30. Song, W.; Hou, Z.; Gu, W.; Afgan, M.S.; Cui, J.; Wang, H.; Wang, Y.; Wang, Z. Incorporating domain knowledge into machine
learning for laser-induced breakdown spectroscopy quantification. Spectrochim. Acta Part B At. Spectrosc. 2022, 195, 106490.
[CrossRef]

31. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
32. Scalzo, F.; Hamilton, R.; Asgari, S.; Kim, S.; Hu, X. Intracranial hypertension prediction using extremely randomized decision

trees. Med. Eng. Phys. 2012, 34, 1058–1065. [CrossRef] [PubMed]
33. Ahmad, M.W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of support vector

regression, random forest, extra trees and regression trees. J. Clean. Prod. 2018, 203, 810–821. [CrossRef]
34. Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6,

52138–52160. [CrossRef]

http://doi.org/10.1016/j.trac.2019.03.032
http://doi.org/10.1016/j.ecoenv.2021.112996
http://doi.org/10.1016/j.trac.2010.05.006
http://doi.org/10.3390/foods10112767
http://doi.org/10.3390/s19071727
http://www.ncbi.nlm.nih.gov/pubmed/30978922
http://doi.org/10.1016/j.scitotenv.2016.05.153
http://www.ncbi.nlm.nih.gov/pubmed/27261426
http://doi.org/10.3390/s19153277
http://doi.org/10.1364/AO.57.000D69
http://www.ncbi.nlm.nih.gov/pubmed/30117941
http://doi.org/10.3390/app11115103
http://doi.org/10.1111/ejss.12875
http://doi.org/10.1016/j.biosystemseng.2021.08.016
http://doi.org/10.3390/s20185419
http://doi.org/10.2136/sssaj2017.09.0332
http://doi.org/10.1002/mop.33226
http://doi.org/10.1007/s12161-018-1145-x
http://doi.org/10.1038/s42256-020-00236-4
http://doi.org/10.3390/diagnostics12020237
http://www.ncbi.nlm.nih.gov/pubmed/35204328
http://doi.org/10.3389/frai.2020.00026
http://www.ncbi.nlm.nih.gov/pubmed/33733145
http://doi.org/10.1016/j.ymssp.2021.108105
http://doi.org/10.3390/molecules27020504
http://www.ncbi.nlm.nih.gov/pubmed/35056819
http://doi.org/10.3390/chemosensors9120337
http://doi.org/10.1016/j.sab.2022.106490
http://doi.org/10.1007/s10994-006-6226-1
http://doi.org/10.1016/j.medengphy.2011.11.010
http://www.ncbi.nlm.nih.gov/pubmed/22401795
http://doi.org/10.1016/j.jclepro.2018.08.207
http://doi.org/10.1109/ACCESS.2018.2870052


Molecules 2023, 28, 799 15 of 15

35. Gholizadeh, A.; Saberioon, M.; Ben-Dor, E.; Rossel, R.A.V.; Borůvka, L. Modelling potentially toxic elements in forest soils with
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