
Citation: Soran, M.-L.; Sîrb, A.N.;
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Abstract: Heavy metals represent a large category of pollutants. Heavy metals are the focus of
researchers around the world, mainly due to their harmful effects on plants. In this paper, the influence
of copper, cadmium, manganese, nickel, zinc and lead, present in soil in different concentrations
(below the permissible limit, the maximum permissible concentration and a concentration higher
than the maximum permissible limit) on lettuce (Lactuca sativa L.) was evaluated. For this purpose,
the authors analyzed the variation of photosynthetic pigments, total polyphenols, antioxidant activity
and the elemental content in the studied plants. The experimental results showed that the variation
of the content of biologically active compounds, elemental content and the antioxidant activity in
the plants grown in contaminated soil, compared to the control plants, depends on the type and
concentration of the metal added to the soil. The biggest decrease was recorded for plants grown in
soil treated with Ni I (−42.38%) for chlorophyll a, Zn II (−32.92%) for chlorophyll b, Ni I (−40.46%)
for carotenoids, Pb I (−40.95%) for polyphenols and Cu III (−29.42%) for DPPH. On the other
hand, the largest increase regarding the amount of biologically active compounds was registered for
Mn I (88.24%) in the case of the chlorophyll a, Mn I (65.56%) for chlorophyll b, Pb I (116.03%) for
carotenoids, Ni III (1351.23%) for polyphenols and Ni III (1149.35%) for DPPH.

Keywords: lettuce; heavy metals; bioactive compounds; antioxidant capacity; elemental content

1. Introduction

Cultivated land contamination with heavy metals is becoming a major concern nowa-
days [1]. This interest is due to the high toxicity of heavy metals, their persistency and
bioaccumulative behavior, which are a threat to natural ecosystems [2]. In general, envi-
ronmental contamination with heavy metals is originated from two main sources: natural
sources and anthropogenic activities [3]. The contamination from natural sources includes
geologic materials, forest fires and volcanic outcrops [4]. Anthropogenic activities (mining,
automobile exhausts, the use of fertilizers and insecticide, domestic waste) have been
identified as principal contamination sources, which led to an increasing level of heavy
metals in soil [5,6]. After entering the environment, traces of metals can be retained in soil
systems for a very long period of time because they are not biochemically degraded [7].

The accumulation of the metals in soil frequently disturbs the normal functioning
of soil ecosystem and the growth of the plants [8]. Plants have the ability to absorb
and accumulate various trace of heavy metals from the contaminated agricultural soils [9],
chemical soil fertilizers, sewage irrigation, insecticides, pesticides and atmospheric particles
deposition. The heavy metals are transported to different parts of the plant through
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different pathways, altering the physiological, metabolic and biochemical activities of
the plant [10]. Currently many researches focus more and more on transferring heavy
metals into edible parts of the plants (rice, wheat, vegetables) from farmlands irrigated
with wastewaters [11–14].

Some metals, such as manganese (Mn), copper (Cu), zinc (Zn), molybdenum (Mo)
and nickel (Ni), are crucial and useful micronutrients for microorganisms, plants and
animals, but at high level concentrations these metals can have toxic effects and pose an
environmental threat [15]. Among the heavy metals that cause harmful impacts to plants
are chromium (Cr), cadmium (Cd) mercury (Hg), lead (Pb), Ni and Cu. These harmful
metals are responsible for minimizing the profitability and damaging agro-biological
systems [16]. Such soil pollutants are considered to be toxins for their extensive availability,
and their intensity and persistency in soil. Each heavy metal exposes the plant to different
ill-effects [17,18]. Heavy metals present in soil were demonstrated to have toxic effects
on plants, leading to changes in physiological characteristics such as taproot length, plant
height, leaf [1], nutrient homeostasis, photosynthesis, gas exchange characteristics, protein
mobilization, enzyme and antioxidant production [19].

The permanent contact of the plants with higher toxic concentrations of Cd metal
decreases photosynthesis, water and nutrient uptake by plants [20]. Cd is trivial and can
have harmful effects for higher plants and other living beings [21]. It was observed that Cd
has a negative influence on growth and development [22,23]. Additionally, the leaf water
potential, stomatal conductance, transpiration and the total chlorophyll were reduced in
plants exposed to Cd [24]. The growth of plants in contaminated soil with high levels of
Cd leads to growth inhibition, chlorosis, and finally the death of the plant [20]. Grajek
et al. [25] demonstrated that the degradation of chlorophyll by Cd is caused by the instantly
replacement of magnesium (Mg) by Cd.

Mining and industrial activities, such as the melting of copper-containing ores, lead
to the deposition of high quantities of Cu into the environment. This metal is considered
to be an essential micronutrient for plants and has an important role in the assimilation
of carbon and ATP synthesis [26]. Large quantities of Cu induces soil stress and damages
plants causing development inhibition and chlorosis. Copper excess induced a concomitant
increase in the expression of proteins involved in photosynthesis, respiration, and C, N
and S assimilation in Ulva compressa [27]. A higher concentration of Cu exposed to plants
produces oxidative pressure and ROS [28]. Important concentrations of Cu decreased the
growth of Scopelophila cataractae [29], the chlorophyll content in tea plants [30,31] and the
carotenoids from Citrus aurantium L. [31].

High levels of Zn metal in soil results from sewage sludge, the use of fertilizers,
municipal waste emissions and anthropogenic activities. Enhanced levels of Zn from soil
can cause several structural and functional abnormalities [32–34]. The important quantities
of Zn in soil block many metabolic activities of the plant, restrict development and cause
plant aging. Additionally, Zn affects the development of the root, shoots system and causes
chlorosis, which can spread out other plant parts [21].

From human activities (mining, metallurgy, battery manufacturing, chemical catalysis)
Mn is released into the environment and can cause health problems [35]. Even if Mn
has a role in plant photosynthesis, enzymatic reactions, and redox activities [36,37], an
excess of Mn quantity in soil inhibits plant growth and development [38]. Additionally,
Mn when present in excess can causes disrupting photosynthesis and enzyme activity in
plants [39]. In Macleaya cordata an excess level of Mn causes cells distortion and deformation,
a decrease of mitochondria, the shrinkage of chloroplasts, an increase of hungry particles
and a decrease of starch granules [40].

Ni is counted among the essential micro-elements for higher plant species but is
necessary at very low concentrations. An excess of Ni content in soil can have a toxic
effect to the plants, disturbing the development and growth of the plant, producing ROS,
which strongly affects cell ultrastructure [41]. Additionally, an elevated level of Ni can
cause stunted growth, chlorosis, nutrient imbalance, alterations of osmolytes or changes in
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enzyme activities [42]. The chlorophyll, carotenoid, and proline contents from Vigna mungo
L. were seriously affected by Ni and Pb. Additionally, in the case of these two heavy metals,
chlorophyll a was affected more in comparison to chlorophyll b, whereas carotenoids were
less affected than chlorophylls [43].

Pb enters the soil from municipal sludges, paints, mining, gasoline and paper in-
dustries. Cenkci et al. [44] demonstrated that Pb has an impact on the development,
morphology, and photosynthetic cycles of the plants. Additionally, Pb causes the inhibi-
tion of enzymes, membrane porosity changes, water disequilibrium, and the alteration of
mineral supplements. Pb causes oxidative pressure expanding the ROS in plants [44,45]
and inhibits the photosynthesis process [46]. Chlorophyll synthesis is inhibited by Pb,
which leads to a reduced uptake of the essential elements, such as magnesium (Mg) and
iron (Fe), by plants [47]. Pb treatments exposed to plants affects chlorophyll b more than
chlorophyll a [48,49].

The novelty of this article consists of the evaluation of the influence of six heavy metals,
with three different concentrations, on the bioactive compounds, antioxidant activity and
the elemental content of lettuce, at the same time.

The aim of the present study was to investigate the influence of abiotic stress resulting
from diverse heavy metals on lettuce (Lactuca sativa L.). Lettuce is a highly consumed
vegetables [50] being rich in phenols, vitamin C, folic acid, carotenoids and chlorophyll,
nutritional compounds which are beneficial for human health. Antioxidant micronutrients,
such as polyphenols and carotenoids, play an essential role in preventive nutrition, human
health and plant metabolism [51,52]. Due to high consumption and sensitivity to stress [53],
in the present research, lettuce was chosen for the experimental material. Salts of six
heavy metals (Cd, Cu, Zn, Mn, Ni and Pb), in different concentrations, were selected
in the treatment of the lettuce in order to assess the impact on photosynthetic pigments
(chlorophylls and carotenoids), total polyphenols, antioxidant activity and the variation of
the multielement content.

2. Results
2.1. Analysis of Plant Tissues
2.1.1. Assimilating Pigments Evaluation

A decrease in the amount of chlorophylls and total carotenoids can be observed for
plants grown in the presence of Cd I, Cu I, Zn I and Ni I, respectively (Figure 1). The
amount of pigment that decreased the most was chlorophyll a (0.42 times Ni I), chlorophyll
b (0.23 times Cd I) and total carotenoids (0.4 times Ni I and 0.19 times Cu I). In the case
of Mn I, the amount of chlorophyll a (1.88 times), chlorophyll b (1.66 times) and total
carotenoids (1.9 times) increased. Comparing the values obtained for Pb I it was found an
accumulation of the amount of chlorophyll a (1.01 times) and chlorophyll b (1.26 times)
and an insignificant decrease in the amount of total carotenoids (0.02 times).

Analyzing the results in Figure 1, it was found that the amount of pigments in plants
grown in soil containing Cd II, Ni II and Pb II at a maximum allowable concentration
increased compared to the control plant. The highest amount of pigments was obtained
for plants grown in the presence of Pb II. Thus, in chlorophyll an increase of 1.88 times
compared to control, chlorophyll b 1.56 times and total carotenoids 2.15 times. In the case
of Cu II, the amount of chlorophyll b increased 1.05 times compared to the control plant;
over time the total carotenoids decreased 0.12 times. The decrease in chlorophyll a was
insignificant compared to the control (0.02 times). The amount of pigments in plants grown
in soil with Zn II and Mn II decreased, except for chlorophyll b in plants grown with Mn II,
which increased 1.28 times compared to the control.

Comparing the results obtained for plants grown in soil with heavy metals at a
concentration higher than the maximum allowed limit, it was found that in Cd III and
Ni III the amount of pigments increased compared to the control. In plants grown in the
presence of Cu III, only the amount of chlorophyll b (1.03 times) was higher than the control;
chlorophyll a and total carotenoids were lower. By comparing the values obtained for Zn
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III, an accumulation was found in the case of chlorophyll b (1.16 times) and a decrease in
the amount of total carotenoids (0.1 times). The decrease in the amount of chlorophyll a
in plants grown in the presence of Zn III compared to the control plant was insignificant
(0.05 times). The amount of pigments in plants grown in the presence of Mn III decreased
compared to the control plant by 0.38 times in the case of chlorophyll a, 0.34 times in the
case of chlorophyll b and 0.37 times in the case of total carotenoids. In the case of plants
grown in the presence of Pb III, the amount of chlorophyll a and total carotenoids increased
compared to the control, while the amount of chlorophyll b decreased.
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2.1.2. Determination of Total Phenolic Content

The amount of total polyphenolic compounds presented in Figure 2 was expressed as
mg gallic acid/g fresh weight (FW), using the linear equation of the standard calibration
curve: y = 0.5865x + 0.0059 (R2 = 0.9991).
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Each data point is the mean ± the standard error of the mean of three independent replicates
experiments; different letters mean significant differences between the treatment and the control
plants, determined by Tuckey’s test (p < 0.05).

An increase in the total amount of polyphenols for plants grown in the presence of
Cd I, Cu I, Zn I and Ni I can be observed. The highest increase in the total amount of
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polyphenols was obtained for Cd I (4.05 times) and Zn I (2.29 times). In the case of Mn
I, the amount of total polyphenols increased by 1.2 times compared to the control, while
in plants grown in soil with Pb I content, the amount of total polyphenols decreased by
0.41 times.

The amount of total polyphenols in plants grown in soil containing Cd II, Ni II and
Pb II at a maximum permissible concentration increased compared to the control plant.
The highest increase was obtained for Cd II (3.97 times). In the case of plants grown in the
presence of Cu II, the amount of total polyphenols decreased compared to the control plant
by 0.34 times, and in the case of plants grown in the presence of Zn II and Mn II the amount
of total polyphenols increased 2.62 times, respectively, 1.96 times compared to the control.

Comparing the results obtained for plants grown in soil with heavy metals at a
concentration higher than the maximum allowed limit, it was found that the amount of
total polyphenols in plants grown in the presence of Cd III and Ni III increased compared
to control. A significant increase compared to the control was obtained for the amount of
total polyphenols (14.51 times) in plants grown in the presence of Ni III. In plants grown in
the presence of Cu III, Zn III and Pb III, the amount of total polyphenols decreased, while
the amount of total polyphenols in plants grown in the presence of Mn III increased by
1.56 compared to the control.

2.1.3. Establishing Antioxidant Capacity

The obtained results for antioxidant capacity are presented in Figure 3 and was
expressed in mM Trolox equivalents (mM Trolox/g sample), using the linear equation of
the standard calibration curve: y = 0.1755x + 0.0198 (R2 = 0.9924).

Molecules 2023, 28, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. Antioxidant activity of the lettuce extracts. Each data point is the mean ± the standard 
error of the mean of three independent replicates experiments; different letters mean significant 
differences between the treatment and the control plants, determined by Tuckey’s test (p < 0.05). 

It can be seen that an increase in the antioxidant activity for plants grown in the pres-
ence of Cd I, Cu I, Zn I and Ni I increased compared to the control plant; the highest 
increase was obtained for Cd I 7.43 times and Zn I of 5.04 times. In plants grown in the 
presence of Mn I and Pb I, the antioxidant activity decreased 0.13 times and 0.2 times 
compared to the control. 

Analyzing the results from plants grown in soil containing Cd II, Ni II and Pb II at a 
maximum allowable concentration, it was found that the antioxidant activity increased 
compared to the control plant, the highest increase was obtained for Cd II 6.08 times. In 
the case of plants grown in the presence of Cu II, Zn II and Mn II, the antioxidant activity 
increased 1.05 times, 2.76 times, respectively, 1.28 times compared to the control plant. 

In the case of plants grown in heavy metal soils at a concentration higher than the 
maximum allowed limit, it was found that for five of them, the antioxidant activity in-
creased compared to the control. A significant increase compared to the control was ob-
tained for plants grown in the presence of Ni III (12.49 times). In the case of the other 
plants, an increase in antioxidant activity was observed for Zn III (2.31 times), Mn III (2.9 
times), Cd III (2.95 times) and Pb III (1.61 times) compared to the control. Only for plants 
grown in the presence of Cu III, was there a decrease in antioxidant activity, 0.29 times 
compared to the control plant. 

2.1.4. Elemental Content Determination 
Unfortunately, not all samples could be subjected to both long and short irradiation 

due to the lack of a sufficient amount of the material to be investigated. When this was the 
case, it was opted for the long irradiation that allows obtaining information about a wider 
spectrum of elements. A number of 20 elements (Na, Mg, Al, S, Cl, K, Ca, Mn, Fe, Co, Zn, 
As, Br, Rb, Sr, Sb, Cs, Ba, Sm, Th) were determined in the lettuce leaves (LL) and 16 (Na, 
K, Fe, Co, Zn, As, Br, Rb, Sr, Sb, Cs, Ba, La, Sm, Th, U) in the root (LR). 

As previously mentioned, due to the lack of experimental material, we did not obtain 
experimental data regarding the influence of all Mn experimental concentrations on the 
content of Mg, Al, S, Cl, Ca and Mn in leaves. For the same reason, the data regarding the 
content of the same elements under the influence of Pb (15 and 30 mg kg−1), Zn (300 mg 
kg−1) and Ni (75 mg kg−1) are missing.  
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It can be seen that an increase in the antioxidant activity for plants grown in the
presence of Cd I, Cu I, Zn I and Ni I increased compared to the control plant; the highest
increase was obtained for Cd I 7.43 times and Zn I of 5.04 times. In plants grown in the
presence of Mn I and Pb I, the antioxidant activity decreased 0.13 times and 0.2 times
compared to the control.

Analyzing the results from plants grown in soil containing Cd II, Ni II and Pb II at a
maximum allowable concentration, it was found that the antioxidant activity increased
compared to the control plant, the highest increase was obtained for Cd II 6.08 times. In
the case of plants grown in the presence of Cu II, Zn II and Mn II, the antioxidant activity
increased 1.05 times, 2.76 times, respectively, 1.28 times compared to the control plant.
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In the case of plants grown in heavy metal soils at a concentration higher than the
maximum allowed limit, it was found that for five of them, the antioxidant activity increased
compared to the control. A significant increase compared to the control was obtained for
plants grown in the presence of Ni III (12.49 times). In the case of the other plants, an
increase in antioxidant activity was observed for Zn III (2.31 times), Mn III (2.9 times), Cd
III (2.95 times) and Pb III (1.61 times) compared to the control. Only for plants grown in the
presence of Cu III, was there a decrease in antioxidant activity, 0.29 times compared to the
control plant.

2.1.4. Elemental Content Determination

Unfortunately, not all samples could be subjected to both long and short irradiation
due to the lack of a sufficient amount of the material to be investigated. When this was the
case, it was opted for the long irradiation that allows obtaining information about a wider
spectrum of elements. A number of 20 elements (Na, Mg, Al, S, Cl, K, Ca, Mn, Fe, Co, Zn,
As, Br, Rb, Sr, Sb, Cs, Ba, Sm, Th) were determined in the lettuce leaves (LL) and 16 (Na, K,
Fe, Co, Zn, As, Br, Rb, Sr, Sb, Cs, Ba, La, Sm, Th, U) in the root (LR).

As previously mentioned, due to the lack of experimental material, we did not obtain
experimental data regarding the influence of all Mn experimental concentrations on the
content of Mg, Al, S, Cl, Ca and Mn in leaves. For the same reason, the data regarding
the content of the same elements under the influence of Pb (15 and 30 mg kg−1), Zn
(300 mg kg−1) and Ni (75 mg kg−1) are missing.

The literature is quite poor in data regarding the multi-elemental content of salad.
Most available studies refer to a very limited number of elements [54–56]. The most studied
topic is that of the influence of fertilizers and wastewaters to lettuce. In this context, of
immediate interest for agriculture is, of course, the green mass of the plant and not the
root. That is why it is difficult to extensively compare our data with those obtained by
other researchers.

However, Tables 1 and 2 show that the control values for Na, Mg, Cl, K, Rb, Sb, Cs and
Th correlate well at the magnitude unit level with those reported, while lettuce was grown
in a soil treated with various phosphate concentration in order to evaluate the efficiency of
phosphorus in reducing the availability of different elements to plant [57].

Table 1. Elemental content in lettuce leaves samples (LL) under treatment with different HMs.

Pb Mn Cu Zn Cd Ni Control

Na * 3.2–4.5 3.2–4.4 3.8–6.0 4.4–7.1 4.0–4.6 3.5–4.9 3.8–4.3
Mg * 2.7–3.1 a - 2.7–3.9 2.6–3.9 a 2.5–3.7 2.7–4.3 a 2.5–3.0
Al ** 70.4–79.6 a - 133–660 177–220 a 96–181 132–293 a 183–203
S a ** 7.2–11.8 a - 4.8–15.6 5.3–10.1 a 5.0–12.6 7.7–15.2 a 7.2–12.7
Cl * 30.6–35.0 a - 22.7–42.9 22.1–26.8 a 25.3–36.1 32.7–40.4 a 30.3–34.7
K * 93.0–129 91.2–130 98.3–136 87.6–136 96.5–119 82.8–132 101–125
Ca * 9.0–11.7 a - 10.5–17.7 11.6–25.2 a 11.4–17.2 8.0–17.7 a 9.7–12.7

Mn ** 92–106 a - 146–409 1256–1648 a 229–292 84–389 a 112–130
Fe ** 144–308 155–295 181–527 141–279 139–304 174–279 278–334

Co *** 58–248 17–306 93–360 74–242 95–146 94–201 102–134
Zn ** 111–286 197–302 102–137 729–1757 86–242 100–209 289–329
As ** 0.49–0.81 0.48–0.61 0.54–0.96 0.50–0.97 0.54–0.82 0.47–0.63 0.54–0.59
Br ** 17.6–49.9 13.7–28.9 33.0–61.8 17.6–49.9 34.8–53.1 28.0–53.1 21.2–25
Rb ** 40.1–65.2 40.0–65.2 40.1–61.7 35.9–57.0 38.5–54.7 32.6–60.5 41.0–57.0
Sr ** 20.9–42.0 22.2–38.6 24.6–40.7 24.8–47.3 24.9–32.4 21.0–35.3 28.7–35.3

Sb *** 11.5–68.9 25.7–35.7 21.5–76.5 12–53.2 20–33.8 26.7–54.2 39.4–56.6
Cs *** 46.4–82.6 58.5–83.5 61.1–133 48.3–76.8 50.7–74.0 53.2–71.0 62.6–75.4
Ba ** 7.3–15.7 5.3–16.4 6.8–22.0 7.8–21.4 7.5–14.9 6.4–16.8 10.2–15.0

Sm *** 8.1–24.7 6.4–16.1 14.3–70.1 6.4–26.1 12.0–31.1 11–33.5 28.9–47.1
Th *** 15.9–36.9 15.0–28.5 15.0–25.0 7.5–37.5 7.5–41.6 24.1–43.4 58–68

a partial data; * g kg−1; ** mg kg−1; *** µg kg−1.
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Table 2. Literature data on elemental content of lettuce leaves.

[45] [47] [48] [49]

CLL LL ILL (Evora) OLL (Evora) ILL
(Coimbra)

OLL
(Coimbra) LL OLL OLL ILL ILL

Na * 4.2 6–10.3 0.14 ± 0.03 0.34 ± 0.07 0.17 ± 0.14 0.31 ± 0.11 2.9 ± 7 1.93 ± 0.01 2.4 ± 0.8 0.74 ± 0.04 1.3 ± 1.1
Mg * 5.2 3.6–6.8 3.6 ± 0.7 3.2 ± 0.014 2.04 ± 0.01
Al ** 3524 ± 318
S *
Cl * 22.8 8.5–15.1 17.9 ± 0.4
K * 96.1 52.7–74.9 6.3 ± 1.4 8.3 ± 1.9 7.2 ± 0.8 10.7 ± 1.7 84.8 ± 1.7 82 ± 13 54.3 ± 0.1 55.1 ± 6
Ca * 30.3 14.9–22.9 0.51 ± 0.08 1.17 ± 0.18 0.54 ± 0.05 1.29 ± 0.06 13.3 ± 0.6 12.9 ± 0.15 9.92 ± 0.45 5.0 ± 0.28 4.18 ± 0.04

Mn ** 0.042 0.013–0.038 68.81 ± 0.22 157.6 ± 3.1 38.2 ± 1.2

Fe ** 0.42 0.19–0.97 16.1 ± 3.0 44 ± 13 16.9 ± 4.6 53.2 ± 3.6 1506 ± 54.3 NAA

530.4 AAS 343 ± 24 409 ± 28 102 ± 10 130 ± 35

Co *** 302 76–1026 7.9 ± 1.7 19.3 ± 5.6 8.4 ± 1.7 30 ± 10 1010 ± 160 NAA

7200 AAS 0.13 ± 0.05 0.23 ± 0.08 0.067 ± 0.02

Zn ** 0.84 0.35–1.2 4.99 ± 0.58 3.55 ± 0.6 7.24 ± 0.5 7.14 ± 0.33 45.7 ± 1 54.9 ± 2.5 56.2 ± 3.9 55.7 ± 3.8
As *** 13 ± 6.7 43 ± 16 6.5 ± 2.1 24.3 ± 2.1
Br ** 87.5 62–80 1.27 ± 0.23 2.74 ± 0.45 3.41 ± 0.45 8.3 ± 1.8
Rb ** 52.3 59.3–81 1.19 ± 0.1 1.56 ± 0.11 1.2 ± 0.12 1.72 ± 0.18 11.6 ± 0.94 13.2 ± 1.4 9.22 ± 0.34 9.23 ± 0.92
Sr ** 2.45 ± 0.39 5.5 ± 0.54 2.00 ± 0.23 6.85 ± 0.59

Sb *** 85 30.3–79 <8 3.94 ± 0.86 4.5 ± 1.5 11.5 ± 1.8 46.8 ± 7.1 88 ± 14 34.9 ± 7.3 35 ± 12
Cs *** 50 170–2360

Ba
Sm

Th *** 25 24–143

* g kg−1; ** mg kg−1; *** µg kg−1; CLL—control lettuce leaves; OLL—outer lettuce leaves; ILL—inner lettuce leaves; NAA—Neutron Activation Analysis; AAS—Atomic
Absorption Spectrometry.
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The data for Mn, Fe and Zn reported by Armelin et al. [57] are about a thousand
times lower than our data, and those reported in other studies. Our control values for Ca,
Co and Br are lower than that of the previously mentioned study. The differences can be
attributed to the fact that in our study we use uncontaminated substrate in contrast to the
contaminated soil used by the Brazilian researchers, that present values of As, Cd and Cr
exceeding the prevention values of 1.5, 33 and 5.3 times, respectively [57].

Comparing the experimental data with those in the literature is difficult and question-
ably relevant, not only due to the fact that few studies are multi-elemental, but also because
the elemental content of the lettuce leaves, as shown by Pacheco et al. and Freitas et al., is
strongly dependent on the sampling of the leaves. The content of the outer leaves differs
significantly from the content of the inner ones. At the same time, it also depends on where
the lettuce is grown [58].

The content of Na, Mg and Cl is relatively similar to that of lettuce leaves available on
the market in Bangkok, Thailand [59], and the central region of Portugal. The content of K,
Ca, Fe and Sb is closer to that reported for the central region of Portugal [60] than for Evora
and Coimbra [58], while Mn, Co, Zn, As and Br present a higher content in our study than
that reported in Portugal. Our data on Al, Fe and Co are much less than those reported
from Thailand [59].

The available data regarding the elemental content in lettuce root are even more limited
than those regarding the leaves. Our data on element content in lettuce root samples under
treatment with different HMs are reported in Table 3. The Zn content in the roots of our
samples is comparable to that in those grown in soil contaminated with heavy metals [61],
while the Fe content is much higher in our study than in lettuce grown near a highway in
Nigeria [62].

Table 3. Elemental content in lettuce root samples (LR) under treatment with different HMs.

Pb Mn Cu Zn Cd Ni Control

Na * 5.2–10.9 4.4–6.7 4.7–7.2 5.0–6.9 5.4–7.5 5.1–7.6 4.9–5.6
K * 114–243 92.7–150 78.3–134 112–162 135–173 140–182 142–172

Fe ** 1811–7194 1398–3960 1033–2554 394–2494 285–475 317–474 259–351
Co ** 1.75–10.0 2.5–6.3 1.03–3.4 0.66–5.7 0.61–1.12 0.69–2.4 1.17–1.53
Zn ** 116–485 140–286 121–234 1896–3347 96.6–152 103–312 82.9–97.1
As ** 4.0–6.7 2.9–4.0 5.3–7.2 4.0–7.3 11.7–17.0 5.1–9.0 6.1–6.9
Br ** 40.3–158 33.9–57.5 51.4–79.1 43.1–80.1 66.9–95.3 75.2–103 49.5–58.5
Rb ** 51.8–129 42.6–87.4 39.4–63.6 51.0–77.7 55.2–79.2 56.8–82.6 52.6–73.4
Sr ** 27.4–125 30.4–155 32.3–77.0 36.4–75.1 36.7–61.1 36.5–56.4 40.0–54.1

Sb *** 87.7–4510 78.9–2251 67.2–1839 82.7–1819 69.6–157 77.1–209 120–159
Cs *** 216–975 167–686 209–819 133–422 124–201 100–485 98.6–147
Ba ** - - - 38.9–67.3 - 23.9–45.6 14.3–23.8
La ** 1.23–4.4 0.83–2.3 0.57–2.8 0.54–2.2 - - 0.62–0.84

Sm *** 234–699 128–279 105–410 24.6–26.9 17.8–46.9 12.5–49.1 5.6–10.4
Th *** 225–1262 203–602 234–766 45.0–423 52.5–123 67.5–152 45.0–75.0
U *** 157–304 94.4–278 85.3–230 67.8–230 67.3–133 75.4–187 121–177

* g kg−1; ** mg kg−1; *** µg kg−1.

2.1.5. Variation of the Elemental Content in Plant Compared to Control

A two-tail t-test was used to identify how statistically significant is the difference
between the levels of the elemental content in the lettuce leaves and roots and comparison
with the control samples. The results are presented in Tables 4 and 5 for leaves and
root, respectively.
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Table 4. The level of significance of the difference compared to the content of the control sample in
lettuce leaves.

Pb Mn Cu Zn Cd Ni

mg kg−1 I II III I II III I II III I II III I II III I II III

Na - - * - - * - - *** *** *** ** * - - * - -
Mg - - *** ** - ** ** - * *** -
Al *** *** *** *** - - * *** *** *** ***
S - - - - - ** - - - - -
Cl - *** *** ** *** *** ** - - - *
K - - - - - - - - - - - - - - - - - *
Ca - - - ** - *** ** - * ** -
Mn ** *** *** *** *** *** *** *** *** *** ***
Fe - ** *** - * *** *** *** *** * ** *** - *** * * * ***
Co *** ** *** *** *** *** *** - - - *** * - - - *** - -
Zn *** * *** - *** *** *** *** *** *** *** *** *** *** *** *** *** ***
As *** *** - - - - *** - *** *** *** - *** - - - - **
Br * *** *** - *** *** *** *** *** *** *** * *** *** *** *** *** ***
Rb - - - - - - - - - - - - - - - - - -
Sr - ** * - - ** - - - - * - - - - - * **
Sb - * *** ** ** ** ** ** - - - *** ** ** *** - - *
Cs - - ** - - - *** - - - - - - - * - - -
Ba - - * - - ** ** * - - * - - - - - * -
Sm *** ** *** *** *** *** - ** - ** ** *** - *** * - *** **
Th *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

empty cell—not determined due to lack of data; “-“ no significant difference, “*” α = 0.1; “**” α = 0.5; “***” α = 0.02;
red—positive difference, blue—negative difference.

Table 5. The level of significance of the difference compared to the content of the control sample in
lettuce root.

Pb Mn Cu Zn Cd Ni

mg kg−1 I II III I II III I II III I II III I II III I II III

Na ** *** - - - - - - ** - - * ** - - ** - -
K * *** - ** *** - *** ** *** * * - - - - - - -
Fe *** *** *** *** *** *** *** *** *** *** *** ** - - ** ** - -
Co *** *** ** *** *** *** *** - *** *** *** *** * *** *** *** *** -
Zn *** *** *** *** *** *** *** *** *** *** *** *** *** * *** *** ** ***
As *** - - *** *** *** - ** - *** *** - *** *** *** ** ** ***
Br ** *** *** - *** - - *** - *** - - *** *** *** *** *** ***
Rb - ** - - - - - - - - - - - - - - - -
Sr - ** * - ** ** - - * - * - - - - - - -
Sb *** *** *** *** *** *** *** *** *** *** *** * - - ** - ** -
Cs *** *** *** ** *** *** *** *** *** *** *** - - ** - - *** -
Ba *** *** *** * ** **
La *** *** *** * *** *** *** - *** *** * - - - - - - -
Sm *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ** ***
Th *** *** *** *** *** *** *** *** *** *** *** - *** - - *** - ***
U - ** - - - * - - ** - * ** ** - * - * -

empty cell—not determined due to lack of data; “-“ no significant difference, “*” α = 0.1; “**” α = 0.5; “***” α = 0.02;
red—positive difference, blue—negative difference.

The use of Pb induces a more or less significant decrease of the majority of determined
elements in leaves (Table 4). Only the Co and As content increased significantly compared
to the control at Pb concentrations below 50 mg kg−1. In contrast to these, the Br content
increases with the application of Pb in higher concentrations. The modification of the
soil with Mn also leads to a decrease in concentration for most elements, while the Co
content increases significantly. Among decreasing elements, Sb, Sm and Th are significantly
affected for all Mn concentrations. The Fe and Zn content scarcely decrease at low Mn
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concentration but at higher doses, the recession begins evident. In the presence of a low
Cu concentration, elements such as Fe, Co, Cs and Ba show a significant increase followed
by a more or less significant decrease with the increase in Cu concentration. At the same
time, the content of Mn, As and Br increased with the application of Cu. The content of
Na, Mg, Ca increases when a high content of Cu is applied. The use of Zn leads to an
increase in the content of Zn and Na and a decrease in that of Fe, Sm and Th regardless of
the concentration used. The increase in the concentration of Cd in the soil compared to the
control leads to a more or less significant increase in the content of Mg, Ca, Mn and Br, but a
decrease in the content of Al, Sb, Sm and Th. In the presence of Ni, the content of elements
such as Fe, Zn, Sm, Th decreases. The only element showing an increase in concentration
for all Ni levels is Br, while Mg, Al, Ca, Mn and Co increases at low Ni concentration and
decrease or undergo no significant change at higher Ni levels. It is important to mention
that the level of Rb in leaves is not affected by the application of heavy metals which are
the subject of the present study. K and S content (with a limited amount of data) is also
slightly affected.

At the root level, the presence of heavy metals in the soil clearly induces a significant
growth for most of elements (Table 5). The only elements that show significant decreases in
content are K and As in the presence of Pb, Mn, Cu and Zn. Rb seems to be not affected by
soil amending, except when 30 mg kg−1 of Pb is applied to soil.

2.1.6. Elemental Content in Plant Parts versus Content of Applied HMs

The change in the elemental content of the leaf and root samples with the increase
in the content of heavy metals applied to the soil is illustrated in Figure 4a,b, respectively.
The increase in the Pb concentration in the soil is strongly correlated with the decrease in
the Fe content (R2 < −0.9), Zn, Ba, Sm (−0.9 < R2 < −0.75) in leaves. The root response to
increasing Pb concentration is a weakly positive correlation of all elements except Sr.
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Figure 4. The correlation between the elemental content in the lettuce leaves (a) and root (b) and the
concentration of heavy metals applied to the soil.

Cu is the only element whose concentration increase is strongly positively correlated
with the content of Na (R2 > 0.9), K, Ca and Br (R2 > 0.75) in leaves. The behavior of
the other elements is weakly correlated with the increase in Cu concentration. Increasing
the content of Cu in the soil induces a similar reaction in the root for Na, Zn, La, Sm, Th
(R2 > 0.9) and Fe, Co, Sb (R2 > 0.75). The use of an increasing concentration of Mn only
induces an increase in the content of Co in leaves, while the content of the other elements,
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if it varies, decreases. On the other hand, in the root, the elemental content is strongly
correlated for Fe, Co, Zn, Cs, La, Sm. Th.

The increase in Zn concentration appears to be strongly correlated with Mg, Ca, Mn
content and uncorrelated with S, but the conclusions are based on incomplete data and
therefore cannot be considered definitive; likewise for the influence of Ni on the content of
S and Cl. It is worth noting that the content of elements such as S, K, Ca and Fe in leaves
is strongly anticorrelated with the increase in Zn content in soil. The increase in the Zn
content in the soil goes along with the increase in the content of Na (R2 > 0.9), Rb and Ba
(R2 > 0.75) in root. The variation of Fe and Sb to a greater extent, and K, Zn, As, Rb and Sr
more moderately are also contradictory to the variation of soil Ni content. The influence of
Ni to the root is moderated: R2 > 0.75 for K and R2 < −0.75 for Sr.

The change of elemental content in leaves under the influence of Cd is weakly corre-
lated with this. Only Mn on the one hand and Sb on the other hand show correlations of
R2 > 0.75 and R2 < −0.75 respectively. The influence of Cd on elemental content in the root
is reflected by a strong positive correlation with Fe content, a moderate one with Zn and
As and a negative correlation with K and Co.

We note that, despite the fact that the differences between the content of K and Rb
in the experimental and control samples do not seem to be significant (Table 4), when we
operate with their average values, the values correlate quite a lot with the variation of the
heavy metal concentration added to the soil.

2.2. Correlation between Elemental Content and Bioactive Compounds

As Figure 5 shows, for all treatments, in the case of most of the elements, the variation
of the elemental content is in dissonance with the variation of the total content of carotenoids
and antioxidant activity.

For all determined elements except S and Cl, the use of Ni induces a divergent variation
of the elemental content and of carotenoids with correlation coefficients R2 < −0.75 for
Na, Mg, Al, K, Ca, As, Rb and Sr. A phenomenon similar is induced by the use of Zn
and Cd. When adding Cu to the soil, the total content of carotenoids correlates strongly
with the content of Zn and Th in the leaves. When applying Pb and Mn, we find that
the variation of the carotenoid content is predominantly positively correlated with the
elemental content, but it should be remembered that in the case of these two experimental
lines no data were obtained for Mg, Al, S, Cl, Ca and Mn. None of the investigated elements
shows a significant positive or negative correlation for all the experimental lines. Among
the elements determined only for four of the 6 experimental lines, Ca, Mn and Mg show
negative correlations for all lines, but not always lower than −0.75.

The correlation between total polyphenolic and elemental content has significant
values only for four elements when using Cd (Na: R2 > 0.75; S, Zn, Ba: R2 < −0.75). When
Ni was applied to the soil, the correlation coefficient for K, Fe, As, Rb and Zn is significantly
negative and for S and Cl significantly positive.

The antioxidant activity is weakly correlated with the elemental content then for the
experimental line based on Cu, only Cl and K showing significantly negative coefficients
and Fe significantly positive. When using Mn, no element was positively correlated with
antioxidant activity, instead most elements (Na, K, Fe, Zn, Br, Sr, Cs, Ba) have significantly
negative correlation coefficients. We also observe a large number of negative correlations
in the case of the experimental line with Ni, but S and Cl are positively correlated with the
antioxidant activity.
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2.3. Translocation Factor

The capacity of the plants to accumulate metals in different parts varies with the plant
species and metal type, and can be measured by translocation factor introduced by Yoon
et al. in 2006 [6], which related to the ratio of element content in aerial and underground
parts of the plant.

In our experiment, the translocation factor was calculated for 14 of 20 determined
elements, those which were detected both for leaves and root (Table 6).

Values were ranged from 0.01 for Sb (Pb III) to 4.75 for the Sm control value. As was
previously mentioned, the literature is very poor with regard to data on the multielement
content of lettuce. Based on the values reported for lettuce grown in soil contaminated with
heavy metals [61,63,64] we calculated the translocation factor for Fe and Zn. The obtained
values are closed to our values.

For the elements as Fe, Zn, Cs, Ba, Sm, Th the heavy metal addition to soil induced
a suppression of the transport process regardless the metal used. The use of Cu leads to
a slight increase of translocation factor for Na, K, As, Br, Rb for all concentrations used
compared to the control and for Co and Sr at the smallest dose used.

The experimental line with Mn is characterized by an increase of K and As transport
from root to leaves at all doses, and Na, Br, Rb when 675 and 1350 mg kg−1 were used. The
transport of Sr was stimulated only when the lowest concentration was applied.

The use of Cd stimulated the Co and Br transport, but suppressed the transport of
other elements regardless the concentration used.

The delivery of K, As, Br, Rb and Sr was triggered by the lowest dose of Pb, but the
highest dose also stimulated the transport of K, Br and Sr.

It is obvious that the impact of Ni on the transfer factor is minimal compared to the
other heavy metals and is difficult to describe in the absence of any evident patterns.

The mobility of K, Br and As are stimulated by the application of most of the ex-
perimental doses. In all, 13 of the 18 doses used stimulate the transport of Br, 12 and 11,
the transport of K and As, respectively. Of all the heavy metals used, Cu stimulates the
transport of the largest number of elements and this happens at all three applied doses.
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Table 6. Translocation factor of lettuce.

mg kg−1 Na K Fe Co Zn As Br Rb Sr Sb Cs Ba Sm Th

C 0 0.74 0.72 1.00 0.09 3.43 0.09 0.43 0.78 0.68 0.33 0.56 0.66 4.75 1.05

Pb

I 0.64 0.86 0.11 0.09 1.45 0.18 0.44 0.88 0.75 0.04 0.19 0.08 0.07

II 0.42 0.53 0.04 0.02 0.60 0.11 0.32 0.50 0.24 0.02 0.09 0.03 0.03

III 0.61 0.76 0.08 0.04 0.66 0.09 0.44 0.76 0.78 0.01 0.20 0.07 0.08

Mn

I 0.85 0.93 0.17 0.07 1.87 0.19 0.50 0.95 0.87 0.04 0.37 0.09 0.08

II 0.83 1.15 0.07 0.06 1.26 0.16 0.45 1.08 0.43 0.02 0.12 0.05 0.05

III 0.56 0.76 0.06 0.04 0.79 0.14 0.29 0.66 0.21 0.02 0.11 0.03 0.05

Cu

I 0.87 1.20 0.25 0.14 0.85 0.13 0.84 1.10 0.97 0.08 0.17 0.34 0.06

II 0.78 0.98 0.18 0.09 0.71 0.10 0.49 0.89 0.59 0.04 0.29 0.16 0.08

III 0.85 1.40 0.09 0.04 0.58 0.14 0.92 0.96 0.55 0.02 0.15 0.07 0.03

Zn

I 1.04 0.98 0.11 0.02 0.61 0.17 0.62 0.79 0.54 0.03 0.18 0.26 0.08 0.05

II 1.18 0.82 0.20 0.10 0.53 0.19 0.58 0.68 0.64 0.04 0.21 0.37 0.15 0.12

III 0.75 0.66 0.34 0.11 0.38 0.08 0.41 0.65 0.77 0.16 0.35 0.18 0.29 0.17

Cd

I 0.68 0.68 0.76 0.12 0.71 0.05 0.51 0.69 0.67 0.20 0.41 0.61 0.35

II 0.72 0.70 0.44 0.16 1.56 0.05 0.56 0.69 0.66 0.20 0.37 0.67 0.14

III 0.73 0.72 0.59 0.18 1.60 0.04 0.52 0.71 0.53 0.30 0.36 0.92 0.34

Ni

I 0.66 0.75 0.61 0.08 0.67 0.08 0.52 0.73 0.64 0.23 0.45 0.47 0.84 0.29

II 0.64 0.75 0.65 0.14 1.37 0.10 0.37 0.75 0.61 0.51 0.13 0.22 0.83 0.31

III 0.70 0.55 0.50 0.12 0.86 0.06 0.38 0.56 0.50 0.23 0.53 0.35 0.51 0.25

Bold—values exceeding control. [52] Fe:1.37/0.94; Zn:0.0009/0.0026. [53] Zn: 0.94. [50] Zn: 0.625.

2.4. Cluster Analysis

Cluster analysis was applied to experimental data to give a better insight into the
uptake of elements by plants and to assess the contribution of specific factors that may
have an effect on plant behavior.

For leaves, the analysis was limited to 14 elements which were detected in all inves-
tigated samples. The tree diagram (Figure 6a) shows that the control samples are well
distinguished from the samples obtained in the presence of heavy metals, the latter being
divided into two clusters. The first cluster, less numerous, joins on the one hand the samples
subjected to the minimum dose of Pb and Ni, and the intermediate dose of Mn and on the
other, the samples obtained at maximum doses of Pb and Mn and the intermediate dose of
Ni. The second cluster is more numerous and is also divided into several subclusters, each
of them heterogeneous both in terms of the dose applied and the type of heavy metal. In
this way, we cannot say that the dose applied has a more important role in the grouping of
samples than the type of metal applied, or vice versa.

The cluster analysis for the root samples was performed based on 14 elements that
were detected in all samples. The tree diagram (Figure 6b) indicates the formation of two
clusters. The first cluster includes two groups of samples, one of them composed of the
control sample, all the samples grown in the presence of Ni, and the highest dose of Zn,
and the second of all the samples grown in the presence of Cd. The second cluster is much
more heterogeneous and includes, on the one hand, the sample grown at the average dose
of Pb and on the other hand, all the other samples. We note that the root samples, unlike
the leaf samples, are partially grouped according to the type of metal applied, both the
samples with Ni and those with Cd being close to the control sample. We can also say that
the impact that the minimum and maximum dose of three of the applied elements (Ni, Cd
and Pb) have on the roots is quite similar, a fact shown by the minimum distance between
them. We cannot say the same about the other three elements.
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3. Materials and Methods
3.1. Chemicals and Materials

For bioactive compounds extraction and analysis ethanol and acetone were purchased
from Chimopar, Bucharest, Romania, Folin-Ciocalteu reagent, gallic acid, anhydrous car-
bonate 2,2′-Diphenyl-picrylhydrazyl (DPPH) and 6-hydroxy-2,5,7,8-tetramethylchroman
-2 carboxylic acid (Trolox) were employed from Sigma-Aldrich, Darmstadt, Germany. All
chemicals used in the experiments were of analytical grade and the ultrapure water was
produced with a Direct-Q® 3 UV Water Purification System, Merck (Darmstadt, Germany).

3.2. Plant Growth Conditions

Lettuce seeds (10 grains) were sown at a depth of 1 cm in plastic pots (0.81 L,
13.5 cm in diameter) containing 636 g of garden substrate with active humus and fer-
tilizer for 6 weeks (Agro, 50 L). The physicochemical characteristics of the soil used were
pH = 5.5 ± 0.5, N—at least 0.1 m/m%, P2O5—at least 0.01 m/m%, and K2O—at least
0.03 m/m%. The heavy metal salts selected in this study were: copper(II) chloride di-
hydrate (CuCl2·2H2O), cadmium acetate dihydrate (Cd(CH3COO)2·2H2O), zinc acetate
dihydrate (Zn(CH3COO)2·2H2O), manganese(II) chloride tetrahydrate (MnCl2·4H2O),
nickel chloride (NiCl2) and lead(II) sulfate (PbSO4). The concentrations of the heavy metal
salts were: one under accepted limit (I), one-maximum accepted limit (II) and one above
maximum accepted limit (III). These were selected as follows Cu (15, 30, 100 mg kg−1); Cd
(0.75, 1.5, 3 mg kg−1); Zn (75, 150, 300 mg kg−1); Mn (675, 1350, 1500 mg kg−1); Ni (15, 30,
75 mg kg−1) and Pb (15, 30, 50 mg kg−1). These salts were dissolved each in 200 mL of
ultrapure water, with which the pots were watered. Plant watering was carried out every
4 days with 100 mL of ultrapure water.

All plants, including control (grown in the absence of heavy metal salts), were grown
in a Memmert (ICH260L) climate chamber under controlled light conditions (for 12 h from
24 h), 60% humidity and a day/night temperature cycle of 20/10 ◦C. Three replicates of
each plant were grown. Plant samples were taken 6 weeks after sowing.

3.3. Plants and Soil Analysis after Harvesting
3.3.1. Determination of Chlorophylls and Total Carotenoids Content

0.5 g of fresh lettuce leaves are ground with liquid nitrogen in the presence of CaCO3
(0.1 g). 10 mL of acetone is added over the thus crushed plant and the grinding is continued
for 2 min, after which the clear solution is decanted, and the rest is centrifuged for 10 min
at 7000 rpm. Over the remaining plant after decantation, it is adding another 10 mL of
acetone and agitated on the shaker at 450 rpm for 30 min, then centrifuge and separates the
supernatant. The operation is repeated with another 5 mL of acetone, at the end the plant
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being discolored. The solutions from the three extraction stages come together in a single
bottle. The pigment extraction was performed in triplicate.

The quantitative analysis of chlorophyll a, chlorophyll b and total carotenoids from the
obtained extracts was done by UV-VIS spectroscopy using a T80 UV-VIS Spectrophotometer
(PG Instruments Limited). In this regard, the absorption spectra of the extracts in the
wavelength range 400–750 nm. To determine the pigments concentrations, the following
calculation formulas were used [65]:

ca (mg mL−1) = 11.24 × A661.6 − 2.04 × A644.8

cb (mg mL−1) = 20.13 × A644.8 − 4.19 × A661.6

c(x+c) (mg mL−1) = (1000 × A470 − 1.90 × ca − 63.14 × cb)/214

where ca is the concentration of chlorophyll a, cb is the concentration of chlorophyll b and
c(x+c) is the concentration of total carotenoids.

3.3.2. Total Polyphenols Evaluation

Fresh lettuce leaves (1 g) were ground in the presence of liquid nitrogen in solvent
(15 mL) for 3 min after which the mixture was subjected to ultrasonic-assisted extraction
using an Elma Transsonic T ultrasonic bath for 30 min at room temperature. The extraction
solvent was 60% ethanol. After extraction, the mixture was centrifuged at 7000 rpm for
10 min and the supernatant was decanted and stored in the refrigerator at 4 ◦C until analysis.
All extracts were obtained in triplicate.

The content of total polyphenols was determined by the Folin-Ciocalteu method [66].
Thus, 1 mL of extract and 0.5 mL of Folin-Ciocalteu reagent was added to a 10 mL volu-
metric flask containing 5 mL of double distilled water. The content of the flask was mixed
and after 3 min of standing, 1.5 mL of Na2CO3 (5 g L−1) was added and the volume of the
flask was adjusted with double distilled water. The samples were placed in a water bath at
50 ◦C, where they were kept for 16 min, after which were removed and allowed to cool
to room temperature. The absorbances of the samples were read in relation to the double
distilled water at 765 nm.

To determine the total amount of polyphenols, a calibration curve was drawn using
as standard a gallic acid solutions in the range of 0.001–0.800 mg mL−1. Gallic acid
concentrations were obtained by successive dilutions with double distilled water starting
from a stock solution with a concentration of 1 mg mL−1.

3.3.3. Antioxidant Capacity Determination by DPPH Method

A slightly modified procedure of Brand-Williams et al. [67] was used for the antioxi-
dant activity determination. Thus, 0.01 mL of extract was added to 3.9 mL of DPPH-2,2
diphenyl-picryl-hydrazyl radical solution (0.0025 g/100 mL methanol). The mixture was
left in the dark for 10 min, after that the absorbance of the mixture was measured at
515 nm comparative to a mixture obtained from 0.01 mL extract added to 3.9 mL methanol.
The antioxidant activity was determined using a calibration curve drawn for different
concentrations of Trolox (0–400 µM).

3.4. Multielemental Investigation of Lettuce and Soil Substrate by NAA

To determine the elemental content of the lettuce biomass and soil substrate, neutron
activation analysis (NAA) at the pulsed fast reactor IBR-2 (FLNP JINR, Dubna) was used.
A total number of 55 plant samples and 28 soil samples were analyzed. To determine short-
lived isotopes, biological (about 0.3 g) and substrate samples (about 0.1 g) were irradiated
for 3 min and 1 min, respectively, under a thermal neutron fluency rate of approximately
1.6 × 1013 n cm−2 s−1. Both types of samples were measured for 15 min. In the case of
long-lived isotopes substrate (about 0.1 g) samples were irradiated for 3 days under a
resonance neutron fluency rate of approximately 3.31 × 1012 n cm−2 s−1, repacked and
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measured using high purity germanium detectors twice (after 4–5 days and 20–23 days
of decay).

3.5. Statistical Analysis

The obtained results are presented as the mean of three measurements ± SD (standard
deviation). In order to evaluate the statistically significant differences between groups
(p < 0.05), one-way analysis of variance (ANOVA) followed by Tukey’s test performed with
Minitab 17 (Minitab Ltd., Coventry, UK) were used.

4. Conclusions

The paper evaluated the variation of the content of biologically active compounds,
elemental content and the antioxidant activity in the plants grown in contaminated soil
with different concentration of Cu, Cd, Mn, Ni, Zn and Pb, compared to the control plants.

The amount of chlorophyll a, chlorophyll b, total carotenoids and polyphenols depends
on metal from soil and their concentration.

The antioxidant activity of plants grown in the presence of heavy metals was higher
than in control plants, except for plants grown in the presence of Cu at a concentration
above the maximum accepted limit, Mn and Pb at a concentration under accepted limit.
For these plants, the antioxidant activity was lower than in the control plants.

The use of Pb and Mn induces a decrease in the concentration of most elements
compared to the control and this decrease is usually strongly correlated with the increase
in the heavy metal concentration in the soil. For low doses of Cu, Cd and Ni we notice an
increased number of elements with a significant increase in concentration compared to the
impact of higher doses. The dose of Zn with the most stimulating effect seems to be the
average one.

At the root level, the presence of heavy metals in the soil clearly induces a significant
increase for most elements. The relationship between the elemental content in the leaves
and bioactive compounds content is dependent on the experimental line, none of the
investigated elements showing us a significant positive or negative correlation between the
elemental content and total carotenoids for all the experimental lines. For elements such as
Fe, Zn, Cs, Ba, Sm and Th, the addition of heavy metals to the soil induced a suppression
of the root-to-leaf transport process, regardless of the metal used. Of all the heavy metals
applied, Cu stimulates the transport of the largest number of elements and this happens at
all three applied doses. The only characteristic that categorically divides the lettuce leaves
samples into categories is the amendment or not of the soil with the help of heavy metals.
The cluster analysis of the roots, based on the elemental content, highlights the fact that the
samples grown in the presence of Ni and Cd group together, respectively.

In conclusion, the plants were influenced by the presence in soil of selected metals and
their composition depends on metal quantity.
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