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Abstract: Genetic improvement of milk fatty acid content traits in dairy cattle is of great significance.
However, chromatography-based methods to measure milk fatty acid content have several disad-
vantages. Thus, quick and accurate predictions of various milk fatty acid contents based on the
mid-infrared spectrum (MIRS) from dairy herd improvement (DHI) data are essential and meaningful
to expand the amount of phenotypic data available. In this study, 24 kinds of milk fatty acid concen-
trations were measured from the milk samples of 336 Holstein cows in Shandong Province, China,
using the gas chromatography (GC) technique, which simultaneously produced MIRS values for the
prediction of fatty acids. After quantification by the GC technique, milk fatty acid contents expressed
as g/100 g of milk (milk-basis) and g/100 g of fat (fat-basis) were processed by five spectral pre-
processing algorithms: first-order derivative (DER1), second-order derivative (DER2), multiple scatter-
ing correction (MSC), standard normal transform (SNV), and Savitzky–Golsy convolution smoothing
(SG), and four regression models: random forest regression (RFR), partial least square regression
(PLSR), least absolute shrinkage and selection operator regression (LassoR), and ridge regression
(RidgeR). Two ranges of wavebands (4000~400 cm−1 and 3017~2823 cm−1/1805~1734 cm−1) were
also used in the above analysis. The prediction accuracy was evaluated using a 10-fold cross vali-
dation procedure, with the ratio of the training set and the test set as 3:1, where the determination
coefficient (R2) and residual predictive deviation (RPD) were used for evaluations. The results showed
that 17 out of 31 milk fatty acids were accurately predicted using MIRS, with RPD values higher than
2 and R2 values higher than 0.75. In addition, 16 out of 31 fatty acids were accurately predicted by
RFR, indicating that the ensemble learning model potentially resulted in a higher prediction accuracy.
Meanwhile, DER1, DER2 and SG pre-processing algorithms led to high prediction accuracy for most
fatty acids. In summary, these results imply that the application of MIRS to predict the fatty acid
contents of milk is feasible.

Keywords: prediction; milk; fatty acid content; mid-infrared spectroscopy; Chinese Holstein cow

1. Introduction

Lipids in milk provide a major source of energy and the essential structural compo-
nents for the cell membranes of the newborns in all mammalian species. They also confer
distinctive properties to dairy foods that affect further processing procedures [1]. Milk fat
is rich in many fatty acids that are important to human health [2–4]. Studies have shown
that more than 400 different fatty acids have been identified in milk fat, but most of them
only appeared in trace amounts [5], where around 12 kinds of fatty acids in bovine milk fat
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presented at above a 1% concentration [6]. Moreover, changes in milk fatty acids may also
affect cow health and energy statuses [7].

Currently, several techniques have been developed to measure fatty acids in milk,
including high performance liquid chromatography (HPLC), gas chromatography (GC),
near-infrared spectroscopy (NIRS), mid-infrared spectrum (MIRS), etc. [8–10]. Chemical
methods (e.g., HPLC and GC) provide high measurement accuracy for fatty acid contents
of bovine milk, but their pretreatments are multifarious and costly, causing difficulties
in realizing the high-throughput measurements [11,12]. Of note, infrared spectroscopy-
based measurement methods show advantages of providing rapid and low-cost predictions
of milk fatty acid contents [13]; thus, they have become the promising technologies for
high-throughput measurements, but they still need to be optimized to improve their
prediction accuracy.

The utilization of infrared spectroscopy to predict the milk fatty acid contents in dairy
cattle has been reported in many studies. Coppa et al. (2010) established a prediction
equation for milk fatty acid contents based on the NIRS from 468 milk samples that
predicted the total milk fatty acids, SFA, MUFA, PUFA, C18:1, and conjugated linoleic
acid (CLA), with R2 values greater than 0.88. Soyeurt et al. (2006) developed a fatty acid
prediction model using 600 milk samples from 275 cows of 6 breeds to predict C10:0,
C12:0, C14:0, C16:0, C16:1cis-9, C18:1, C18:2cis-9, SFA (saturated fatty acids), and MUFA
(monounsaturated fatty acids), based on MIRS data, with the cross-validated coefficients
of determination (R2) of 0.62 ~ 0.94. Subsequently, Soyeurt et al. (2011) investigated
the MIRS prediction of fatty acids across various cattle breeds, production systems, and
countries. They summarized that the usefulness of the built equations providing the best
prediction accuracy for animal breeding and milk payment systems was R2 ≥ 0.75 and
0.95, respectively [4]. For the Dutch cattle breeds (Dutch Friesian, Meuse-Rhine-Yssel,
Groningen White Headed, and Jersey), Maurice-Van Eijndhoven et al. (2020) updated the
calibration equations from the European project RobustMilk [4] using the enlarged datasets
and validated their usefulness to predict most milk fatty acids. De Marchi et al. (2011) used
267 milk samples from Brown Swiss cattle to predict fatty acids by MIRS and suggested
the implementation of the used prediction models in milk recording schemes on fatty acid
contents information for breeding purposes. Fleming et al. (2017) used MIRS to predict fatty
acid contents from 373 cows of four breeds and obtained the cross-validation R2 of 0.60~0.90
for most individual fatty acid models. In addition, the genetic correlations among milk
fatty acids predicted by MIRS were also explored in a large-scale milk sampling (n = 34,141)
of New Zealand dairy cattle, where they implied the application of MIRS as the phenotypic
proxy for the genetic selection of fatty acid contents [14]. In the Chinese Holstein population,
Du et al. (2020) estimated the heritability of MIRS and several milk production traits,
i.e., protein, fat, and lactose percentages, along with their genetic correlations. They found
that MIRS heritability ranged from 0 to 0.11 and genetic correlations varied significantly [15].
In sheep, ewes, and goats, MIRS was also used to predict the fatty acid profiles for the
establishment and validation of the predictive models [16–18].

Previous studies used a partial least square regression model (non-integrated learn-
ing model) [19,20] to investigate the effects of different spectral preprocessing methods
on the prediction equation accuracy [4,5,21–23]. However, the combined effects of the
regression models and spectral preprocessing methods on the prediction equation accuracy
for different fatty acids has rarely been explored, especially for the milk fat of Chinese
Holstein cows. Therefore, the objective of this study was to investigate the prediction
methods under the optimal strategy to predict milk fatty acids with high accuracy based
on the MIRS data from the dairy herd improvement (DHI) database of Chinese Holstein
cattle and to potentially provide the high-throughput measurements of a large amount
of milk fatty acid phenotypic data; thereby, our study enabled milk fatty acid traits to be
feasibly recorded for genetic evaluations of such traits in dairy cattle breeding programs
in China. To the best of our knowledge, this is the first time the MIRS predictions on
fatty acids of two types of fatty acid measurements (g/100 g of milk and g/100 g fat)
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have been investigated with five pre-processed algorithms and two ranges of wavebands
(4000~400 cm−1 and 3017~2823 cm−1/1805~1734 cm−1) using four regression models in
Chinese Holstein cattle.

2. Results
2.1. Statistical Description

After quantification by the GC technique, statistical descriptions of individual and
grouped fatty acid contents expressed as milk-basis (g/100 g of milk) and fat-basis (g/100 g
of fat) are summarized in Table 1. The mean values of the individual fatty acid contents
varied from 0.003 (C11:0, C20:1, C20:5n3, and C18:3n6) to 0.877 (C16:0) and their variation
coefficients varied from 5.837% (C24:0) to 35.416% (C10:0), when they were expressed as
milk-basis (g/100 g of milk). For grouped fatty acid contents, the mean values varied from
0.060 (SCFA) to 1.627 (SFA), and their variation coefficients ranged from 25.514% (PUFA)
to 33.392% (SCFA) (Table 1). Similarly, the mean values of individual fatty acid contents
varied from 0.094 (C20:5n3) to 28.620 (C16:0), and their variation coefficients varied from
13.802% (C16:0) to 44.207% (C22:1n9), when they were expressed as fat-basis (g/100 g of fat).
For grouped fatty acid contents, the mean values varied from 1.934 (SCFA) to 52.710 (SFA),
and their variation coefficients ranged from 12.978% (MCFA) to 19.365% (LCFA) (Table 1).

Table 1. The minimum, mean, maximum, and variation coefficient of fatty acid contents measured
by the GC technique.

Fatty
Acid

Milk-Basis (g/100 g of Milk) Fat-Basis (g/100 g of Fat)

Sample
Size Minimum Mean Maximum

Variation
Coefficient

(%)
Sample

Size Minimum Mean Maximum
Variation

Coefficient
(%)

C8:0 325 0.007 0.016 0.028 28.784 324 0.327 0.532 0.757 14.778
C10:0 323 0.013 0.044 0.082 35.416 326 0.598 1.402 2.324 21.273
C11:0 317 0.002 0.003 0.006 25.439 319 0.053 0.110 0.175 23.125
C12:0 321 0.019 0.062 0.115 34.871 327 0.829 2.018 3.323 21.721
C13:0 321 0.003 0.005 0.008 24.468 323 0.082 0.166 0.255 22.062
C14:0 322 0.094 0.231 0.371 27.975 321 4.058 7.546 11.358 15.075
C15:0 320 0.012 0.029 0.052 29.138 321 0.456 0.968 1.519 21.227
C16:0 325 0.366 0.877 1.491 28.154 323 17.710 28.620 42.251 13.802
C17:0 324 0.008 0.016 0.027 26.180 322 0.285 0.528 0.797 19.289
C18:0 320 0.098 0.313 0.600 35.024 326 4.070 10.254 17.150 25.195
C20:0 321 0.006 0.008 0.011 15.098 321 0.157 0.270 0.398 19.278
C22:0 332 0.004 0.005 0.006 9.413 329 0.074 0.172 0.286 25.529
C24:0 324 0.004 0.005 0.005 5.837 323 0.069 0.154 0.246 24.812
C14:1 325 0.006 0.019 0.033 32.157 317 0.230 0.610 1.138 31.033
C16:1 322 0.016 0.038 0.068 30.326 320 0.602 1.258 2.202 26.094

C18:1n9c 321 0.189 0.460 0.815 28.657 323 7.953 15.282 23.746 20.201
C20:1 321 0.003 0.003 0.005 13.134 319 0.065 0.116 0.190 24.333

C22:1n9 322 0.007 0.015 0.028 32.090 317 0.193 0.510 1.140 44.207
C20:3n6 322 0.003 0.006 0.009 24.212 322 0.109 0.192 0.288 18.233
C20:4n6 323 0.004 0.007 0.010 20.368 317 0.122 0.222 0.329 18.416
C20:5n3 332 0.002 0.003 0.004 10.163 323 0.046 0.094 0.149 23.530
C18:2n6c 323 0.030 0.070 0.120 28.437 327 1.052 2.300 3.654 18.149
C18:3n6 321 0.003 0.003 0.004 7.621 318 0.047 0.100 0.169 24.898
C18:3n3 324 0.004 0.008 0.013 24.352 324 0.155 0.278 0.417 16.480

SFA 325 0.692 1.627 2.714 28.415 322 29.494 52.710 74.351 13.287
UFA 323 0.288 0.638 1.090 26.277 326 13.162 21.266 31.904 18.082

MUFA 322 0.240 0.539 0.938 26.878 324 9.501 17.920 27.111 19.321
PUFA 324 0.046 0.098 0.159 25.514 325 1.720 3.196 4.863 16.229
SCFA 323 0.020 0.060 0.109 33.392 324 0.926 1.934 2.936 18.762
MCFA 325 0.580 1.269 2.147 27.475 322 25.617 41.372 61.272 12.978
LCFA 321 0.371 0.925 1.610 28.353 326 17.003 30.776 46.784 19.365

Note: SFA, UFA, MUFA, PUFA, SCFA, MCFA, LCFA, and GC indicate saturated fatty acid, unsaturated fatty acid,
monounsaturated fatty acid, polyunsaturated fatty acid, short chain (4 to 10 carbons) fatty acid, medium chain (11
to 16 carbons) fatty acid, long chain (more than 16 carbons) fatty acid, and gas chromatography, respectively. The
variation coefficient (%) is the ratio of standard deviation to the mean, which can be used to compare the degree
of dispersion among the fatty acids.
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2.2. Predictions of Milk Fatty Acid Contents

The best prediction accuracy obtained by the optimal strategy from the test set for each
fatty acid is summarized in Table 2, after considering different pre-processing algorithms,
MIRS ranges, and regression models. In total, 16, 7, 6, and 2 fatty acids achieved the
best prediction accuracy when the RFR, LassoR, PLSR, and RidgeR models were used,
respectively. Similarly, the DER2, DER1, SG, SNV, and MSC algorithms resulted in 9, 8, 8,
4, and 2 fatty acids for best prediction accuracy, respectively. In addition, 22 fatty acids
obtained the best prediction accuracy when they were expressed as g/100 g of milk (milk-
basis), but only 9 fatty acids when expressed as g/100 g of fat (fat-basis). For most fatty acids
(16/31), the ensemble learning model (RFR), with higher robustness and generalization,
produced higher prediction accuracy than those predicted by the non-ensemble learning
models (Table 2).

Table 2. Best prediction accuracy for the optimal strategy in the test set for each fatty acid.

Fatty Acid
Pre-Processing

Algorithm MIRS Range (cm−1) Model Basis (g/100 g)
Test Set

R2 RPD

C8:0 SNV 3017~2823/1805~1734 PLSR Milk 0.77 2.11
C10:0 DER1 3017~2823/1805~1734 RFR Milk 0.77 2.07
C11:0 DER1 3017~2823/1805~1734 LassoR Fat 0.55 1.48
C12:0 DER1 3017~2823/1805~1734 LassoR Milk 0.84 2.50
C13:0 SG 3017~2823/1805~1734 PLSR Milk 0.66 1.72
C14:0 DER1 4000~400 RFR Milk 0.78 2.05
C15:0 SG 3017~2823/1805~1734 PLSR Milk 0.57 1.53
C16:0 SG 3017~2823/1805~1734 RFR Milk 0.75 1.98
C17:0 SG 3017~2823/1805~1734 LassoR Milk 0.73 1.89
C18:0 DER1 4000~400 PLSR Milk 0.77 2.08
C20:0 SNV 3017~2823/1805~1734 PLSR Fat 0.82 2.35
C22:0 DER2 4000~400 RFR Fat 0.86 2.66
C24:0 SG 4000~400 RFR Fat 0.80 2.20
C14:1 MSC 3017~2823/1805~1734 PLSR Fat 0.62 1.63
C16:1 SNV 3017~2823/1805~1734 LassoR Milk 0.62 1.64

C18:1n9c SG 3017~2823/1805~1734 LassoR Milk 0.77 2.00
C20:1 DER2 4000~400 RFR Fat 0.76 2.04

C22:1n9 DER1 4000~400 RFR Fat 0.65 1.67
C18:2n6c MSC 4000~400 RFR Milk 0.63 1.61
C18:3n3 SG 4000~400 RFR Milk 0.70 1.82
C18:3n6 DER2 3017~2823/1805~1734 RFR Fat 0.76 2.00
C20:3n6 DER1 4000~400 RFR Milk 0.62 1.61
C20:4n6 SNV 4000~400 RFR Milk 0.50 1.42
C20:5n3 DER1 4000~400 RFR Fat 0.91 3.06

SFA SG 3017~2823/1805~1734 RFR Milk 0.76 2.01
UFA DER2 3017~2823/1805~1734 LassoR Milk 0.82 2.15

MUFA DER2 3017~2823/1805~1734 LassoR Milk 0.79 2.06
PUFA DER2 4000~400 RidgeR Milk 0.71 1.75
SCFA DER2 4000~400 RFR Milk 0.77 2.04
MCFA DER2 3017~2823/1805~1734 RFR Milk 0.75 2.00
LCFA DER2 3017~2823/1805~1734 RidgeR Milk 0.83 2.29

Note: MIRS, DER1, DER2, MSC, SNV, SG, RFR, PLSR, LassoR, RidgeR, R2, and RPD indicate mid-infrared spec-
trum, first-order derivative, second-order derivative, multiple scattering correction, standard normal transform,
Savitzky–Golsy convolution smoothing, random forest regression, partial least square regression, least absolute
shrinkage and selection operator regression, ridge regression, determination coefficient, and residual predictive
deviation, respectively.

In Table 2, the best prediction accuracy (R2) for the optimal strategy showed R2 values
from 0.62 (C20.3n6) to 0.91 (C20.5n3) in the test set for 28 fatty acids, where only 6 fatty
acids showed R2 values higher than 0.8, including C12:0 (0.84), C20:0 (0.82), C22:0 (0.86),
C20:5n3 (0.91), UFA (0.82), and LCFA (0.83). For R2 values higher than 0.75 and RPD
values higher than 2, we found 17 fatty acids in total: C8:0 (R2 = 0.77 and RPD = 2.11),



Molecules 2023, 28, 666 5 of 11

C10:0 (R2 = 0.77 and RPD = 2.07), C12:0 (R2 = 0.84 and RPD = 2.50), C14:0 (R2 = 0.78
and RPD = 2.05), C18:0 (R2 = 0.77 and RPD = 2.08), C20:0 (R2 = 0.82 and RPD = 2.35),
C22:0 (R2 = 0.86 and RPD = 2.66), C24:0 (R2 = 0.80 and RPD = 2.20), C18:1n9c (R2 = 0.77
and RPD = 2.00), C20:1 (R2 = 0.76 and RPD = 2.04), C20:5n3 (R2 = 0.91 and RPD = 3.06),
SFA (R2 = 0.76 and RPD = 2.01), UFA (R2 = 0.82 and RPD = 2.15), MUFA (R2 = 0.79 and
RPD = 2.06), SCFA (R2 = 0.77 and RPD = 2.04), MCFA (R2 = 0.75 and RPD = 2.00), and
LCFA (R2 = 0.83 and RPD = 2.29) (Table 2).

Table 3 shows the best prediction accuracy of different prediction models for each
fatty acid, using training and test sets. All prediction accuracies (R2 and RPD) after
four regression model analyses (RFR, PLSR, LassoR, and RidgeR), based on two types
of fatty acid measurements (g/100 g of milk and g/100 g fat), two ranges of wavebands
(4000~400 cm−1 and 3017~2823 cm−1/1805~1734 cm−1), and five spectral pre-processing
algorithms (DER1, DER2, MSC, SNV, and SG), are listed in Supplementary File S1. In the
training set, the R2 values ranged from 0.18 to 0.79, with a mean of 0.58, and RPD values
ranging from 1.08 to 2.18, with a mean of 1.59, when expressed as milk-basis (g/100 g of
milk). Similarly, R2 values ranged from 0.13 to 0.90, with a mean of 0.47, and RPD values
from 1.07 to 3.20, with mean of 1.52, when expressed as fat-basis (g/100 g of fat). In the
test set, R2 values ranged from 0.14 to 0.84 with mean of 0.66 and RPD values from 1.04 to
2.50 with mean of 1.78 when expressed as milk basis (g/100 g of milk). Similarly, the R2

values ranged from 0.15 to 0.91 with mean of 0.49 and RPD values from 1.07 to 3.06 with
mean of 1.52 when expressed as fat basis (g/100 g of fat) (Table 3). Additionally, the MIRS
and processed MIRS after DER1, DER2, and SG pre-processing algorithms are shown in
Figure 1.

Table 3. Best prediction accuracy of different prediction models for each fatty acid expressed as
g/100 g of fat and g/100 g of milk, using training and test sets.

Fatty
Acid

Pre-
Processing
Algorithm

MIRS Range (cm−1) Model
Training Set Test Set

R2 RPD R2 RPD

Milk Fat Milk Fat Milk Fat Milk Fat Milk Fat Milk Fat Milk Fat

C8:0 SNV MSC 3017~2823/1805~1734 3017~2823/1805~1734 PLSR LassoR 0.75 0.43 2.01 1.33 0.77 0.43 2.11 1.32
C10:0 DER1 DER1 3017~2823/1805~1734 3017~2823/1805~1734 RFR LassoR 0.61 0.49 1.60 1.40 0.77 0.44 2.07 1.33
C11:0 DER2 DER1 3017~2823/1805~1734 3017~2823/1805~1734 LassoR LassoR 0.57 0.51 1.53 1.43 0.53 0.55 1.46 1.48
C12:0 DER1 SNV 3017~2823/1805~1734 3017~2823/1805~1734 LassoR LassoR 0.79 0.55 2.18 1.49 0.84 0.27 2.50 1.17
C13:0 SG SNV 3017~2823/1805~1734 3017~2823/1805~1734 PLSR LassoR 0.24 0.56 1.16 1.50 0.66 0.42 1.72 1.30
C14:0 DER1 DER1 4000~400 3017~2823/1805~1734 RFR PLSR 0.66 0.16 1.72 1.10 0.78 0.43 2.05 1.34
C15:0 SG MSC 3017~2823/1805~1734 3017~2823/1805~1734 PLSR PLSR 0.45 0.25 1.37 1.17 0.57 0.32 1.53 1.22
C16:0 SG DER2 3017~2823/1805~1734 4000~400 RFR RidgeR 0.64 0.55 1.66 1.33 0.75 0.22 1.98 1.12
C17:0 SG MSC 3017~2823/1805~1734 3017~2823/1805~1734 LassoR PLSR 0.65 0.40 1.70 1.32 0.73 0.59 1.89 1.56
C18:0 DER1 SNV 4000~400 3017~2823/1805~1734 PLSR LassoR 0.66 0.60 1.72 1.58 0.77 0.55 2.08 1.49
C20:0 SG SNV 3017~2823/1805~1734 3017~2823/1805~1734 PLSR PLSR 0.52 0.76 1.46 2.04 0.71 0.82 1.88 2.35
C22:0 DER2 DER2 4000~400 4000~400 RidgeR RFR 0.70 0.83 1.76 2.42 0.52 0.86 1.44 2.66
C24:0 DER2 SG 4000~400 4000~400 RidgeR RFR 0.64 0.90 1.55 3.20 0.61 0.80 1.46 2.20
C14:1 SNV MSC 3017~2823/1805~1734 3017~2823/1805~1734 LassoR PLSR 0.63 0.38 1.65 1.28 0.51 0.62 1.40 1.63
C16:1 SNV MSC 3017~2823/1805~1734 3017~2823/1805~1734 LassoR LassoR 0.54 0.38 1.47 1.27 0.62 0.55 1.64 1.50
C18:1n9c SG MSC 3017~2823/1805~1734 3017~2823/1805~1734 LassoR LassoR 0.60 0.52 1.58 1.45 0.77 0.34 2.00 1.20
C20:1 SG DER2 3017~2823/1805~1734 4000~400 PLSR RFR 0.54 0.77 1.48 2.06 0.49 0.76 1.41 2.04
C22:1n9 DER2 DER1 4000~400 4000~400 RFR RFR 0.51 0.53 1.43 1.45 0.45 0.65 1.36 1.67
C18:2n6c MSC SG 4000~400 4000~400 RFR RidgeR 0.59 0.13 1.56 1.07 0.63 0.15 1.61 1.08
C18:3n3 SG DER1 4000~400 3017~2823/1805~1734 RFR RFR 0.60 0.17 1.59 1.09 0.70 0.27 1.82 1.13
C18:3n6 SG DER2 3017~2823/1805~1734 3017~2823/1805~1734 RFR RFR 0.18 0.84 1.08 2.47 0.14 0.76 1.04 2.00
C20:3n6 DER1 MSC 4000~400 3017~2823/1805~1734 RFR PLSR 0.50 0.23 1.42 1.15 0.62 0.39 1.61 1.29
C20:4n6 SNV SNV 4000~400 4000~400 RFR PLSR 0.44 0.29 1.34 1.19 0.50 0.46 1.42 1.37
C20:5n3 DER2 DER1 4000~400 4000~400 RFR RFR 0.33 0.83 1.23 2.41 0.43 0.91 1.29 3.06
LCFA DER2 DER1 3017~2823/1805~1734 4000~400 RidgeR RFR 0.68 0.41 1.78 1.31 0.83 0.42 2.29 1.32
MCFA DER2 SNV 3017~2823/1805~1734 3017~2823/1805~1734 RFR LassoR 0.64 0.23 1.67 1.14 0.75 0.28 2.00 1.18
MUFA DER2 DER1 3017~2823/1805~1734 3017~2823/1805~1734 LassoR LassoR 0.61 0.56 1.59 1.51 0.79 0.43 2.06 1.30
PUFA DER2 SG 4000~400 3017~2823/1805~1734 RidgeR RFR 0.71 0.16 1.80 1.08 0.71 0.16 1.75 1.07
SCFA DER2 MSC 4000~400 3017~2823/1805~1734 RFR LassoR 0.66 0.51 1.71 1.43 0.77 0.48 2.04 1.37
SFA SG SG 3017~2823/1805~1734 3017~2823/1805~1734 RFR LassoR 0.66 0.32 1.73 1.21 0.76 0.25 2.01 1.16
UFA DER2 MSC 3017~2823/1805~1734 3017~2823/1805~1734 LassoR LassoR 0.62 0.42 1.62 1.31 0.82 0.48 2.15 1.38

Note: MIRS, DER1, DER2, MSC, SNV, SG, RFR, PLSR, LassoR, RidgeR, R2, and RPD indicate mid-infrared spec-
trum, first-order derivative, second-order derivative, multiple scattering correction, standard normal transform,
Savitzky–Golsy convolution smoothing, random forest regression, partial least square regression, least absolute
shrinkage and selection operator regression, ridge regression, determination coefficient, and residual predictive
deviation, respectively.
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3. Materials and Methods
3.1. Milk Samples and Fatty Acids

Milk samples were collected from 336 Holstein cows on a farm in Shandong Province,
China, including one small tube (30 mL) and one large tube (50 mL) from each cow. After
sampling, all tubes were immediately stored in liquid nitrogen (−196 ◦C) and delivered
to our experimental lab for further analysis within 6 h. In this study, to maintain analysis
consistency, none of the 672 collected milk samples received any preservative additions,
and the milk samples in the 30 mL and 50 mL tubes were used to measure fatty acid
contents and MIRS, respectively.

A total of 24 kinds of fatty acid contents, which included C8:0, C10:0, C11:0, C12:0,
C13:0, C14:0, C14:1, C15:0, C16:0, C16:1, C17:0, C18:0, C18:1n9c, C18:2n6c, C20:0, C18:3n6,
C18:3n3, C20:1, C22:0, C20:3n6, C20:4n6, C22:1n9, C20:5n3, and C24:0, were measured and
quantified in each milk sample from the 30 mL tubes using the GC technique. Due to the
limitations of GC technique, the apparent missing values were replaced by the averaged
values of the whole fatty acids that had been quantified by the GC technique. The outliers
of quality control for the fatty acids were defined by the mean reference values ± two
standard deviations. For each milk sample from the 50 mL tubes, 899 raw data points for
MIRS values in the complete waveband range of 4000~400 cm−1 were obtained by Bentley
spectrometers (Bentley Instruments Inc., Chaska, MN, United States), following the routine
methodology (e.g., 30 min preheating and sufficient shaking before operation). Afterwards,
additional raw MIRS values, as the measurement replicates, were also obtained using
the same milk samples. Finally, two raw MIRS values were transformed by the Fourier
method [24] for further pre-processing steps.

Here, the GC methodology for the quantification of fatty acid contents in our study was
similar to those in other studies [4,25]. The outputs of the GC technique were generated
by analyzing the methyl esters from the fat in the milk following ISO Standard 15884
(ISO–IDF (International Organization for Standardization–International Dairy Federation),
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2002). Normally, the GC technique is used as the gold standard for fatty acid measurements
because of its high accuracy, even for low contents [26,27], while the MIRS method is more
rapid and less expensive [13,21].

According to the saturation conditions of hydrocarbon chains, fatty acids are classified
as saturated fatty acids (SFAs), unsaturated fatty acids (UFAs), monounsaturated fatty
acids (MUFAs), and polyunsaturated fatty acids (PUFAs) [5]. According to the carbon
chain lengths, fatty acids are classified as short chain (4 to 10 carbons) fatty acids (SCFAs),
medium chain (11 to 16 carbons) fatty acids (MCFAs), and long chain (more than 16 carbons)
fatty acids (LCFAs). Consequently, 7 fatty acid groups for 24 kinds of the above fatty acids
were obtained (Table 4).

Table 4. Seven classified fatty acid groups, according to hydrocarbon chain saturation and carbon
chain length.

Fatty Acid Group According to Hydrocarbon Chain Saturation Fatty Acid Group According to Carbon Chain Length

SFA C8:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0,
C16:0, C17:0, C18:0, C20:0, C22:0, C24:0 SCFA C8:0, C10:0

UFA C14:1, C16:1, C18:1n9c, C18:2n6c, C18:3n6, C18:3n3,
C20:1, C20:3n6, C20:4n6, C22:1n9, C20:5n3 MCFA C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C16:1

MUFA C14:1, C16:1, C18:1n9c, C20:1, C22:1n9 LCFA
C17:0, C18:0, C18:1n9c, C18:2n6c, C20:0, C18:3n6,

C18:3n3, C20:1, C22:0,
C20:3n6, C20:4n6, C22:1n9, C20:5n3, C24:0

PUFA C18:2n6t, C18:2n6c, C18:3n6, C18:3n3, C20:3n6,
C20:4n6, C22:2, C20:5n3

Note: SFA, UFA, MUFA, PUFA, SCFA, MCFA, and LCFA indicate saturated fatty acid, unsaturated fatty acid,
monounsaturated fatty acid, polyunsaturated fatty acid, short chain (4 to 10 carbons) fatty acid, medium chain (11
to 16 carbons) fatty acid, and long chain (more than 16 carbons) fatty acid, respectively.

3.2. Predictions of Milk Fatty Acid Contents Using MIRS Data

Each fatty acid content quantified by the GC technique was converted from g/100 g of
milk (milk-basis) to g/100 g of fat (fat-basis) using the fat contents determined by MIRS.
The final MIRS values (the averaged values of two transformed MIRS replicates using the
same milk sample) were processed using five spectral pre-processing algorithms, i.e., first-
order derivative (DER1), second-order derivative (DER2), multiple scattering correction
(MSC), standard normal transform (SNV), and Savitzky–Golsy convolution smoothing
(SG). In order to compare the influence of each pre-processing algorithm, we used them
individually to process the final MIRS values. Two types of fatty acid measurements
(g/100 g of milk and g/100 g fat), with the five pre-processed spectra above and two ranges
of wavebands (4000~400 cm−1 and 3017~2823 cm−1/1805~1734 cm−1), were analyzed
using four regression models, i.e., random forest regression (RFR), partial least square
regression (PLSR), least absolute shrinkage and selection operator regression (LassoR),
and ridge regression (RidgeR). The determination coefficient (R2) and residual predictive
deviation (RPD) were used to evaluate the metrics of the four regression models. Prediction
accuracy was assessed using a 10-fold cross validation procedure with the ratio of the
training set and the test set as 3:1. The GC quantification technique, fatty acid measurements,
spectral pre-processing algorithms, fatty acid prediction methods, and prediction accuracy
assessments are summarized in Figure 2.
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least absolute shrinkage and selection operator regression, ridge regression, determination coefficient,
and residual predictive deviation, respectively.

4. Discussion

The concentrations of different milk fatty acids in our study (Table 1) seem slightly
lower than those in other studies [5,28–30], which could be caused mainly by the differences
in feed diet and milk-collection times of the farm, where they supplied their own total mix
ration (TMR) three times per day, which is less than other similar Chinese Holstein cattle
farms (four or five times per day). Compared to the results of Soyeurt et al. (2011) and
Fleming et al. (2017), the variation coefficients ranged from 12.978% to 44.207% as fat-basis
(g/100 g of fat), which were slightly lower, on average, than those in other studies. The
higher variations of fatty acids as fat-basis (g/100 g of fat) in relation to those as milk-basis
(g/100 g of milk) could be a tendency in which fatty acids exhibited high mean values and
variation coefficients (Table 1).

Many previous studies have investigated the accuracy and applicability of prediction
models based on R2 values. Soyeurt et al. (2011) suggested that models with R2 > 0.75
might be utilized for animal breeding. However, Zaalberg et al. (2021) used prediction
models with R2 > 0.6 for mineral elements in animal breeding [31]. Cecchinato et al. (2009)
showed low R2 values for curd characteristics predicted by MIRS, but they found high
genetic correlations between the measured values and the predicted values [32]. In our
study, 17 fatty acids (C8:0, C10:0, C12:0, C14:0, C18:0, C20:0, C22:0, C24:0, C18:1n9c, C20:1,
C20:5n3, SFA, UFA, MUFA, SCFA, MCFA, and LCFA) showed RPD ≥ 2 and R2 ≥ 0.75
(Table 2), which is consistent with the results of Soyeurt et al. (2006). This suggests that
these 17 fatty acids can be accurately predicted using MIRS, and that this method has the
potential for further fat trait selections in animal breeding. Furthermore, 6 fatty acids (C12:0,
C20:0, C22:0, C20:5n3, UFA, and LCFA) with R2 > 0.8, which were well predicted by MIRS,
could also be used for breeding selections. For the grouped fatty acids, the R2 values of the
test set were greater than 0.7 (Table 3), which is consistent with the results of Soyeurt et al.
(2006), Rutten et al. (2009), and Fleming et al. (2017). For both the training and the test
sets, 6 individual fatty acids (C20:0, C22:0, C24:0, C20:1, C18:3n6, and C20:5n3) as fat-basis
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(g/100 g of fat) showed R2 values greater than 0.7, whereas inconsistent results were found
in other studies [4,5]. Fleming et al. (2017) obtained higher accuracy (R2) from fatty acids
expressed on the milk-basis than on the fat-basis. Soyeurt et al. (2011) used the fatty acids
predicted in milk for their prediction in fat and only achieved results better than those of
the direct prediction in fat for C6:0, C12:0, C18:2 cis-9, cis-12, SFA, and SCFA. RPD is also
used to measure the prediction effect and accuracy of models [33,34]. Three classifications
of RPD are as follows: high prediction accuracy, which can be used for the quantitative
prediction of substances when RPD ≥ 2; good prediction, which can be used for rough
quantitative prediction or qualitative analysis when 1.4 ≤ RPD < 2; and low prediction
accuracy, which cannot be used for quantitative prediction when RPD < 1.4. Generally, a
higher accuracy (R2 and RPD) can also be observed in the prediction of fatty acids by MIRS
on the milk-basis (n = 22) than on the fat-basis (n = 9) (Tables 2 and 3), which is consistent
with the results of other studies [4,5,21,35].

Different spectral pre-processing algorithms influence the prediction accuracy of fatty
acids. Soyeurt et al. (2012) used MIRS to predict the lactoferrin content in bovine milk
and obtained the highest prediction accuracy using PLSR based on DER1. Our study also
found that derivatives (DER1 and DER2) and SG smoothing algorithms can be applied
for most fatty acid predictions (Table 2). The derivative algorithm uses the absorbance
values corresponding to each of two adjacent wave points to calculate their derivative
values, where the spectrum is processed by the derivative. The wave points with large
differences in absorbance reduce signal/noise interference; then, the corresponding value
of the current wave point moves sequentially to retain the spectral information for stronger
spectrum continuity (Figure 1).

5. Conclusions

In this study, different regression models led to varying prediction accuracy of fatty
acid contents, while different pre-processing algorithms for the spectra also influenced
prediction accuracy. It was revealed that a higher accuracy for most fatty acids can be
achieved when derivative and SG pre-processing algorithms for RFR models were used.
Therefore, after a series of evaluations in Chinese Holstein cows, these results suggest that
the application of MIRS to predict the fatty acid contents of milk is feasible.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020666/s1, Supplementary File S1: All prediction
accuracies (determination coefficient (R2) and residual predictive deviations (RPD)) after four regres-
sion model analysis (random forest regression (RFR), partial least square regression (PLSR), least
absolute shrinkage and selection operator regression (LassoR), and ridge regression (RidgeR)) based
on two types of fatty acid measurements (g/100 g of milk and g/100 g fat), two ranges of wavebands
(4000~400 cm−1 and 3017~2823 cm−1/1805~1734 cm−1), and five spectral pre-processing algorithms
(first-order derivative (DER1), second-order derivative (DER2), multiple scattering correction (MSC),
standard normal transform (SNV), and Savitzky–Golsy convolution smoothing (SG).
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