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Abstract: Cocrystallization is currently an attractive technique for tailoring the physicochemical
properties of active pharmaceutical ingredients (APIs). Flavonoids are a large class of natural
products with a wide range of beneficial properties, including anticancer, anti-inflammatory, antiviral
and antioxidant properties, which makes them extensively studied. In order to improve the properties
of flavonoids, such as solubility and bioavailability, the formation of cocrystals may be a feasible
strategy. This review discusses in detail the possible hydrogen bond sites in the structure of APIs
and the hydrogen bonding networks in the cocrystal structures, which will be beneficial for the
targeted synthesis of flavonoid cocrystals. In addition, some successful studies that favorably
alter the physicochemical properties of APIs through cocrystallization with coformers are also
highlighted here. In addition to improving the solubility and bioavailability of flavonoids in most
cases, flavonoid cocrystals may also alter their other properties, such as anti-inflammatory activity
and photoluminescence properties.

Keywords: pharmaceutical cocrystals; flavonoids; structure–property relationships; solubility;
bioavailability

1. Introduction

Cocrystals are neutral crystalline single-phase materials that contain two or more
discrete neutral molecules with different stoichiometry in a crystalline lattice through non-
covalent interactions including hydrogen bonds, π-π interactions, halogen bonds and van
der Waals interactions [1–5]. For pharmaceutical cocrystals, at least one of the coformers is
an active pharmaceutical ingredient (API), and the others are pharmaceutically acceptable
ingredients [6,7]. Since the crystal structure of a cocrystal is different from any starting
material, its physicochemical properties may also be different. In the pharmaceutical
industry, pharmaceutical cocrystals have been applied to modify the physicochemical
properties of drugs, such as solubility, dissolution rate, bioavailability, hygroscopicity,
compressibility, tabletability and stability [8–17]. Although some other strategies including
salt formation, solvates and polymorphs have also been used to tune the physicochem-
ical properties of drugs [18–22], cocrystals are much more attractive because they can
alter the properties of drugs by designing supramolecular synths without changing the
chemical structures of APIs. Cocrystals can alter the physicochemical properties of drugs
because that crystal structures of cocrystals are different from APIs. Thus, the different
interactions will have an effect on properties. For example, the cocrystal of caffeine and
methyl gallate shows much better compaction properties than the coformers, because it
exhibits flat sliding planes in the cocrystal’s crystal structure, which makes the compound
more prone to deformation [17]. Not only that, cocrystals are mostly stable under normal
conditions and can theoretically be applied to most APIs with hydrogen bond acceptors
and/or donors.

Flavonoids, belonging to the family of natural products with variable phenolic
structures, widely exist in fruits, vegetables, bark, roots, grains, stems, tea, flowers and
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wine [23–32], and their basic structure consists of two phenyl rings and one heterocyclic
ring [33]. Generally speaking, flavonoids can be divided into two categories, namely
2-phenylchromen and 3-phenylchromen. The first category includes flavones, flavanones,
flavonols, anthocyanidins and flavan-3-ols, while the second one includes isoflavones
and isoflavanones [34–36]. Unlike the flavonoids mentioned above, chalcone is unique
in that it lacks an oxygen-heterocyclic ring but has a 3-carbon chain that acts as a bridge
connecting the two phenyl rings. The molecular structures of common flavonoids are
shown in Figure 1. Since Albert Szent-Gyorgyi first reported the activity of citrus peel
flavonoids in preventing scurvy-related capillary hemorrhage and fragility in 1938, more
biological activities have been found in flavonoids, including anticancer, anti-inflammatory,
antiviral, antioxidant, antibacterial and neuroprotective activities [37–47]. However, their
unfavorable properties such as poor bioavailability largely limit their clinical applications.
Cocrystallization may be a good strategy to address this issue [48], and flavonoid cocrystals
have become an ever-growing field in recent years.
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Figure 1. Structures of (a) flavone, (b) flavonol, (c) flavanone, (d) anthocyanidins, (e) flavan-3-ols,
(f) isoflavone, (g) isoflavanone and (h) chalcone.

In this review, we not only summarize the reported flavonoid cocrystals, but also
examine and analyze the interactions present in their crystal structures to find the specific
interaction types and groups that are more likely to interact with the coformers. Meanwhile,
the research findings of improving the solubility and bioavailability of flavonoids by
forming cocrystals are introduced. Finally, we also highlight some cases in which other
properties of flavonoids are regulated through cocrystallization.

2. Cocrystals of Flavonoids

Cocrystals of flavonoids were first reported by Daren et al. in 2008 [49]. In the
study, they described four cocrystals with certain crystal structures formed by three dif-
ferent flavonoids and diazobicyclooctane. Since then, over 100 cocrystals have been syn-
thesized from more than 10 flavonoids with different coformers, of which more than
60 single crystals have been cultivated. Table 1 summarizes the subclass and number of
reported flavonoid cocrystals. These APIs belong to six different flavonoid subclasses,
namely flavonols, flavones, flavanones, isoflavones, chalcones and dihydrochalcones, while
most APIs are flavonols and flavones, which are the two largest subclasses of flavonoids.
Among them, flavonols are more likely to form cocrystals; one of the reasons is that their
3-position phenolic groups tend to form intermolecular hydrogen bonds with coformers.
Additionally, quercetin, one of the most studied flavonoids, has been reported to form
60 cocrystals with 22 single crystals having been solved, and its big potential to form
cocrystals may be attributed to the polyhydroxy structure. Through comparison, it can
be found that 12 of the 15 flavonoids have a phenolic group at the 7-position, which may
be because the 7-position phenolic group is more likely to form intermolecular hydrogen
bonds with the coformers. In addition, due to the different nomenclature from other sub-
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classes, isoliquiritigenin and phloretin, which belong to chalcone and dihydrochalcone,
respectively, have a phenolic group at the 4”-position, which is equivalent to that of other
flavonoids at the 7-position. Not only that, 12 of the 15 flavonoids have a phenolic group
at the 4′-position, which may also be easier to form intermolecular hydrogen bonds with
coformers. From a steric hindrance point of view, the 7- and 4′- positions are the two
substituents that are most likely to interact with other molecules with the least steric hin-
drance. Thus, except that 3,6-dihydroxyflavone has two phenolic groups at the 6- and
3- positions, all other reported cocrystallized flavonoids have at least one phenolic group at
the 7- or 4′- position. In addition, the toxicology of pharmaceutical cocrystals is also one of
the important factors we need to consider. Therefore, the coformers are usually selected
from the lists of generally regarded as safe (GRAS) and pharmaceutically accepted salt
formers. Since these compounds have been previously approved by the Food and Drug
Administration, utilizing them for cocrystallization can reduce preclinical burden, toxicity
risk and clinical trial time.

Table 1. Summary of reported flavonoid cocrystals.

Flavonoids Structures Subclass Number of Cocrystals
Reported 1 References

Daidzein
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3. Structures of Flavonoid Cocrystals

According to the literature, more than 60 single crystals of flavonoid cocrystals have
been cultivated. Some common features can be observed from these crystal structures.
Flavonoids with a phenol group at the 5-position tend to interact with their carbonyl group
at the 4-position to form an intramolecular hydrogen bond, which are common in cocrystal
structures containing hesperetin, genistein, baicalein, etc. However, the phenol group at
the 3-positon does not interact with the neighboring carbonyl group, but dimers composed
of these two groups are sometimes observed in the structures of flavonoid cocrystals,
such as quercetin-4,4′-bipyridine [55], fisetin-caffeine [63], etc. The coformers of flavonoid
cocrystals also have some structural characteristics. Flavonoids tend to form cocrystals with
N-containing heterocyclic compounds such as nicotinamide, isonicotinamide, theophylline,
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caffeine, 4,4′-bipyridine, proline, etc. However, among these compounds, nicotinamide
and isonicotinamide are most likely to be selected as coformers, since the N-atom on their
pyridine ring is a good hydrogen bond acceptor and tends to interact with the phenol
group of flavonoids. This feature can also be observed in the structures of most flavonoid
cocrystals whose coformers contain a nitrogen heterocylic ring, such as isoliquritigenin–
nicotinamide [78], genistein–caffeine [77], etc. Furthermore, amide groups containing
both hydrogen bond donors and acceptors tend to interact with the phenol groups of
flavonoids, which can be observed in the structures of baicalein–isonicotinamide [69],
fisetin–nicotinamide [63], etc. Several typical crystal structures of flavonoid cocrystals with
different features are analyzed below.

3.1. Quercetin–Isonicotinamide Cocrystal

The two-dimensional hydrogen bond network in the quercetin (QUE)–isonicotinamide
(INM) cocrystal [52] is shown in Figure 2. Structural analysis reveals that the centrosymmet-
ric tetramer assembled by two QUE molecules and two INM molecules is the basic unit of
this cocrystal. First, two quercetin molecules form a dimeric unit via the R2

2(10) supramolec-
ular homosynthon by means of O-H· · ·O hydrogen bonding interactions (O5-H9···O6,
2.01 Å, 150◦). Subsequently, the QUE homodimeric units are further linked with two INM
molecules via N2-H15·O5 (2.15 Å, 171◦) and O6-H10···O8 (1.78 Å, 172◦) hydrogen bonds
to form a tetramer. Finally, the tetrameric motif is extended to form a two-dimensional
(2D) network through O1-H1···N1 (1.86 Å, 167◦) and N2-H16···O3 (2.17 Å, 178◦) hydrogen
bonds. Likewise, tetramers consisting of two drug molecules and two coformer molecules
are also commonly found in the structures of other flavonoid cocrystals, such as fisetin–
nicotinamide [63], fisetin–isonicotinamide [66] and luteolin–isonicotinamide [66] cocrystals.
In fact, all reported flavonoid cocrystal tetramers have been assembled in the similar pattern
so far. In these assemblies, the R2

2(10) “homo-dimer” formed by two flavonoid molecules
is further linked by nicotinamide or isonicotinamide molecules to form the R3

3(8) graph
set. This unique tetrameric motif may depend on the common structural features of these
flavonoids. For example, in the structures of fisetin, luteolin and quercetin, the two phenolic
groups located at the 3′- and 4′-positions of the ortho-position of the benzene ring have the
smallest steric hindrance and are more likely to interact with other flavonoid molecules to
form dimers.
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3.2. Quercetin–Isonicotinic Acid Monohydrate

The two-dimensional hydrogen bonding network in quercetin (QUE)-isonicotinic
acid (INA) monohydrate [57] is shown in Figure 3. Apparently, the carboxylate moieties
of INA are H-bonded to the hydroxyl moieties on either side of the chains O7-H14···O2
(1.98 Å, 147◦) and O3-H10···O4 (1.81 Å, 171◦) of the QUE molecules, while the water
molecules connect adjacent quercetin molecules via O10-H17···O7 (1.83 Å, 173◦) and
O5-H11···O10 (1.80 Å, 170◦) hydrogen bonds (another quercetin molecule not shown
in the figure). The crystal structure of the 1:1 cocrystal monohydrate of QUE and INA
contains INA zwitterions that form parallel chains through a N1-H15···O2 (1.57 Å, 170.2◦)
hydrogen bond, which is supported by the C-N-C angle of 121.7◦and C-O bond distances
of 1.244 A◦ and 1.263 A◦.
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3.3. Baicalein-Nicotinamide Cocrystal

The two-dimensional hydrogen bond network in the baicalein–nicotinamide
cocrystal [68] is shown in Figure 4. Nicotinamide molecules form two types of paral-
lel molecular chains in converse ordinations through N2-H12···O6 (2.23 Å, 145◦) hydrogen
bonds, and their amide moieties interact with the ortho-phenyl groups of adjacent baicalein
molecules via O5-H3···O6 (1.94 Å, 154◦) and N2-H11···O4 (2.33 Å, 121◦) hydrogen bonds
to form heterodimers, while their pyridine nitrogen atoms interact with the neighboring
baicalein molecules in the other direction through O4-H2···N1 (1.91 Å, 155◦) hydrogen
bonds. Every baicalein molecule is connected with two nicotinamide molecules in different
chains via O5-H3···O6 (1.94 Å, 154◦), N2-H11···O4 (2.33 Å, 121◦) and O4-H2···N1 (1.91 Å,
155◦) hydrogen bonds, thus forming a tetramer consisting of two baicalein molecules
and two nicotinamide molecules. The tetramer extends along the direction parallel to
nicotinamide chains to form the hydrogen-bonded networks.
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3.4. Isoliquiritigenin–Isonicotinamide Cocrystal

The two-dimensional hydrogen bond network of the isoliquiritigenin–isonicotinamide
(ISL-INM) cocrystal [78] is displayed in Figure 5. Obviously, ISL and INM molecules are
assembled into a sheet structure in their cocrystal. The amide moiety of two adjacent
INM molecules is connected by two N2-H2A···O5 (2.03 Å, 172◦) hydrogen bonds to form
an R2

2(8) homodimer, which is connected to the neighboring ISL molecules through the
O1-H1···N1 (1.89 Å, 162◦) hydrogen bond. The central INM dimer is capped by a flavonoid
molecule at each end, forming a 0-D motif. Then, the 0-D motifs interact with each other
through N2-H2B···O2 (2.25 Å, 168◦) and C14-H14···O1 (2.56 Å, 156◦) hydrogen bonds to
form a 2D sheet structure. Meanwhile, the oxygen atoms (O4) of phenol groups on the
adjacent ISL molecules face each other in a close-packed arrangement, which helps to
arrange 0-D motifs into a line [80]. Different from other packing types (such as serrated
layer), the molecules in the ISL-INM cocrystal are packed into flat layers with relatively
large spacing. Under the influence of shear stress, it is easier to slide between neighboring
layers, which may lead to higher plasticity and better tableting performance [15,81].



Molecules 2023, 28, 613 8 of 20Molecules 2023, 28, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 5. Two-dimensional hydrogen bonding network in isoliquiritigenin–isonicotinamide cocrys-
tal. Hydrogen bonds are represented by blue dashed lines. Red dashed lines indicate further inter-
actions with other molecules not shown. 

4. Functions of Flavonoid Cocrystals 
4.1. Improving Solubility and Bioavailability 

Flavonoids are a large family of natural products with a variety of biological activi-
ties, including anticancer, anti-inflammatory, antiviral, antioxidant, antibacterial and neu-
roprotective activities [37–47]. However, the solubility and bioavailability of most flavo-
noids are poor, which largely limits the further exploitation of flavonoids as drugs [82]. 
The cocrystallization of flavonoids and soluble coformers may solve these problems, and 
several cases are discussed in detail below. 

As one of the most abundant flavonoids in the plant kingdom, quercetin (QUE) has 
numerous therapeutic bioactivities in vitro such as antioxidant, metal chelating, antiviral, 
bacteriostatic, anticarcinogenic and cardioprotective activities [83–88]. However, due to 
its low solubility and poor bioavailability, its pure form has limited efficacy in vivo [89–
94]. Smith et al. [52] studied the solubility and bioavailability of four cocrystals formed by 
quercetin and three different coformers, including isonicotinamide, theobromine and caf-
feine. The dissolution curves of four cocrystals (quercetin–isonicotinamide (QUE-INM), 
quercetin–theobromine dehydrate (QUE-TBR·2H2O), quercetin–caffeine (QUE-CAF) and 
quercetin–caffeine monomethanolate (QUE-CAF·MeOH)) and QUE dihydrate in 50% 
methanol–water (v/v) are shown in Figure 6. It is not difficult to find that each of these 
cocrystals exhibit superior solubility to quercetin dihydrate. For example, the solubility of 
QUE dihydrate was 0.267 mg/mL, while the maximum solubilities of quercetin–caffeine, 
quercetin–caffeine monomethanolate, quercetin–isonicotinamide and quercetin–theobro-
mine dehydrate were 3.627, 2.018, 1.22 and 0.326 mg/mL, respectively. Among these co-
crystals, the concentration of quercetin dihydrate in the quercetin–caffeine cocrystal is the 
highest, and its solubility has increased about 13 times. It is hypothesized that an improve-
ment in the solubility of quercetin will translate into the enhancement of its pharmacoki-
netic behavior, and the experimental results are shown in Figure 7. As expected, these 
cocrystals increased the absorption of quercetin in rats by up to 10 times in comparison to 
quercetin dihydrate. 

Figure 5. Two-dimensional hydrogen bonding network in isoliquiritigenin–isonicotinamide cocrystal.
Hydrogen bonds are represented by blue dashed lines. Red dashed lines indicate further interactions
with other molecules not shown.

4. Functions of Flavonoid Cocrystals
4.1. Improving Solubility and Bioavailability

Flavonoids are a large family of natural products with a variety of biological activities,
including anticancer, anti-inflammatory, antiviral, antioxidant, antibacterial and neuropro-
tective activities [37–47]. However, the solubility and bioavailability of most flavonoids
are poor, which largely limits the further exploitation of flavonoids as drugs [82]. The
cocrystallization of flavonoids and soluble coformers may solve these problems, and several
cases are discussed in detail below.

As one of the most abundant flavonoids in the plant kingdom, quercetin (QUE) has
numerous therapeutic bioactivities in vitro such as antioxidant, metal chelating, antiviral,
bacteriostatic, anticarcinogenic and cardioprotective activities [83–88]. However, due to its
low solubility and poor bioavailability, its pure form has limited efficacy in vivo [89–94].
Smith et al. [52] studied the solubility and bioavailability of four cocrystals formed by
quercetin and three different coformers, including isonicotinamide, theobromine and caf-
feine. The dissolution curves of four cocrystals (quercetin–isonicotinamide (QUE-INM),
quercetin–theobromine dehydrate (QUE-TBR·2H2O), quercetin–caffeine (QUE-CAF) and
quercetin–caffeine monomethanolate (QUE-CAF·MeOH)) and QUE dihydrate in 50%
methanol–water (v/v) are shown in Figure 6. It is not difficult to find that each of these
cocrystals exhibit superior solubility to quercetin dihydrate. For example, the solubil-
ity of QUE dihydrate was 0.267 mg/mL, while the maximum solubilities of quercetin–
caffeine, quercetin–caffeine monomethanolate, quercetin–isonicotinamide and quercetin–
theobromine dehydrate were 3.627, 2.018, 1.22 and 0.326 mg/mL, respectively. Among
these cocrystals, the concentration of quercetin dihydrate in the quercetin–caffeine cocrystal
is the highest, and its solubility has increased about 13 times. It is hypothesized that
an improvement in the solubility of quercetin will translate into the enhancement of its
pharmacokinetic behavior, and the experimental results are shown in Figure 7. As ex-
pected, these cocrystals increased the absorption of quercetin in rats by up to 10 times in
comparison to quercetin dihydrate.
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between QUE-CAF·MeOH and QUE at t = 5 min (p < 0.001), respectively. Adapted from [52] with
permission. Copyright © 2011 American Chemical Society.

As an important bioactive flavonoid compound isolated from the root of Scutellaria
baicalensis, baicalein (Bai) has anti-inflammatory, anticancer, anti-HIV, anti-adipogenic and
antibacterial activities [95–101]. Not only that, but it is also included in the Chinese Phar-
macopoeia as a medication for treating fever, upper respiratory tract infection and sore
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throat [102]. However, the application of baicalein in the pharmaceutical field is limited,
largely owing to its poor water solubility and low bioavailability [103,104]. Cocrystal-
lization may be an effective way to address the above problems. Zhu et al., reported
that baicalein–nicotinamide (BaiNam) cocrystals increased the solubility of baicalein by
50–100% in the pH range of 3.6 to 6.8. In addition, a much larger apparent solubility
was also shown in baicalein–caffeine (BaiCaf) and baicalein–isonicotinamide (BaiInam)
cocrystals (Figure 8) [69]. In the buffer solutions of pH 2.0 and pH 4.5, the baicalein–caffeine
cocrystal resulted in the most significant solubility improvement, which was about 2.5-fold
and 1.5-fold that of pure baicalin, respectively [67]. Meanwhile, the maximum solubility of
the baicalein–isonicotinamide cocrystal is similar to that of the baicalin–caffeine cocrystal.
As the increase in drug solubility may improve its bioavailability, Zhu et al. studied the
bioavailability of the baicalein–caffeine cocrystal, a baicalein–caffeine physical mixture
and pure baicalin in rats to confirm this [69]. Since baicalein-7-O-glucuronide (BG) is the
main active metabolite of Bai and the mainly existing form in plasma, BG was provided for
statistical comparison and bioavailability calculation. As shown in Figure 9, The Cmax and
AUC0–24h of the baicalein–caffeine cocrystal were 2.35-fold and 4.14-fold higher than those
of pure baicalin (Bai), respectively, which were also significantly higher than those of their
physical mixture (PM).
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theophylline monohydrate)) in (a) pH 2.0 and (b) pH 4.5 buffer solutions. Adapted from [69]
with permission. Copyright © 2017 American Chemical Society.
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In addition, kaempferol with tetrahydroxyflavone structure is one of the most common
aglycone flavonoids, which exists in various parts of plants in the form of glycosides, includ-
ing seeds, leaves, fruits, flowers and even vegetables. It has been proven that kaempferol
and its glycosylated derivatives have a variety of pharmacological activities, such as os-
teoprotective, anticancer, neuroprotective, anti-inflammatory, antidiabetic, antioxidant,
antimicrobial, chemo-preventive and therapeutic activities [105–111]. However, like other
flavonoids mentioned above, the solubility of kaempferol in water is very low, which leads
to poor absorption in vivo [94,112,113]. Recently, a kaempferol-L-proline cocrystal was syn-
thesized, and its solubility and bioavailability are higher than those of pure kaempferol [58].
The dissolution experiment of the powders in a 0.5% Tween 80 system showed that the
maximum solubility of the kaempferol-L-proline cocrystal was about 270% higher than
that of pure kaempferol. Meanwhile, the pharmacokinetic curves of kaempferol (Kae), the
kaempferol-L-proline (Kae-L-Pro) cocrystal, and a physical mixture (PM) of kaempferol
and L-proline are presented in Figure 10. As the main metabolite of Kae in blood, the
pharmacokinetic parameters of Kae-3-O-glucoside were provided and analyzed. The re-
sults showed that the pharmacokinetic curve of the Kae-L-Pro cocrystal was improved
compared with the pure Kae component and corresponding physical mixture, and its Cmax
and AUC0–24h were 369% and 351% higher than those of the pure Kae, respectively.
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Chrysin, isolated from various plants such as the blue passion flower (Passiflora
caerulea L.), is a flavonoid compound with a variety of pharmacological activities including
antidiabetic, anti-inflammatory, and antitumor activities [114–116]. Sa et al., reported a
novel salt cocrystal of chrysin (ChrH) and berberine (BerbOH) [71], which is also a new
drug−drug cocrystal based on two natural products. An in vivo bioavailability study on
pure chrysin and chrysin in the form of the cocrystal was performed, and the mean plasma
concentrations of chrysin in the two forms versus time profiles are shown in Figure 11.
The results show that the chrysin cocrystal has higher Cmax and AUC than pure chrysin.
According to the AUC0−24h results, the relative bioavailability of the chrysin cocrystal is
about 1.7 times of that of pure chrysin. Although the improvement of Cmax and AUC is
modest, this work provides a new strategy for the design of drug−drug cocrystals based
on alkaloids and flavonoids through charge-assisted strong hydrogen bonding interactions.
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4.2. Optimizing Other Properties

The cocrystallization of flavonoids can not only improve the solubility and bioavail-
ability of APIs, but also adjust many other properties such as pharmacodynamic properties,
photoluminescent properties, etc.

4.2.1. Improving Pharmacodynamic Response

Hesperetin, commonly found in citrus fruits, is a powerful antioxidant molecule and
belongs to dihydroflavonoids. It also exhibits antiplatelet, anti-inflammatory, antiviral and
antibacterial effects, as well as prominent protective effects on carcinoid, lung, breast and
colon cancers [117–124]. In order to evaluate the pharmacodynamic differences between
hesperidin and its cocrystals, Kunal et al. studied their anti-inflammatory activity [72],
and the percent inhibitions of inflammation of hesperetin (HESP), the hesperetin–picolinic
acid cocrystal (HESP-PICO), the hesperetin–nicotinamide cocrystal (HESP-NICO) and
the hesperetin–caffeine cocrystal (HESP-CAFF) are shown in Figure 12. Obviously, the
inflammation inhibitory effect of pure hesperetin was weaker than its cocrystals at all time
points, and all three cocrystals exhibited improved anti-inflammatory activity. After 240
min of carrageenan injection, all compounds generally reached the maximum inflammation
inhibition percentage. At this moment, compared with the anti-inflammatory inhibition rate
of 60% of pure hesperetin, HESP-CAFF showed the strongest anti-inflammatory activity,
with an inflammation inhibition rate of 87%, while HESP-NICO and HESP-PICO also
showed better anti-inflammatory activity, with inhibition rates of 79% and 72%, respectively.
These impressive data indicate that cocrystals have a clear advantage over the drug itself in
achieving the desired pharmacological response.
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In addition, Kunal et al. also studied the antioxidant and antihemolytic activities
of hesperetin cocrystals [72]. As shown in Figure 13, compared with pure hesperidin,
the antioxidant activity of hesperetin cocrystals measured by the oxidation inhibition
percentage of the 1,1-diphenyl-2-picryl hydroxyl (DPPH) free radical increased, indicating
that the activity of HESP-CAFF increased by nearly 50%, the activity of HESP-NICO
increased by about 30% and the activity of HESP-PICO increased by 20%. Figure 14 lucidly
depicts that compared with the cocrystals, hesperidin has a much lower inhibitory effect
on the hemolysis of rat red blood cells (RBCs). On the average of all tested concentrations,
the hemolysis rate of rat RBCs was significantly reduced, with a maximum 60% decrease
by HESP-CAFF, followed by a nearly 40% decrease by HESP- NICO and about 30% by
HESP-PICO, over that of pure hesperidin.
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4.2.2. Tuning Photoluminescent Properties

Phloretin (PHL), extracted from the pericarp and velamen of apples or pears, is a
dihydrochalcone flavonoid. It not only has many pharmacological activities including
antioxidant, anticancer and anti-inflammatory effects, but also can suppress the growth,
virulence and biofilm formation of Gram-negative and Gram-positive bacteria [125–132].
Recently, in order to improve the solubility of phloretin, Huang et al. synthesized phloretin–
nicotinamide (PHL-NIC) and phloretin–isonicotinamide (PHL-INM) cocrystals, and ob-
served that phloretin, the PHL-NIC cocrystal and the PHL-INM cocrystal have apparently
different photoluminescent properties [79]. As shown in Figure 15, under a 365 nm UV
lamp, the PHL-NIC cocrystal exhibited strong yellowish-green fluorescence, while PHL
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and the PHL-INM cocrystal showed almost no fluorescence under the same condition. This
result indicates that the introduction of the NIC coformer can significantly affect the photo-
luminescent properties of phloretin, while the introduction of the INM coformer cannot.
The different photoluminescence properties of these two cocrystals may be attributed to the
varied intermolecular interactions and stacking arrangements in their structures. From the
perspective of cocrystal structure, compared to the sheet (planar) structure of the PHL-INM
cocrystal with a shorter ring centroid−centroid (Cg-Cg) distance, the zigzag packing of the
PHL-NIC cocrystal with a longer ring centroid−centroid (Cg-Cg) distance may enhance the
emission of the PHL-NIC cocrystal in the solid state, resulting in high luminescent property.
Additionally, the Hirshfeld surface analysis results of PHL molecules on PHL-NIC and
PHL-INM cocrystals also quantitatively support this conclusion. The π-π interaction of the
PHL-NIC cocrystal is 10.5%, which is lower than that of the PHL-INM cocrystal (12.5%).
These results imply that the photoluminescence properties of flavonoid cocrystals can be
tuned by the introduction of coformers.
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Figure 15. Photographs of solid-state cocrystal samples (from left to right: PHL, PHL-NIC cocrystal
and PHL-INM cocrystal): (a) the powder samples under daylight; (b) the powder samples under UV
(365 nm) lamp; (c) the single crystal samples under UV (365 nm) observed by polarized microscope.
Adapted from [79] with permission. Copyright © 2019 American Chemical Society.

5. Conclusions

Pharmaceutical cocrystals are currently a rapidly developing field, because they can
favorably alter the physicochemical properties of APIs. Recently, benefiting from the
polyphenolic structure, cocrystallization has become an effective method in improving the
properties of flavonoids. In this review, we summarized the cocrystals synthesized from
different flavonoids and coformers and discussed in detail that phenolic groups tend to
form intermolecular hydrogen bonds with the coformers. On this basis, we presumed that
flavonoids with a phenolic group at the 7-position or 4′-position are more likely to form
cocrystals and discussed the different intermolecular and intramolecular interactions in
their solid forms by analyzing the crystal structures of some typical flavonoid cocrystals.
The tetramer composed of two flavonoid molecules and two nicotinamide or isonicoti-
namide molecules, which exists in the crystal structures of quercetin–isonicotinamide and
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fisetin–nicotinamide cocrystals, is the most typical arrangement. In most cases, the purpose
of synthesizing flavonoid cocrystals is to improve solubility and bioavailability. Therefore,
it is preferable to select the coformers with high solubility (e.g., nicotinamide and isonicoti-
namide) in the GRAS list. In addition, the cocrystallization of flavonoids may also alter
other properties. Flavonoid cocrystals have a good prospect in clinical translation, and the
analysis of possible hydrogen bond sites and hydrogen bond networks in this review is
helpful for the targeted synthesis of flavonoid cocrystals.
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