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Abstract: Women have a high susceptibility to the negative effects of stress. Hormonal changes
experienced throughout their reproductive life partially contribute to a higher incidence of anxiety
and depression symptoms, particularly, during natural or surgical menopause. In preclinical research,
the flavonoid chrysin (5,7-dihydroxyflavone) exerts anxiolytic- and anti-despair-like effects; however,
it is unknown whether chrysin exerts a protective effect against the behavioral changes produced
by acute stress on locomotor activity and behavioral despair in rats at 12-weeks post-ovariectomy.
Ovariectomized female Wistar rats were assigned to eight groups: vehicle group (10% DMSO), three
groups with chrysin and three groups with the same dose of allopregnanolone (0.5, 1, and 2 mg/kg),
and one group with diazepam (2 mg/kg). The treatments were administered for seven consecutive
days and the effects were evaluated in the locomotor activity and swimming tests. Chrysin (2 mg/kg)
increased the latency to first immobility and decreased the total immobility time in the swimming test
as the reference drugs allopregnanolone and diazepam (2 mg/kg); while locomotor activity prevented
the behavioral changes produced by swimming. In conclusion, chrysin exerts a protective effect
against the behavioral changes induced by acute stress, similarly to the neurosteroid allopregnanolone
and the benzodiazepine diazepam in rats subjected to a surgical menopause model.

Keywords: anti-stress; benzodiazepine; despair; flavonoid; neurosteroid; surgical menopause

1. Introduction

Stress is highly experienced in the world’s population. Stressors produced in several
environments in which the individual develops, such as family, work, academic and socio-
environmental, lead to the development of serious psychiatric disorders, among which
post-traumatic stress disorder, anxiety and depression stand out [1,2]. The same effects of
stress have been identified at preclinical research [3,4].

Female organisms are highly vulnerable to stress, due in part to the hormonal cycli-
cality they present throughout their life span [5,6], since hormones produce biological
effects in several regions of the central nervous system (CNS) and play an important role in
behavior and cognition [7,8]. In this way, a reduction of plasma and brain concentration of
steroid hormones such as estradiol, progesterone, and their reduced metabolite allopreg-
nanolone is associated with irritability, anxiety, and depression symptoms, particularly
during premenstrual, postpartum and transition to menopause period in women [9,10].
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These same effects occur as a consequence of ovarian hormones decline induced by surgical
menopause [11].

Menopause marks the end of a woman’s reproductive period, characterized by ovar-
ian dysfunction and the subsequent reduction of plasmatic concentrations of steroid hor-
mones. This physiological state is associated to a greater vulnerability to the negative
effects of stress, which increases the incidence and severity of the symptoms of irritabil-
ity, anxiety, and depression [12–14]. Depression is a common psychiatric disorder, in-
volving persistent sadness or loss of pleasure and suicidal behavior that impair daily
functioning [15]. Additionally, it was ranked by World Health Organization as the single
largest contributor to global disability and the major contributor to suicide deaths [16].
These changes in emotional state are more severe when a woman undergoes surgical
remotion of one or both ovaries, knowns as oophorectomy, which triggers a state called
“surgical menopause” [17,18]. Interestingly, the effects produced by the low concentration
of ovarian hormones as a consequence of surgical remotion of ovaries in women have been
reproduced in preclinical studies using long-term ovariectomy in rats [19,20]. This allows
exploration of the potential therapeutic effects of several molecules on neuropsychiatric
symptoms associated with surgical menopause in women [21].

Serotonin reuptake inhibitors such as fluoxetine and, in some cases, benzodiazepines
such as diazepam are used to treat some symptoms of menopause [22,23]. However, pa-
tients can recur to therapeutic alternatives based on active molecules of vegetal origin
such as flavonoids [24,25]. Regrettably, there is a lack of controlled studies to support or
refute their potential therapeutic actions [26]. In this sense, some natural molecules, such as
flavonoids, produce anxiolytic-like effects in animal models, comparable to those produced
by diazepam [27,28]. At preclinical research, the flavonoid chrysin has verified anxiolytic-
like effects mediated through the GABAA/Benzodiazepine receptor complex [29,30]. How-
ever, unlike benzodiazepines, chrysin exert anxiolytic actions without inducing sedation or
muscle relaxation [30,31]. The anxiolytic effects of chrysin appear after a single injection of
this flavonoid in rats with 12-weeks post-ovariectomy [32]. Both acute (single injection) and
chronic (21 consecutive days) effects of chrysin (2, 4, 8 mmol/kg) on anxiety-like behavior
are related to Fos immunoreactivity in the lateral septal nucleus [33], a brain structure
involved in the physiopathology of anxiety and depression disorders. In addition, chrysin
(1, 5, and 10 mg/kg for 28 days) produces antidepressant-like effects in the swimming test
in male Wistar rats [34], and these effects are similar to those produced by steroid hormones
progesterone and allopregnanolone, in post-menopausal rats [35]. However, it is unknown
if the pre-treatment during seven days with chrysin can block the establishment of be-
havioral despair triggered by 15 min-swimming of post-ovariectomized rats as it occurs
with progesterone and allopregnanolone [35–38]. Therefore, the present study explored
the potential protective effect of the flavonoid chrysin against the acute stress induced by
the swimming test in rats with chronic absence of ovarian hormones and it was compared
with the effects produced by allopregnanolone and diazepam, two substances with proven
anxiolytic and anti-stress effects at both preclinical and clinical research.

2. Results
2.1. Locomotor Activity Test

Analysis of crossing showed statistical differences according to session factor [F(1,64) = 29.885;
p < 0.001], this variable was significantly decreased in test compared to the pre-test session.
There were no differences between treatments [F(7,64) = 1.178; p = 0.328, NS], but the
interaction between factors was significant [F(7,64) = 2.346; p < 0.034]. Rats administered
with vehicle, allopregnanolone and chrysin rats’ groups (both 0.5 mg/kg) displayed less
crossing in test respect to pre-test, while the remaining groups did not have any change
in crossing between sessions. During the test session, chrysin (0.5 mg/kg), showed low
values compared to the vehicle group and produced less crossing compared to diazepam,
allopregnanolone, and chrysin (2 mg/kg). See Table 1A.
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Table 1. Variables evaluated in the locomotor activity test.

Variable/Group (mg/kg) Pre-Test Test Totals

(A) Crossing (s)
Vehicle 54.39 ± 9.02 31.94 ± 6.00 + 43.17 ± 5.92
Chrysin

0.5 51.00 ± 2.39 23.22 ± 3.60 +* 37.11 ± 3.97
1.0 50.00 ± 3.05 43.11 ± 3.07 46.56 ± 2.26
2.0 54.56 ± 3.10 45.44 ± 3.80 50.00 ± 2.62

Allopregnanolone
0.5 53.61 ± 6.35 32.61 ± 4.27 + 43.11 ± 4.50
1.0 46.44 ± 4.16 43.23 ± 7.04 44.84 ± 3.99
2.0 57.61 ± 8.70 50.00 ± 8.16 53.81 ± 5.86

Diazepam
2.0 51.67 ± 2.98 48.56 ± 4.01 50.11 ± 2.45

Totals 52.41 ± 1.91 39.77 ± 2.06 #

(B) Grooming (s)
Vehicle 30.16 ± 5.95 11.67 ± 3.52 20.92 ± 4.03
Chrysin

0.5 19.30 ± 2.55 10.68 ± 1.52 14.99 ± 1.78
1.0 20.40 ± 1.97 18.49 ± 1.54 19.44 ± 1.24
2.0 23.43 ± 3.24 20.49 ± 1.71 21.96 ± 1.81

Allopregnanolone
0.5 15.35 ± 5.63 21.70 ± 10.52 18.53 ± 5.84
1.0 14.89 ± 5.50 26.20 ± 7.54 20.54 ± 4.73
2.0 23.68 ± 9.55 32.96 ± 11.59 28.32 ± 7.37

Diazepam
2.0 23.12 ± 2.58 27.31 ± 3.05 25.21 ± 2.00

Totals 21.29 ± 1.83 21.19 ± 2.32

(C) Rearing (s)
Vehicle 42.28 ± 5.52 24.65 ± 3.62 + 33.46 ± 3.85
Chrysin

0.5 39.28 ± 2.32 21.14 ± 1.65 +* 30.21 ± 2.60
1 37.65 ± 1.76 36.28 ± 2.53 36.96 ± 1.51
2 37.35 ± 1.59 38.26 ± 3.55 37.80 ± 1.89

Allopregnanolone
0.5 48.90 ± 6.21 23.21 ± 3.97 + 36.06 ± 4.74
1.0 45.50 ± 4.92 28.85 ± 4.34 + 37.17 ± 3.77
2.0 46.62 ± 6.77 40.35 ± 12.18 + 43.49 ± 6.80

Diazepam
2.0 35.95 ± 2.46 33.25 ± 3.00 34.60 ± 1.91

Totals 41.69 ± 1.58 30.75 ± 1.96 #

(A) # p < 0.001 vs. pre-test; + p < 0.05 vs. same group pre-test; * p < 0.05 vs. Allopregnanolone 2 mg/kg, Chrysin
2 mg/kg, and Diazepam within same session. (B) No significant differences in grooming were found between
sessions and groups. (C) # p < 0.01 vs. pre-test; + p < 0.05 vs. same group pre-test; * p < 0.05 vs. Chrysin 2 mg/kg
within same session. Data are represented as mean ± standard error. Two-way repeated measures ANOVA, post
hoc Student–Neuman–Keuls.

The time spend in grooming did not vary between sessions [F(1,64) = 1.029; p = 0.314,
NS] neither due to treatments [F(7,64) = 1.476; p = 0.192, NS]. Similarly, interaction between
factors was not statistically significant [F(7,64) = 2.250; p = 0.041] (see Table 1B).

Rearing had differences due to session [F(1,64) = 43.082; p < 0.001] where rearing was
lower in the test compared to the pre-test session. Pharmacological treatments had no
effects in rearing [F (7,64) = 0.768; p = 0.616, NS]. On the other hand, the interaction between
factors was significant [F(7,64) = 3.366; p < 0.004]. The groups vehicle, allopregnanolone
(0.5, 1, 2 mg/kg) and chrysin (0.5) had less rearing in test compared to the respective pre-
test session, while the groups chrysin (1, 2 mg/kg) and diazepam had no differences in
rearing between sessions. In the test session, the dose of 0.5 mg/kg of chrysin had less
rearing compared to the doses of 2 mg/kg of the same drug. No changes were observed in
the other groups during test (Table 1C).
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2.2. Forced Swim Test
2.2.1. Latency to the First Immobility (s)

A statistical analysis of latency to the first period of immobility showed significant dif-
ferences between treatments [F(7,64) = 19.237; p < 0.001], as latency was higher in diazepam,
chrysin and allopregnanolone groups (2 mg/kg) compared to the vehicle. The factor session
was also statistically significant [F(1,64) = 40.965; p < 0.001], and latency decreased from the
pre-test to test session. The interaction between factors was not significant [F(7,64) = 1.445;
p = 0.203, NS]. See Table 2.

Table 2. Latency to the first immobility (s).

Groups/mg/kg Pre-Test Test Totals

Vehicle 58.92 ± 6.19 55.11 ± 16.86 57.02 ± 8.72
Chrysin

0.5 53.34 ± 4.04 30.93 ± 3.18 42.14 ± 3.69
1 73.03 ± 4.62 21.88 ± 3.80 47.45 ± 6.85
2 130.12 ± 10.05 81.57 ± 18.25 105.85 ± 11.70 *

Allopregnanolone
0.5 56.36 ± 6.54 36.40 ± 7.88 46.38 ± 5.52
1 96.31 ± 7.46 55.93 ± 5.01 76.12 ± 6.55
2 128.35 ± 11.52 91.38 ± 19.44 109.86 ± 11.84 *

Diazepam
2 154.01 ± 12.71 93.50 ± 14.13 123.76 ± 11.78 *

Totals 93.81 ± 5.21 58.34 ± 5.29 +

* p < 0.001 vs. Vehicle; + p < 0.001 vs. pre-test. Data are presented as mean ± standard error. Two-way ANOVA for
repeated measures, post hoc Student–Newman–Keuls.

2.2.2. Total Time of Immobility (s)

Immobility time was modified by treatments [F(7,64) = 6.269; p ≤ 0.001], but not by
session [F(1,64) = 3.125; p = 0.082, NS]. The interaction between factors was also significant
[F(7,64) = 3.589; p = 0.003]. A post hoc test revealed that the total time of immobility
increased from pre-test to test in vehicle and allopregnanolone treated groups (0.5 mg/kg),
while it decreased in the diazepam group. The effect of treatments was observed in test
session where chrysin (1 and 2 mg/kg), neurosteroid allopregnanolone (2 mg/kg) and
benzodiazepine diazepam had shorter times of immobility, with respect to the vehicle-
treated group (Figure 1).
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(1 and 2 mg/kg) and chrysin (all evaluated doses) groups. In the test session, chrysin
(1 and 2 mg/kg), allopregnanolone (2 mg/kg) and diazepam significantly reduced the immobil-
ity time with respect to vehicle in the test session. * p < 0.05 vs. same group in pre-test session,
+ p < 0.05 vs. vehicle in the test session. Data are represented as mean ± standard error. Two-way
repeated measures ANOVA, post hoc Student–Neuman–Keuls.

3. Discussion

The present study explored the possible protective effects of seven days of pretreatment
with flavonoid chrysin against the stress induced by forced swim in rats with long-term
absence of ovarian hormones. Effects of chrysin were compared to those produced by allo-
pregnanolone and diazepam. The 15 min-forced swim pre-test represented a stressor that
reduced locomotion, exploration, and motivation 24 h later during the 5 min test session,
these effects were prevented by the treatment with chrysin, similarly to allopregnanolone
and diazepam. The results suggest that chrysin exerts anti-stress effects that block the
development of behavioral despair triggered by forced swimming in rats with long-term
absence of ovarian hormones.

In preclinical research, ovariectomy in rodents was used as a surgical postmenopausal
model that produces changes equivalent to oophorectomy in women [39]. Ovariectomized
rats develop endocrine, physiological, and emotional alterations characterized by an early
increase in follicle-stimulating hormone levels and a decrease in progesterone and estrogen
levels [40], similar to women who undergo oophorectomy [41–43]. The long-term effects of
ovariectomy are accompanied by the loss of bone density [44], and reduced concentrations
of dopamine, serotonin, testosterone, estradiol, allopregnanolone and GABA, and increased
concentrations of noradrenaline and cortisol in the brain [43,45]. All those changes pro-
duce neuroanatomical modifications in brain structures involved in stress, anxiety, and
depression such as the raphe nucleus, hippocampus, prefrontal cortex, hypothalamus,
amygdala, and lateral septal nucleus [10,43]. Additionally, an increase in anxiety- and
depression-like behavior is detected several weeks post-ovariectomy [20,39], which resem-
ble the phenomena observed in women [11]. These findings validate the utility of the rat
ovariectomy as a menopause model for exploring the effects of molecules like the flavonoid
chrysin on behavior, which could be an alternative treatment due to its accessibility and
low sedative activity.

A contribution of the present study is the exploration of the effects of chrysin in ovariec-
tomized rats 12-weeks after the surgery, when ovarian hormones are decreased [39,46] and
the organism is more vulnerable to the deleterious effects of stress [12,47]. Even under this
vulnerable condition chrysin exerted protective effects against the stress induced by forced
swim pre-test in a similar way than allopregnanolone and diazepam. It suggests a potential
therapeutic effect of this flavonoid against the stress related disturbances on the CNS with-
out the secondary effects of benzodiazepines which still in anxiolytic doses increased risk of
developing dementia [48,49], road accidents [50,51], desensitization of GABAA receptors in
chronic treatments [52], and development of pharmacological tolerance which leads to the
loss of their therapeutic capacity [53]. Interestingly, in previous studies it has been reported
that flavonoid chrysin even in higher doses (>10 mg/kg) devoid of the characteristics side
effects of benzodiazepines as diazepam, including sedation, motor incoordination and
cognitive impairment [30,31]. This is the principal reason to consider that chrysin could be
a potential alternative to benzodiazepines in the control of anxiety symptoms, particularly
in individuals with low concentrations of ovarian hormones as occur in patients cursing
natural and surgical menopause.

Locomotor activity explores the motor effects of several treatments as secondary
metabolites and plant extracts [54–56] or effects associated to physiological states such
as estrous cycles [57,58], menopause [20], pregnancy and breastfeeding [59]; or even the
interaction of both treatments and physiological states [32,35]. Crossing is considered
an indicator of activity, which is influenced by several factors and treatments. Stressors
as chronic unpredictable stress (CUS) and space restriction decreases crossing compared
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to unstressed animals [60,61], which resembles our findings where animals treated with
vehicle decreased crossing after the pre-test of forced swim while the treatments with
chrysin, allopregnanolone or diazepam blocked this decrease, suggesting a protective
effect against stress. Filho and collaborators have previously observed a protector effect
of the administration of chrysin (28 days) against the stress induced by CUS on motor
activity, which is associated to neuroplastic changes in female mice [62]. The present study
confirms this effect and suggests that chrysin only requires seven days of treatment to
exert an anti-stress effect and probably block the establishment of despair behavior in
ovariectomized rats.

Grooming is a behavior with a high motivational component, sensible to several stres-
sors [63,64] and anxiolytic and antidepressant drugs [65]. Grooming can decrease with
severe stressors, depending on the intensity and duration of the stress triggered [66,67].
Thus, short grooming times are considered related to behavioral despair states [68]. In the
present study, vehicle treated rats decreased grooming from pre-test to test, after being
exposed to forced swim, which did not occur in animals treated with chrysin, allopreg-
nanolone and diazepam, supporting again the protective effects of these drugs against
stress as have been previously observed with other anxiolytic and antidepressant treatments
such as 0.09 mg/kg of genistein or 17β-estradiol in ovariectomized rats [32,46].

Rearing is interpreted as an indicator of exploration [69,70]. This exploration is related
to socioenvironmental factors that trigger arousal states in response to predators, food,
or other information from the environment [71]; however, this behavior is also reduced
by ovariectomy and some stressors [20,63], while anxiolytic and antidepressant drugs
restore it to control values [32,35]. Similarly, in this present study, swimming-induced stress
decreased rearing in vehicle-treated animals in test sessions compared to the pre-test session
indicating the negative effect of stress; however, chrysin and the other treatments prevented
this change, showing similar values in this variable between pre-test and test session,
which indicate the protective effect of treatments against stress induced by the forced swim
test. Similar findings on rearing have been reported with stressors as space restriction
and predator odors [67] and other stressors such as space restriction in cold water [72].
Interestingly, reduction in rearing behavior is restored by anxiolytic and antidepressant
drugs [32,35], as it occurs with flavonoid chrysin in the present study.

Forced swim test measures the total time of immobility as an indicator of a “behavioral
despair” useful to predict potential antidepressant-like effects of drugs [73] and the impact
of several stressors such as food restriction [74], among others. The latency to the first im-
mobility assesses the magnitude of the first animal effort to cope with the aversive situation
of being forced to swim without escape [75]. Total time of immobility is interpreted as an
indirect measure of motivation, the longer the immobility, the lesser the motivation [73].
These behaviors are associated to changes at neurochemical and electrophysiological levels
caused by stress and relatively equivalent to those observed in human depression [76–78]
and in structures that modulate motivation as the lateral septum [79,80]. These changes are
reverted with the administration of antidepressant drugs [37,81].

The present study showed the establishment of “behavioral despair” as latency de-
creased and total time of immobility increased during the test session [37,73,82,83] in the
vehicle and chrysin 0.5 mg/kg groups, indicating that this dose of chrysin is devoid of
an antidepressant-like effect. Considering that treatments in the present study were in-
jected during seven consecutive days before the pre-test session in the forced swim test,
if treatments exerted an anxiolytic, antidepressant or antistress-like effect, it would be
expected that the total time of immobility does not increase in the test session, as it occurred
in the present study with chrysin and allopregnanolone 1 and 2 mg/kg, and diazepam
2 mg/kg. These findings again support the protective effects of treatments against stress
induced during the pre-test session in the forced swim test. Contrarily, vehicle and chrysin
0.5 mg/kg groups increased the total time of immobility because they lack a protective
treatment against stress induced by the 15 min pre-test, therefore these groups develop
despair behavior (increase of immobility).
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Finally, one limitation of the present study was that we did not explore the mechanism
of action of the behavioral effects produced by flavonoid chrysin in rats with long-term
absence of ovarian hormones. However, it is widely known that chrysin exerts its prin-
cipally pharmacological action mainly through the GABAA receptors. In Xenopus laevis
oocytes, chrysin binds on α1, β1, and γ2 subunits of the GABAA receptor, which could
be associated with its anxiolytic-like actions [84]. In this way, it is probable that flavonoid
chrysin acted through GABAA receptor increasing chloride ions influx in neurons, which
relates to improvements in stress coping, anxiolytic-like effects, and even antidepressant-
like effects in the forced swim test [35], as it occurs with GABAergic compounds, including
neurosteroids as progesterone and allopregnanolone exerting protective effects against
stress and behavior despair [38,83,85,86]. In support, it has been previously reported that
pretreatment with picrotoxin, bicuculline and flumazenil, antagonists of the GABAA recep-
tor, block the anxiolytic- and antidepressant-like effects of chrysin [30,32,35]. In this sense,
it is to possible suggest that the GABAA receptor is therefore a molecular target to the
substances tested in the present experiment, chrysin [30,31], allopregnanolone [37,87], and
diazepam [88], without discarding the participation of other systems of neurotransmission.

Altogether, the present results indicate that flavonoid chrysin prevents the estab-
lishment of anxiety and despair-like behaviors induced by a severe acute stressor in rats
subjected to the surgical menopause model, like neurosteroid allopregnanolone and ben-
zodiazepine diazepam. The present findings prompt further clinical studies on the neu-
ropsychiatric effects of chrysin to contribute to the prevention and control of anxiety
and depression symptoms in women under surgical menopause or transition to natural
menopause, with finality of improving life quality.

4. Material and Methods
4.1. Ethics

All experimental procedures were performed according to the Guide for the Care and
Use of Laboratory Animals published by the National Institutes of Health [89] and the
Norma Official Mexicana para el Uso y Cuidado de Animales de Laboratorio [90]. All
efforts were made to minimize animal discomfort and the number of animals according to
the Reduce, Refine, Replace (3R) principles of preclinical research [91]. The general protocol
was approved by the Institutional Internal Committee for the care and use of laboratory
animals of the Escuela de Medicina Veterinaria y Zootecnia de la Universidad de Tlaxcala
(UTx/MVZ-189/12).

4.2. Animals

Seventy-two female Wistar rats (three-month-old; 250–300 g at the beginning of the
experiments) were housed in Plexiglas cages, 4 rats per cage (44 cm width × 33 cm
length × 20 cm height), with a 12 h/12 h light/dark cycle (lights on at 07:00 h), aver-
age room temperature of 25 ◦C (±1 ◦C) and free access to purified water and food (Purina
Pellets, Agribrands Purina Mexico, Mexico City, Mexico) during the study period. All
experimental sessions were conducted between 09:00 and 12:00 h.

4.3. Drugs

Pentobarbital sodium was purchased from Cheminova de Mexico, Mexico City, Mex-
ico. Reg. SAGARPA Q-7048-044). Benzalkonium chloride from Medipharm®, San Luis
Río Colorado, Sonora, Mexico. Dipirona50® was obtained from Virbac Animal Health,
Guadalajara, Mexico. Dimethylsulfoxide (DMSO) was purchased from Golden Bell Reac-
tivos (Mexico City, Mexico). Atropine sulphate, chrysin (Chry, 5,7-Dihydroxyflavone < 97%)
and allopregnanolone (Allo, 5α-Pregnan-3α-ol-20-one) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Diazepam (Valium, injectable solution) was obtained from Labo-
ratory Roche (Mexico City, Mexico). Saline solution (0.9%) was purchased from PiSA
Farmacéutica (Guadalajara, Jalisco, Mexico).
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4.4. Ovarectomy

Only females with three continuous regular cycles (4–5 days), verified daily by vagi-
nal smears [92], were included in the study. Surgical remotion of both ovaries was per-
formed through abdominal ventral incision under deep anesthesia (pentobarbital sodium,
60 mg/kg, i.p.) and previous administration of atropine sulphate (0.05 mg/kg, i.p.). Af-
ter remotion of both ovaries the area was carefully cleaned with benzalkonium chloride,
and muscle and skin were sutured separately. Analgesic and antipyretic medication
(Dipirona50®, 50 mg/kg, i.m.) was administered after the surgery and during the sub-
sequent four days to minimize post-surgical pain. After surgery and during the entire
experimental protocol all the rats were examined daily to detect health anomalies, includ-
ing changes in water and food intake, eye orbital tightening, nose/cheek flattening, ear
position, vibrissae position, hair bristling, and changes in coat color and texture. Some of
these evaluations were based on the Rat Grimace Scale [93]. Then, rats were randomly
assigned to each of the experimental groups and returned to the housing facilities for
12 weeks to assure the long-term absence of ovarian hormones and behavioral indicators
of anxiety- and despair-like states [32,39]. After this time all groups started treatments and
were subjected to behavioral tests.

4.5. Experimental Groups

Eight experimental groups (n = 9 each group) were assembled: a vehicle group (10% DMSO),
three groups with chrysin and three groups with allopregnanolone (0.5, 1 and 2 mg/kg), and
one diazepam group (2 mg/kg). After 12 weeks post-ovariectomy, drugs were injected via
i.p. for seven consecutive days. One hour after the last administration rats were submitted
to locomotor activity tests (5 min) and subsequently to forced swim stress (pre-test session
15 min, stress induced session). Twenty-four hours later all groups were evaluated for 5 min
in each of the same behavioral tests. Diazepam (2 mg/kg) was used as a reference anxiolytic
drug [32,94], which also reduces total time of immobility in the swimming test [33]. The
doses of chrysin were based on previous works in which doses from 1 to 4 mg/kg had
anxiolytic-like effects [32,33] and 1 and 2 mg/kg had antidepressant-like effects in male
rats [35]. Therefore, since female rats are more responsive to anxiolytic and antidepressant
drugs, a specific doses-response curve (0.5, 1 and 2 mg/kg) was included to identify
possible anxiolytic- and antidepressant-like effects using lower doses than those used
in male rats under our experimental conditions. Allopregnanolone doses were used as
controls of antidepressant-like agents with GABAergic properties [35,37].

4.6. Behavioral Tests
4.6.1. Locomotor Activity Test (LAT)

The changes in spontaneous locomotor activity were evaluated by individually placing
the rats into an opaque Plexiglas cage (44 × 33 cm, base; 20 cm high) with the floor
delineated into 12 squares (11 × 11 cm). Variables as number of crossing and time in
seconds spent in grooming and rearing were evaluated. Rats were considered to have
crossed from one square to another (crossing) when the hind legs crossed the line from one
square to another. Grooming included all self-directed behaviors of cleaning from head,
ears, limbs, and anal–genital region; this behavior may be significantly affected by diverse
stressors [46]. Rearing was measured when rats explored the cage in a vertical position
standing on its rear limbs. Rearing was evaluated considering that is a behavior related
with exploration and it is significantly affected by ovariectomy and stressors [20], while
anxiolytic and antidepressant drugs may prevent said effects and maintain or increase this
variable respect to control groups [32,35]. After each rat was tested, the locomotor activity
cage was carefully cleaned with 10% alcohol solution to remove the scent of the previously
evaluated rat. After the locomotor activity test, rats were subjected to the swimming test.
Approximately 2 min elapsed between tests.
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4.6.2. Forced Swim Test (FST)

After LAT, rats were individually forced to swim in a rectangular pool (50 × 30 × 60 cm)
with 25 cm deep water (25 ± 1 ◦C). The variables evaluated were the latency to first
immobility and total time of immobility. Latency to the first immobility is the elapsed time
since the rat was introduced to the pool, until the first immobility episode. The immobility
was considered when the rat floated for more than 1 s without making vigorous movements
leading to displacements and only maintaining its head above the water surface. These
behaviors are indicators of despair and antidepressant-like effects of clinically effective
antidepressant drugs and other substances [73,75]. All experimental sessions were video
recorded and two independent observers, blind to treatments, measured the behavioral
variables with a concordance level of at least 95%.

Forced Swim Pre-Test (Acute Stressor)

As part of the methodology of the forced swimming model, there is the “pre-test”
session, which consists of a 15 min session in which the rat is placed in a pool of water
that constitutes an aversive stimulus with no possibility of escape [73]. Being a novel
environment for the rat as well as aversive, this “pre-test” has been considered a highly
stressful situation, which 24 h later, produces a state of hopelessness characterized by a
significant increase in the total time of immobility [95,96]. One of the first studies to test
this approach was that of Franco Borsini, in which similar duration of immobility behavior,
suggestive of hopelessness, was identified between rats that received the 15 min “pre-test”
session in forced swimming and rats that were subjected to 3 stressful situations: space
restriction, exposure to low temperatures (4 ◦C) and continuous electric shocks to the
paws [82]. Additionally, the severe acute stress of swimming triggers a marked increase
in blood glucocorticoid concentration similar to the increase produced by a session of
space restriction [97]. Similarly, glucocorticoid levels increase when rats are submitted to
forced swim test for 25 min or until complete exhaustion [98]. Likewise, GABAA receptor
expression has also been shown to change with chronic exposure to swimming stress [99].
Therefore, in this study, we performed the behavioral measurement of the effects of the
forced swim pre-test session, videotaping and analyzing only the first 5 min of this pre-
test [100,101] and compared to the 5 min test 24 h later.

4.7. Statistical Analysis

The statistical analysis was conducted using Sigma Plot 12 software. Data were
analyzed using two-way ANOVA for repeated samples, with treatments and tests session
as factors. Data were transformed to ranks using Sigma Plot 12 software to satisfy the
assumptions of the normality test and equal variance test, and then analyzed. Values of
p ≤ 0.05 in the ANOVA were followed by the Student–Newman–Keuls post hoc test. The
results are expressed as mean ± standard error.

5. Conclusions

The flavonoid chrysin blocks the establishment of anxiety- and despair-like behav-
iors induced by the forced swim pre-test in ovariectomized rats, resembling the effect of
GABAergic drugs as allopregnanolone and diazepam. These results support the poten-
tial therapeutic effects of flavonoid chrysin in stress-related disorders like anxiety and
depression associated with surgical menopause in females.
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