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Abstract: Epidemiological studies have shown that the consumption of green tea has beneficial effects
against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major
contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases
with the ability to degrade the extracellular matrix proteins and are involved in various diseases including
cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the
effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter
region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and
EGCG can downregulate these transcription factors through signaling pathways mediated by reactive
oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin
levels, leading to suppression of MMPs’ expression. Other mechanisms by which EGCG inhibits MMPs
include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress
the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG
presented here may be useful in the development of more effective anti-MMP agents, which would give
beneficial effects on cancer and other diseases.

Keywords: green tea; epigallocatechin-3-gallate; matrix metalloproteinases; cancer; transcription
factors; reactive oxygen species

1. Introduction

Plant polyphenols are found in foods such as beans, tea, apples, onions, citrus fruits,
broccoli, berries, grapes, and coffee and are believed to have health benefits including
cancer prevention [1–3]. Green tea is a rich source of the flavanol catechins in which
epigallocatechin gallate (EGCG) (Figure 1) is present most abundantly and a number of
epidemiological evidence have shown that green tea intake has health-beneficial effects on
cancer [1–3].

Animal and cell-based studies have supported these effects and proposed several
mechanisms through which EGCG exerts anticancer effects. One of the most attractive
ones is the reactive oxygen species (ROS)-mediated mechanism in which EGCG acts as
strong antioxidants. Under certain conditions, EGCG can also act as a pro-oxidant. In
our previous review articles, we discussed the anticancer mechanisms of EGCG and other
dietary polyphenols via ROS-mediated pathways [4,5].

Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteases capable of
degrading extracellular matrix proteins [6–8]. In humans, at least 23 different MMPs have

Molecules 2023, 28, 525. https://doi.org/10.3390/molecules28020525 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28020525
https://doi.org/10.3390/molecules28020525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-7257-6792
https://orcid.org/0000-0002-9039-4474
https://orcid.org/0000-0002-2965-1742
https://orcid.org/0000-0002-5568-4601
https://doi.org/10.3390/molecules28020525
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28020525?type=check_update&version=1


Molecules 2023, 28, 525 2 of 22

been found [8]. These MMPs exert a variety of biological activities and are involved in
various diseases including cancer, cardiovascular diseases, diabetes, inflammation, and
brain disorders [7–9].
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epicatechin gallate; EGC, (−)-epigallocatechin, EC, (−)-Epicatechin. 
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Figure 1. Chemical structures of (−)-epigallocatechin gallate (EGCG) and related catechins. ECG,
(−)-epicatechin gallate; EGC, (−)-epigallocatechin, EC, (−)-Epicatechin.

Previous studies have examined the effects of EGCG on 10 MMPs, MMPs 1, 2, 3, 7, 8,
9, 11, 12, 13, and 14, and future studies will likely reveal the biological effects of EGCG on
other MMPs. In this review, we discuss the effects of EGCG on these 10 MMPs in relation
to its anticancer effects.

2. Anticancer Effects of EGCG

A large number of epidemiological studies have shown that the consumption of tea/green
tea reduces various types of cancer [7]. For example, in a pooled analysis of eight population-
based cohort studies, females who consumed green tea showed a decreased risk of total cancer
mortality: pooled hazard ratios (HR) = 0.89 (95% confidence intervals (CI) = 0.83–0.96) for the
consumption of 1–2 cups/day and HR = 0.91 (95% CI = 0.85–0.98) for the 3–4 cups/day [10].
For distal gastric cancer, the relative risk (RR) was 0.51 (95% CI = 0.30–0.86) in the highest
category of green tea consumption (≥ 5 cups/day compared to < 1 cup/day) in women [11].
For endometrial cancer, the highest green tea consumption was associated with a reduced risk
(RR = 0.78, 95% CI = 0.66–0.92), and an increase in green tea consumption of one cup per day
was associated with an 11% decreased risk (RR = 0.89, 95% CI = 0.84–0.94) [12].

The anticancer effect of green tea intake has often been attributed to the effect of EGCG
mainly based on animal and cell-based experimental results. For example, in an animal
model of spontaneous hepatoma in C3H/HeNCrj mice, administration of 0.05% EGCG
reduced the incidence of hepatoma-bearing mice by 67% compared to water-given control
and the average number of hepatomas per mouse by 39% at week 65 [13]. In an intravesical
tumor implantation model, the tumor-free incidence was 64% in rats given 200 µM EGCG
but 0% in control rats [14].

EGCG has a dual function of antioxidant and pro-oxidant potential and EGCG-mediated
ROS production and ROS-scavenging are considered to be responsible for its anticancer effects.
EGCG promotes strong anticancer effects by multiple mechanisms including inhibition of
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nuclear factor-κB (NF-κB) signaling, inhibition of angiogenesis, promotion of apoptosis, and
epigenetic modification by modulating DNA methylation and histone acetylation [15].

3. Modulation of MMPs by EGCG

MMPs are deeply associated with tumor growth, invasion, and metastasis. This has
been demonstrated by a number of studies. For example, in a transplant model of human
colon cancer, intraperitoneal injection of the MMP inhibitor BB-94 caused a 51% reduction
in the tumor weight in nude mice compared to the control group [16]. The incidence of
local and regional invasion was 35% in the BB-94 group, and 67% in the control group.
In contrast to 33% of the control mice, only 10% in the BB-94 group had metastasis. The
median survival times were 110 and 140 days in the control and BB-94 groups, respectively.

Transfection of rat tumor cells with the cDNA for tissue inhibitor of MMP (TIMP)2 caused
a marked decrease in MMP activity [17]. Forced expression of this MMP inhibitor in four clones
reduced tumor growth rate in vivo after subcutaneous injection and completely suppressed
local tissue invasion. An MMP2-silencing experiment demonstrated that short hairpin (sh)
RNA-transfected nasopharyngeal carcinoma CNE-1 cells showed inhibited cell colony formation
compared to the control cells [18]. These findings indicate the pivotal roles of MMPs in cancer.
It should be noted that tumor cells express MMPs and stromal cells such as fibroblasts are an
important source of MMPs in tumors as well [19].

In a meta-analysis of 28 studies of breast cancer, Ren et al. [20] found that patients with high
levels of serum MMPs had worse relapse-free survival (HR = 1.969, 95% CI = 1.460–2.655). HRs
of MMP9 positivity with poor overall survival was 1.794 (95% CI = 1.330–2.420) by univariate
analysis and 1.709 (95% CI = 1.157–2.526) by multivariate analysis. Therefore, clinical values of
MMPs as prognostic biomarkers warrant future evaluation.

3.1. Roles of MMP1 (Collagenase 1) in Cancer

MMP1 has been described in various advanced cancers and correlated with poor
survival of patients as shown in breast cancer and colorectal cancer [6,21]. Immunohisto-
chemical studies on patients suggest that bone morphogenetic protein-6 (BMP-6) suppresses
breast cancer metastasis [22]. BMP-6 inhibited the migration and invasion of breast cancer
MDA-MB-231 cells, and this effect was attenuated by overexpression of MMP1. BMP-6
inhibited MMP1 promoter activity through the activator protein 1 (AP-1) response element,
leading to downregulated MMP1 expression.

Cortez et al. [23] found that pro-inflammatory cytokine interleukin (IL)-17 stimulated
MMP1 gene transcription and type I collagenase activity which was inhibited by MMP1
knockdown mediated by small interfering RNA (siRNA). IL-17 induced MMP1 in human
cardiac fibroblasts by activating protein-38 (p38) mitogen-activated protein kinase (MAPK),
extracellular signal-regulated kinase 1/2 (ERK1/2), AP-1, NF-κB, and CCAAT enhancer-
binding protein beta (C/EBP-β). IL-17 may be a therapeutic target to reduce inflammation
and injury. These findings suggest that inhibition of MMP1 may lead to anticancer effects.

Casimiro et al. [24] found that the receptor activator of the nuclear factor kappa ligand
(RANKL) stimulated cell invasion of human breast cancer MDA-231BO2 cells through a type I
collagen matrix. Upregulation of RANKL increased the levels of MMP1 through the activation
of ERK/c-Fos and c-Jun aminoterminal kinase (JNK)/c-Jun pathways. siRNA-mediated
knockdown of MMP1 of these cells attenuated their invasion and reduced bone metastasis
was found in inoculated cells with MMP1 knockdown.

Wang et al. [25] showed that calmodulin-regulated spectrin-associated proteins pro-
moted cell migration and invasion of colorectal cancer SW-620 cells through activation of
the JNK/c-Jun/MMP-1 signaling pathway. Knockdown of MMP1 in these cells attenuated
their invasion.

In breast cancer patients, expression of the POU class 1 homeobox 1 transcription
factor (Pit-1) was positively correlated with the presence of both MMP1 and MMP13 [26].
Since distant metastasis is often observed in breast cancer patients with elevated expression
of Pit-1, its downregulation may have a preventive effect on metastasis.
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Effects of EGCG on MMP1

There have been several studies to demonstrate EGCG’s downregulation of MMP1.
For example, EGCG at 50 µM downregulated collagen production and MMP1 in rat primary
hepatic stellate cells (HSCs) and reduced the transcription of MMP1 in human HSC-derived
TWNT4 cells [27]. EGCG suppressed the MMP1 expression induced by heat shock or
tumor necrosis factor α (TNFα) in human fibroblasts [28,29]. In view of the involvement
of MMP1 in the migration, invasion, and metastasis of, for example, colorectal cancer
cells [25], EGCG’s inhibition of MMP1 may contribute to its anticancer effect.

Yun et al. [30] showed that EGCG downregulated TNFα-induced production of MMP1
and MMP3 in rheumatoid arthritis synovial fibroblast. EGCG also downregulated TNFα-
induced phosphorylation of ERK1/2, p38, and JNK and inhibited the binding of AP-1
proteins to its response elements in synovial fibroblast.

EGCG suppressed collagen degradation in UV-B-exposed human dermal fibroblasts
and inhibited UV-B-induced production of MMP1, MMP8, and MMP13 [31]. EGCG reduced
UV-B-induced activation of ASK-1 and phosphorylation of MAPK, JNK, p38, and ERK1/2,
in these cells.

3.2. Roles of MMP2 (or Gelatinase A) in Cancer

Analysis of tumor specimens from 12 patients with oral cavity squamous cell carci-
noma suggested that MMP2 secreted from fibroblasts is involved in the invasion of oral
cancer cells [32].

As described above, MMP2 knockdown significantly inhibited the colony formation
and migration of nasopharyngeal cancer cells [18]. In esophageal carcinoma KYSE150
cells, siRNA against MMP2 caused inhibition of the mRNA and protein expression of
MMP2, leading to reduced invasion and migration of these cells [33]. In a study using
colorectal cancer HCT116 cells, the high invasiveness of these cells was shown to result from
increased secretion of MMP2 and activation of focal adhesion kinase (FAK) signaling [34].
MMP2-knockdown with shRNA reduced cell migration. ARP-100, an MMP2 inhibitor,
decreased the phosphorylation and protein levels of FAK signaling proteins, FAK, ERK,
phosphorylated phosphatidylinositol-3-kinase (PI3K), and JNK, and reduced integrin-β1
and CD9 in the culture medium. The finding suggests that there is positive feedback in
which MMP2 can activate FAK signaling leading to the upregulation of MMP2 itself in
tumor cells.

Similarly, the results of siRNA experiments in lung cancer A549 cells suggested that
MMP2 upregulates αVβ3 integrin mediated PI3K/protein kinase B (AKT) signaling to elevate
vascular endothelial growth factor (VEGF) expression, resulting in enhanced angiogenesis [35].
Knockdown and overexpression experiments led Kesanakurti et al. [36] to show that MMP2
induces TNFα-mediated NF-κB activation and induces JNK-mediated apoptosis in glioma
cells and xenograft cells.

Kargozaran et al. [37] found that human lung microvascular endothelial cells secreted
MMP2 consistently, but human breast cancer MDA-MB-231 cells did only at a low level.
When MMP2 expression and activity in the endothelial cells were inhibited by knockdown
with siRNA or with an inhibitor OA-HY, respectively, the transmigration of the cancer
cells across an endothelial monolayer barrier on Matrigel was abrogated. The finding
suggests that the interaction between tumor cells and the vascular endothelium may have
an important role in tumor invasion and metastasis.

Knockdown of MMP2 using MMP2 siRNA caused suppression of cell proliferation
in glioma 4910 and 5310 cells established from mouse xenografts of human glioma tu-
mors [38]. MMP2 downregulation also suppressed α5β1 integrin expression, MMP2/α5β1
interaction, the secreted levels of several cytokines including granulocyte-macrophage
colony-stimulating factor (GM-CSF), IL-6, IL-8, IL-10, TNFα, VEGF, and platelet-derived
growth factor (PDGF)-BB. The cells with MMP2-knockdown showed inhibited the binding
activity of signal transducer and activator of transcription 3 (STAT3) to DNA. This inhibition
was canceled by IL-6, suggesting suppression of IL-6/STAT3 signaling in the knockdown
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cells. The added recombinant MMP2 enhanced MMP2/α5β1 binding. The intracranial
tumors of injected MMP2-knockdown cells showed much smaller in size, indicating a
pivotal role of MMP2 in cancer.

Deng et al. [39] found that advanced glycation end products (AGEs) accelerate tumor
invasion and metastasis, with upregulation of the receptor for AGEs (RAGE), specificity
protein 1 (Sp1), and MMP2 protein expression and activity. AGEs caused an increase in
pERK and MEK1/2 inhibitor-induced reduction of this phosphorylation led to suppression
of the Sp1 expression, suggesting the involvement of the RAGE/ERK/Sp1/MMP2 pathway
in AGE-induced tumor invasion and metastasis.

Microarray and quantitative reverse transcription-polymerase chain reaction (qPCR)
analyses of hepatocellular carcinoma (HCC) HEP3B cells revealed that EGCG upregulated
MMP1, MMP9, and long non-coding RNA ADAMTS9 and downregulated the expres-
sion of MMP11, MMP24 and a disintegrin and metalloprotease (ADAM) family protein
ADAMTSL4 [40]. However, the contribution of these modulations of individual MMPs or
in concert with EGCG’s anticancer effects remains to be determined.

Effects of EGCG on MMP2

Previous studies of our group showed that MMP2 and MMP9 were major MMPs secreted
by murine tumor cells derived from Lewis lung cancer cells by gelatin zymography and
affinity chromatography demonstrated that these MMPs were bound by EGCG immobilized
on agarose gel [41]. EGCG inhibited the gelatinolytic activity of a mixture of MMP2 and MMP9
derived from these cells with an IC50 value of about 10 µM. (+)-Catechin and (−)-epicatechin
(EC) up to 10 µM did not show activity. Oral administration of green tea and a catechin
mixture rich in EGCG inhibited metastasis of LL2-L3 and melanoma B 16 cells, respectively, in
the animal model [42,43]. When the invasion of LL2-L3 cells through an artificial basement
membrane (Matrigel) was examined, green tea infusion reduced the number of the invaded
cells (Figure 2). EGCG inhibited invasion of these cells with the IC50 value of about 25 µM,
but EC did not [43].
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Figure 2. The number of the invaded cells stained with hematoxylin-eosin on the underside of the
filter coated with Matrigel is reduced in the presence of green tea infusion in the cell incubation
medium compared to its absence. (A), Invaded cells without green tea infusion; (B), Invaded cells
with green tea infusion; (C), Chemotaxicell chamber without the added cells. Reproduced from [43].
Reprinted with permission from Ref. [43]. Copyright 1995 Elsevier.

Maeda-Yamamoto et al. [44,45] demonstrated that in human fibrosarcoma HT1080 cells,
EGCG suppressed the gelatinolytic activities ascribable to MMP2 and MMP9 caused by
the downregulation of their mRNAs (Figure 3). EGCG also suppressed the expression of
membrane-type1 MMP (MT1-MMP) mRNA. EGCG inhibited the phosphorylation of ERK1/2,
which is required for MMP9 upregulation, and suppressed p38 activity, but not c-Jun. These
findings suggest that suppression of ERK phosphorylation by EGCG is involved in the
decreased expression of MMP2 and MMP9 mRNAs.
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Figure 3. Gelatin zymography reveals that EGCG inhibited ProMMP2 (72k), activated MMP2 (68k
and 62k), and MMP9 (92k). TF1, theaflavin-1. Reprinted with permission from Ref. [44]. Copyright
1999 American Chemical Society.

Dell’Aica et al. [46] found that EGCG directly inhibited MT1-MMP activity, leading
to the accumulation of proMMP2 at the cell surface. Garbisa et al. [47] found that EGCG
inhibited gelatinase activity of MMP2 and MMP9 and Matrigel invasion of human neurob-
lastoma SK-N-BE cells with a Ki value of 22 µM against MMP2 activity. EGCG was also
shown to inhibit these MMPs in fibrosarcoma HT1018 cells independent of an excess of
Zn2+ ions.

Bedoui et al. [48] found that in human aortic vascular smooth muscle cells (VSMCs),
EGCG and ECG inhibited MT1-MMP activity. Thrombin-stimulation increased cell invasion
which was inhibited by EGCG and EGC but not by EC. A ratio of MMP2/proMMP2 activity
was decreased in thrombin-treated cells by EGCG or ECG. Decreased activity of MT1-MMP
was also observed in these treated cells.

In breast cancer MCF-7 cells, EGCG decreased the activity of MMP2 and its protein and
mRNA expression levels [49]. The expression of MMP9 was too low to be detected. EGCG
also downregulated the expression of FAK, MT1-MMP, NF-κB, and VEGF and reduced cell
adhesion. EGCG-induced reduction in phosphorylation of PI3K and ERK may be related to
ECCG’s downregulation of MMP2.

In nasopharyngeal carcinoma TW01 and NA cells, EGCG inhibited cell proliferation,
migration, and Matrigel invasion [50]. EGCG also reduced the phosphorylation of ERK and
the nuclear levels of AP-1 and Sp1, leading to the downregulation of MMP2 and MMP9.
EGCG inhibited the nuclear translocation of NF-κB and β-catenin along with the reduction
of mRNA levels of epidermal growth factor receptor (EGFR). EGCG upregulated the
expression of E-cadherin and β-catenin. EGCG caused inhibition of AKT phosphorylation
to a lesser extent and no changes in the level of p38. The expression of MMP2 and MMP9
is regulated by several signaling pathways, including MAPK and PI3K/AKT signaling
pathways affecting the downstream transcription factor AP-1 and Sp1 that modulates the
promoter activity of MMP2 and MMP9 [51].

Annabi et al. [52] showed that EGCG inhibited MMP2 secretion in glioblastoma cells.
Thus, EGCG exerts inhibitory effects on enzyme activity, gene expression and secretion of
MMP2 from various tumor cells, resulting in reduced cancer cell invasion and metastasis.

Pramanik and Mishra [53] examined 127 post-operated samples from oral cancer patients.
Results indicated that cancer tissues had increased protein and activity levels of MMP2
compared to adjacent normal samples. The MMP2 expression/activity was related to several
signal-transduction pathways including ERK1/2 and Wingless and Int-1 (WNT)-β-catenin
pathways and transcription factors such as NF-κB, AP-1, and Sp1. In Cal-27 and SCC4/9
cells derived oral squamous cell carcinoma, ECGC, and a MAPK-pathway inhibitor PD98059
diminished MMP2 activity and invasion/migration of these cells.

The effects of oral administration of EGCG on breast cancer patients undergoing
treatment with radiotherapy were studied [54]. Results showed that EGCG caused reduced
activation of MMP2 and MMP9 in patient sera along with lower serum levels of VEGF, and
hepatocyte growth factor (HGF) compared to untreated patients.
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In a xenograft model of human pancreatic cancer AsPC-1cells, EGCG inhibited cell
proliferation, capillary tube formation, and migration of human umbilical vein endothelial
cells (HUVECs), and these inhibitory effects were further enhanced in the presence of
an ERK inhibitor [55]. EGCG decreased AsPC-1 xenograft tumor volume, angiogenesis,
and metastasis together with downregulation of MMP2, MMP7, MMP9, and MMP12.
Tumor samples from EGCG-treated mice had decreased ERK activity and enhanced p38
and JNK activities. However, it is not clear regarding the degree of contribution of the
downregulation of individual MMPs to these effects.

In U87 glioblastoma cells, Djerir et al. [56] found that ConA-mediated MT1-MMP
induction was inhibited by EGCG and catechin gallate, and endoplasmic reticulum stress
biomarker GRP78 induction was inhibited by EGCG, catechin gallate, and gallocatechin
gallate, whereas proMMP2 activation was inhibited by EGCG and gallocatechin gallate.
Surface plasmon resonance study showed that gallated catechins interacted better than
their ungallated analogs with MT1-MMP as well as with MT1-MMP binding partners such
as MMP2 and TIMP2, suggesting the importance of the galloyl moiety in EGCG’s inhibition
of MT1-MMP-mediated proMMP2 activation.

Prostate-specific antigen (PSA) is a serine-protease and can degrade extracellular
matrix proteins, thereby affecting cell migration and metastasis. Pezzato et al. [57] found
PSA could degrade gelatin and Matrigel components. PSA also degraded proMMP2
resulting in the generation of active MMP2, which was inhibited by EGCG. PSA’s activation
of proMMP9 was not observed.

Li et al. [58] found that EGCG induced apoptosis in glioma U251 cells via the 67 kDa
laminin receptor (67LR) because 67LR knockdown reduced apoptosis. EGCG abrogated
the invasion and proliferation of these cells. The MAPK pathway was found to be involved
in EGCG’s effects. EGCG also caused decreases in the mRNA levels of MMP2 and MMP9.
EGCG upregulated P38 and JNK. Although pERK1/2 was upregulated at 25 µg/mL EGCG,
the higher concentrations of EGCG decreased the level of pERK1/2. Based on the previous
findings in a toxoplasma-induced inflammation model of astroglia showing that MG132,
an NF-κB inhibitor, reduced expression of pNF-κB, MMP2, and MMP9 and ERK inhibitor
PD98059 mitigated pERK1/2, pNF-κB, MMP2, and MMP9 expression [59], it is plausible to
consider that 67LR, an EGCG sensing molecule [60], is the molecule responsible for EGCG’s
downregulation of signaling of ERK1/2-NF-κB-MMP9/MMP2.

Additional examples of studies in which EGCG’s modulation of MMP2 and MMP9
was demonstrated are listed in Table 1.

Table 1. Modulation of MMP2 and MMP9 by EGCG in selected papers.

Human Cell Types

Major Findings on Effects of EGCG
(↓): Inhibition/Downregulation;
(↑): Activation/Upregulation;
(±): No Effect

References

Fibrosarcoma HT-1080 cells Gelatinolytic activity (IC50 = 20 µM) (↓),
Matrigel invasion (IC50 = less than 0.1 µM) (↓). Garbisa et al. [61]

Kaposi’s sarcoma IMM cells

Cell growth (↓), endothelial cell growth (↓),
invasion (↓), apoptosis (↑) (at high concentration).
Gelatinolytic activity in endothelial cell
supernatants (↓), formation of new capillary-like
structures (↓).
In xenografted mice: tumor growth (↓),
angiogenesis (↓).

Fassina et al. [62]

Tumor bronchial epithelial cells
Cell migration (↓), MMP2 mRNA and protein
expression (↓), MT1-MMP (±). MMP9 expression
was not detected.

Hazgui et al. [63]
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Table 1. Cont.

Human Cell Types

Major Findings on Effects of EGCG
(↓): Inhibition/Downregulation;
(↑): Activation/Upregulation;
(±): No Effect

References

Oral squamous cell carcinoma-9 cells

Cell migration (↓), motility (↓), adhesion (↓),
p-FAK (↓), p-Src (↓), snail-1 (↓), vimentin (↓),
urokinase-type plasminogen activator (↓),
EMT (↓), PMA-induced invasion (↓),
PMA-induced MMP9 expression (↓).
In xenografted mice: tumor growth (↓).

Chen et al. [64]

Neuroblastoma both SK-N-BE2 and
SH-SY5Y cells

Matrigel invasion (↓), MMP2 (↓), MMP9 (↓), pAKT
(↓), NF-κB (↓), VEGF (↓), bFGF (↓), Notch-1 (↓),
hTERT (↓), PCNA (↓),
E-cadherin (↑), Caspase 8 (↑), Bid (↑), Bax (↑), Bcl-2
(↓), Caspase 3 (↑), ICAD (↑).
Survivin blocked these effects of EGCG.

Hossain et al. [65]

A431 and SCC13 skin cancer cells

Cell death (↑), MMP2 (↓), MMP9 (↓),
phosphorylation of β-catenin (↑), nuclear
β-catenin (↓), casein kinase1α (↑), phosphorylation
of glycogen synthase kinase-3β (↓).

Singh and Katiyar [66]

Uveal melanoma M17 cells

Cell migration (↓), secreted MMP2 activity (↓),
mRNA and protein expression (±), expressions of
MMP2 (↓), TIMP2 (↑), RECK (↑), pERK1/2 (↓), p38
and JNK levels (±).

Chang et al. [67]

Nasopharyngeal carcinoma TW01 cells

Proliferation (↓), migration (↓), invasive (↓), MMP2
(↓), MMP9 (↓), E-cadherin (↑),
β-catenin (↑), pERK (↓), AP-1 (↓), Sp1 (↓).
In xenografted mice: tumor growth (↓), p53 (↑),
p21 (↑), apoptosis (↑) caspase 3 (↑), nuclear
translocation of NF-κB (↓), β-catenin (↓).

Fang et al. [50]

Doxorubicin-sensitive human breast
cancer MCF7 cells

MMP2 activity (↓), MMP9 activity (↓).
These activities were not detected in
Doxorubicin-sensitive MCF7 cells.

Nowakowska et al. [68]

Cholangiocarcinoma HuCC-T1 cells

Cell viability (↓), growth (↓), invasion (↓);
MMP2/MMP9 activity (↓), apoptosis (↑),
Bax/Bcl-2 (↑), Caspase 3/9 (↑), mutant p53 (↓).
In xenografted mice: tumor growth (↓),MMP2/9
(↓), Notch-1(↓), PCNA (↓)

Kwak et al. [69]

BE(2)-C neuroblastoma cells

Cell viability (↓), RXRα (±), RXRβγ (±), RXRγ (↑)
Bcl-2 (±), cleaved PARP (↑), MMP2 mRNA (↓)
MMP2 activity (↓), MMP2 protein (±), MMP9
mRNA (±), MMP9 activity (↓).

Farabegoli et al. [70]

ES-2 ovarian cancer cells

TGF-β-induced MMP2 (↓),
TGF-β-induced EMT biomarkers (fibronectin,
Snail, Slug, Smad-3 phosphorylation) (↓).
EC gave no effects on TGF-β-induced MMP2.

Sicard et al. [71]

EMT, epithelial-mesenchymal-transition; Bcl-2, B-cell CLL/lymphoma 2; ICAD, inhibitor of caspase-activated
DNase; PARP, poly-ADP ribose polymerase; PCNA, proliferating cell nuclear antigen; RECK, reversion-inducing-
cysteine-rich protein with kazal motifs; RXR, retinoid X receptor.

3.3. Roles of MMP3 in Cancer

MMP3 (or stromelysin 1) has a role in tumor invasion and metastasis [72]. MMP3
exhibits a number of activities to promote tumor development. In addition to degrading
various ECM components, MMP3 can activate MMP9 and the collagenases, and degrade



Molecules 2023, 28, 525 9 of 22

a number of cell surface molecules, including E-cadherin which contributes to cancer
development [73].

In malignant mesothelioma SPC212 cells, zymography with fibronectin showed that
MMP3 activity was enhanced when treated with various factors such as epidermal growth
factor (EGF), transforming growth factor-α (TGF-α), HGF, insulin-like growth factor (IGF)-II,
and basic fibroblast growth factor (bFGF) [9].

Lochter et al. [74] examined MMP3′s regulation of ductal morphogenesis, apoptosis,
and neoplastic progression in mammary epithelial cells by generating cells expressing an
inducible autoactivating transgene. Inducer-triggered MMP3 expression caused cleavage
of E-cadherin, phenotypic changes such as the disappearance of E-cadherin and β-catenin
at cell–cell contact sites, upregulation of MMPs including MMP9, and resulted in showing
the contribution of MMP3 to invasive nature of cells expressing MMP3.

In a later discussion, Sternlicht et al. [73] proposed a mechanism in which MMP3
modulates genes containing lymphoid enhancer factor-binding sites such as those of myc,
cyclin-D1, E-cadherin and MMP3, 7, 9, and 13. Kwon et al. [75] showed that filamin A
interacting protein 1-like, an inhibitor of cell migration and invasion, reduces β-catenin
levels, leading to the transcriptional downregulation of WNT target genes such as MMP3
and MMP9, resulting in inhibition of metastasis. Thus, MMP3 inhibition can be expected to
have anticancer effects.

Effects of EGCG on MMP3

A previous study of our group showed that EGCG inhibited MMP3 activity with an
IC50 value of ca. 50 µM in the culture medium of mouse Lewis lung carcinoma-derived
cells (Figure 4) [76]. Lee et al. [77] found that water extracts of green, white, and black teas
reduced UVB-induced skin damage in a photoaged hairless mouse model together with
the reduced expression of MMP3.
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Downregulation by EGCG of TNFα-induced production of MMP1 and MMP3 in
rheumatoid arthritis synovial fibroblast [30] is described above.

3.4. Roles of MMP7 (Matrilysin) in Cancer

MMP7 (matrilysin-1) plays important roles in the growth, invasion, and metastasis
of tumors [78]. Unlike many MMPs, MMP7 is typically expressed in epithelial cells, and
MMP7 expression increases at the invasive front in esophageal adenocarcinoma which may
be partly attributable to the activation of PI3K [79]. Secreted MMP7 may modify the tumor
microenvironment by stimulating stromal cell migration and invasion.
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Although in Min/+ mice, MMP7 mRNA was detected in 88% of Min adenomas
and localized to epithelial-derived tumor cells [80], MMP7-deficient mice with a targeted
disruption of the gene had a 60% reduction in mean tumor multiplicity and decreased
average tumor diameter. The findings suggest that MMP7 may act as a suppressor of the
Min phenotype in a capacity independent of matrix degradation.

Effects of EGCG on MMP7

As described above, EGCG downregulated MMPs including MMP7 in AsPC-1 xenograft
tumors, but MMP’s contribution to EGCG’s effects is to be determined [55].

In contrast, in human colorectal cancer HT-29 cells, EGCG (10–100 µM) increased
both intracellular and extracellular proMMP7 protein levels with a significant upregulation
of mRNA expression [78]. EGCG also activated ERK1/2, JNK, and p38. Induction of
proMMP7 expression by EGCG was also shown in another human colorectal adenocarci-
noma cell line, Caco-2.

These conflicting results should be examined in detail in future investigations.

3.5. Roles of MMP8 in Cancer

Cao et al. [81] showed that MMP8 secreted by irradiated liver nonparenchymal cells en-
hanced the migration and invasion of HCC through modulation of AMP-activated protein
kinase (AMPK)/mammalian target of rapamycin signaling, providing a possible mecha-
nism in sublethal irradiation-induced HCC metastasis observed often in radiotherapy.

MMP8 may be prognostic for certain cancers. When liver metastasis samples from
419 colorectal cancer patients were examined for cancer-associated markers including serum
MMP8, the pre- and postoperative high levels of MMP8 were associated with worse 10-year
overall survival [82]. In contrast, tumor MMP8 expression may be a favorable prognosis
in pancreatic ductal adenocarcinoma [83]. Thus, further studies would be required for the
significance of MMP8 in prognosis.

Effects of EGCG on MMP8

EGCG’s inhibition of UV-B-induced production of MMP1, MMP8, and MMP13 [31] is
described above.

3.6. Roles of MMP9 (Gelatinase B) in Cancer

In oral squamous cell carcinoma (OSCC), knockdown of MMP9 lead to inhibition of
cell migration, proliferation, interactions between endothelial cells, tumor growth of nude
mouse xenografts, angiogenesis, and OSCC cell metastasis to mouse lymph nodes [84].
Knockdown of MMP9 decreased the expression of RhoC, Src, and F-actin.

Ding et al. [85] found that TNFα markedly increased MMP9 expression and decreased
collagen IV expression in hCMEC/D3 cells and the effect was attenuated by pretreatment
with 2,6-diisopropylphenol, an intravenous anesthetic agent. MMP9 knockdown with siRNA
resulted in the inhibition of TNFα-induced downregulation of collagen IV. Experiments
using the inhibitors revealed that TNFα upregulated MMP9 expression through activation of
Ca2+/calmodulin-dependent protein kinase II (CAMK II)/ERK/NF-κB signaling pathway.

In fibrosarcoma HT1080 cells, MMP9 knockdown caused increased cell adhesion and
inhibited tumor cell migration. In a nude mouse xenograft model, MMP9 knockdown
inhibited tumor growth, reduced tumor volume, and prolonged survival time [86].

Effects of EGCG on MMP9

Several studies of the effects of EGCG on MMP9 are included in Table 1 because these
studies examined MMP2 and MMP9 at the same time.

Sato and Seiki [87] analyzed the 5′-flanking sequence of MMP9 and found that three
motifs, homologous to the binding sites for AP-1, NF-κB, and Sp1 proteins, contributed
to induction by TPA and TNFα. Comparison of the promoter structures of TPA-inducible
MMP1 and MMP3 revealed that the signal to the AP-1 sites is common but the signals to
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the NF-κB or Sp1 sites in MMP9 are the unique determinant for MMP9 induction because
these sites are not present in MMP1 and MMP3 promoters.

In lung carcinoma 95-D cells, EGCG suppressed their invasion, downregulated the
expression of MMP9, and reduced the nuclear localization of NF-κB [88]. EGCG also
reduced intracellular oxidative stress, which may contribute to its suppression of tumor
invasion via the downregulation of MMP9 and NF-κB.

Sen et al. [89] studied the effect of EGCG on MMP9 in human breast cancer MDA-
MB-231 cells. Results indicated that EGCG repressed the activity, protein, and mRNA
expression of MMP9 and increased the expression of TIMP1. EGCG abrogated the activation
of FAK and ERK, reduced the adhesion to fibronectin and vitronectin, and reduced the
mRNA expression of the integrins α5β1 and αVβ3. In addition, EGCG suppressed NF-κB
expression and DNA binding activity of NF-κB and activator AP-1 to the MMP9 promotors,
indicating EGCG causes transcriptional deregulation of the MMP9 gene in these cells.

The nicotine in cigarette smoke has been correlated to tumor propagation. Khoi et al. [90]
investigated the effects of EGCG on nicotine-induced cell invasion and MMP9 activity in
human endothelial ECV304 cells. Results showed that EGCG abrogated the MMP9 expression
and transcriptional activity. EGCG inhibited nicotine-suppressed production of ROS and
nicotine-induced NF-κB and AP-1 activation. Experiments with an expression of mutated NF-
κB and AP-1 decoy demonstrated that NF-κB and AP-1 are involved in the nicotine-stimulated
MMP9 expression. These findings suggest that MMP9 is under the control of ROS, NF-κB,
and AP-1.

In cervical cancer HeLa cells, EGCG caused growth inhibition and cell death through
apoptosis [91]. EGCG also inhibited the invasion and migration of these cells, suppressed
the gene expression of MMP9, and increased the gene expression of TIMP1.

In colon cancer HCT116 cells with wild-type p53 and HT-29 cells with mutant p53,
EGCG induced apoptosis in a p53-independent manner [92]. EGCG suppressed the ex-
pression levels of VEGF and MMP9 regardless of the p53 status. Compound C, the AMPK
inhibitor, attenuated these effects in HT-29 cells, suggesting that AMPK is involved in the
downregulated expression of VEGF and MMP9 in EGCG-treated cells.

The Tax oncogene is expressed in HTLV-1-infected cells. Harakeh et al. [93] found that
EGCG exerted cytotoxicity in HTLV-1 positive ATL HuT-102 and C91-PL cells and reduced
expression of Tax. EGCG decreased NF-κB activity in these cells and also the mRNA and
protein levels and activity of MMP9.

In bladder cancer SW780 cells, EGCG inhibited cell proliferation, migration, and
invasion [94]. EGCG induced apoptosis in these cells by activation of caspases-8, -9, and -3,
Bax, and poly-ADP ribose polymerase. In mice bearing SW780 tumors, EGCG injection
resulted in decreases in tumor volume and weight. EGCG downregulated the expression
of NF-κB and MMP9 in both protein and mRNA levels in the tumor and SW780 cells. The
NF-κB inhibitor SC75741 canceled the inhibitory effects of EGCG on the proliferation and
migration of SW780 cells.

When human monocytic THP-1 cells were induced with phorbol myristate acetate
(PMA) to differentiate into macrophages, EGCG inhibited the expression of MMP9 and
activation of ERK1/2, p38, and JNK [95]. Anti-67LR antibody attenuated the EGCG’s
inhibition on the expression of MMP9 and activation of ERK1/2, p38, and JNK. Additionally,
the EGCG’s inhibition of ERK1/2 phosphorylation was abrogated in 67LR-ablated cells. As
mentioned above, 67LR may be involved in the mechanism of EGCG’s downregulation of
MMP9 via the ERK1/2-NF-κB-MMP9 signaling pathway.

3.7. Roles of MMP13 in Cancer

As described above, expression of the POU class 1 homeobox 1 transcription factor
(Pit-1) in breast cancer patients was positively correlated with the presence of both MMP1
and MMP13 [26]. In SCID mice, knockdown of MMP13 blocked lung metastasis of injected
Pit-1-overexpressing MCF-7 cells.
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MMP13 is expressed in the mesenchymal stromal cells of giant cell tumors of bone [96].
IL-1β and TNFα upregulated MMP13 at mRNA and protein levels. Inhibition of the
ERK and JNK signaling pathways inhibited the upregulation of MMP13 in these cells.
Knockdown of transcription factor Runx2 resulted in the downregulation of MMP13,
suggesting that Runx2 may involve cytokine mediated MMP13 expression in these cells.

High-mobility group box-containing protein 1 (HBP1) is a transcription factor to func-
tion as a tumor suppressor in various cancers. Analysis of oral tumor specimens showed
that the low HBP1/high MMP13 status was associated with metastatic potential [97].
MMP13 knockdown significantly reduced invasion enhanced by HBP1 siRNA, suggesting
a role of MMP13 in cancer invasion and metastasis.

Effects of EGCG on MMP13

RNA-seq and qPCR analyses of HCC HEP3B cells revealed that EGCG’s modulation
of various MMPs including upregulation of MMP13 as mentioned above [40].

Chiang et al. [98] found an increase in MMP13 mRNA and protein expression in
OSCC cells relative to normal oral keratinocytes. Esophageal squamous cell carcinoma also
showed high MMP13 mRNA expression. Treatment with >5 µM EGCG suppressed the
expression and activity of MMP13 in oral cancer OEC-M1 cells, suggesting an anticancer
effect of EGCG through the downregulation of MMP13.

3.8. Roles of MT1-MMP (MMP14) in Cancer

Membrane type-1 matrix metalloproteinase (MT1-MMP) is a transmembrane MMP
that triggers intracellular signaling and regulates extracellular matrix degradation associ-
ated with tumor angiogenesis and inflammation [56]. One of the most important roles of
MT1-MMP seems to activate MMP2 [56,99].

In human breast cancer MDA-MB-231 cells, transgenic knockdown of MT1-MMP
reduced invasiveness and response to invasion stimulus of HGF [100]. In clinical breast
cancer tissues, immunohistochemistry detected both membranous and cytoplasmic local-
ization of MT1-MMP and showed stronger staining of tumor cells compared to normal
mammary epithelial cells. The transcript levels in tumor tissues were insignificantly higher
compared to normal tissues and the significantly higher levels in tumors were detected in
patients with shorter disease-free 10 years from breast cancer-related causes.

Nguyen et al. [101] demonstrated that forced MT1-MMP expression in low-invasive
LNCaP prostate cancer cells enhanced ROS activity and MT1-MMP knockdown in DU145
cells decreased ROS activity. Overexpression of MT1-MMP increased oxidative DNA
damage in these cells and the ROS scavenger N-acetylcysteine blocked the MT1-MMP-
mediated increase in cell migration and invasion. Experiments with cells expressing
MT1-MMP mutant cDNAs revealed the requirement of the proteolytic activity of cell
surface MT1-MMP for ROS activation, suggesting a role of MT1-MMP proteolytic activity
in the induction of invasive phenotypes via ROS activation.

Effects of EGCG on MT1-MMP

As mentioned above, in U87 glioblastoma cells, EGCG inhibited ConA-mediated
MT1-MMP induction and proMMP2 activation which is likely to be caused by the binding
interaction of EGCG with MT1-MMP and MMP2 [56].

Yamakawa et al. [102] found that EGCG downregulated MT1-MMP, which promotes
endothelial cell migration and tube formation and inhibited the invasion of HUVECs at 10 µM.
EGCG suppressed tube formation by HUVECs and angiogenesis in vivo in a dorsal air sac
model. EGCG administration resulted in suppressed tumor growth of colon 26 NL17 and Meth
A sarcoma in mice with suppressed angiogenesis.

In U87 glioblastoma cells, chemotactic migration induced by TGF-β was suppressed
by silencing either MT1-MMP or epithelial-mesenchymal transition-related protein SNAIL
together with the reduced phosphorylation of decapentaplegic homolog (Smad)2/3 and
STAT3 [103]. Similar results were observed by pharmacological inhibitors of STAT3 in-
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cluding EGCG, suggesting that EGCG’s suppression of MT1-MMT could lead to reduced
migration of these cells.

4. Mechanistic Consideration

There are several mechanisms by which EGCG regulates MMPs. These include:
(i) inhibition of gene expression of MMPs; (ii) inhibition of activation of proMMPs to active
MMPs; (iii) direct inhibition of the enzymatic activity of MMPs; (iv) downregulation of
TIMP: (v) downregulation of cell surface receptors of growth factors; and (vi) modulation
of release of cytokines from cancer cells.

4.1. Inhibition of Gene Expression of MMPs

EGCG has anticancer effects including the downregulation of MMPs. We have postulated
polyphenol-triggered ROS-mediated anticancer pathways as one of the most attractive mecha-
nisms. This scheme shows that, for example, ROS-scavenging properties of EGCG would lead
to downregulation of NF-κB, resulting in downregulation ofMMP9 gene expression in view
of the presence of the binding site of NF-κB p65 in the promoter (Table 2, Figure 5). Based
on previous and additional information [29,104–106], we present a possible mechanism to
explain how EGCG downregulates various kinds of MMPs (Figure 5). Table 2 lists the selected
transcription factor-binding sites present in the promotors of MMPs [107,108].

Table 2. Transcription factor-binding sites in human MMP promotors.

Human MMPs Transcription Factors *

MMP1 (Collagenase 1) AP-1
MMP2 (Gelatinase A) AP-2, Sp1
MMP3 (Stromelysin-1) AP-1

MMP7 (Matrilysin) AP-1
MMP9 (Gelatinase B) AP-1, Sp1, NF-κB (p65)

MMP10 (Stromelysin-2) AP-1
MMP12 (Metalloelastase) AP-1

* Transcription factors related to this review are listed selectively.

Other studies also found that EGCG downregulates NF-κB: EGCG inhibits the nu-
clear translocation of NF-κB and β-catenin [50]. Several studies described above showed
modulation of AP-1 by EGCG. For example, EGCG reduces the nuclear levels of AP-1 and
Sp1 in nasopharyngeal carcinoma cells [50]. As for Sp1, EGCG suppresses the expression,
DNA binding activity, and transactivation activity of Sp1 protein in LNCaP prostate cancer
cells [109].

In addition to these canonical transcriptional factors, there is a possibility that several
member molecules associated with the ROS-triggered signal transduction pathways are
involved in the nuclear modulation of MMP expression. These include β-catenin [73,110],
ERK [110], p38 [110], heat shock protein-27 (Hsp27) [111], and STAT [110] (Figure 5).
Phosphorylases are expected to phosphorylate target proteins to involve in the modulation
of transcriptional activity on MMPs. Nuclear Hsp27 may interact with Sp1, leading to the
upregulation of MMP2 [111,112]. However, future studies are required to reveal the role of
these molecules in the modulation of MMP gene expression.

Several conflicting results have been reported as exemplified by the EGCG’s effect
on p38 [30,45,50,78,113]. The reasons for these differences may include those in cell types,
EGCG concentrations, culture incubation time, and cell densities used in experiments.
Future studies will be needed to understand the EGCG’s effects on signaling molecules.

4.2. Inhibition of Activation of proMMPs to Active MMPs

Several studies to show EGCG’s inhibition of activation of proMMPs to active MMPs
are described above.
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4.3. Direct Inhibition of Enzymatic Activity of MMPs

The results of affinity chromatography using EGCG immobilized on agarose showed the
direct binding of EGCG with MMP2 and MMP9. Inhibition of proMMP2/active MMP2 activi-
ties was found for EGCG and ECG, but not EC and EGC [44,99] (Figure 6). Computational
molecular docking analyses showed EGCG’s binding to MMP2 and MT1-MMP (Figure 6).
The results showed that in the MMP2-EGCG interaction the 15 amino acid residues have
interaction energy of >2 kcal/mol, and the A192, L399, H403, E404, M421 amino acid residues
are located close to the EGCG binding site [99,114]. The P423 residue can engage in the
complex formation with EC and EGC, but not with EGCG, and this binding interaction may
be a reason why EC and EGC cannot inhibit MMP2 activity.

MT1-MMP activates proMMP2 to form MMP2. According to molecular docking
analyses, MT1-MMP can strongly interact with both EGCG and ECG, and the galloyl group
is responsible for the interaction [99,114]. In this interaction, the E240, L199, Q262, M257,
F234, and H239 residues are involved and the H239 residue is considered to be involved in
the interaction between EGCG and MT1-MMP [99].

4.4. Upregulation of TIMPs

EGCG upregulates TIMPs, leading to the inhibition of MMPs.

4.5. Modulation of Signaling from Cell Surface Receptors

Various kinds of growth factors promote tumor growth and invasion. For example,
EGF produced in cancer-associated macrophages gives such effects on tumor cells [115]. As
shown in Figure 5, EGCG downregulates EGFR [50], leading to suppression of EGF’s effect.
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EGCG binds to the cell surface receptor 67LR and inhibits signal pathways involving
ERK1/2 and p38 [60,95], which would lead to downregulation of the MMPs’ promoter
activity (Figure 5).

In AGE-mediated tumor invasion and metastasis may be suppressed by EGCG’s
inhibition of the RAGE/ERK/Sp1/MMP2 pathway [39].

4.6. Reduction of Circulating Cytokines

Inflammatory cytokines such as TNFα and IL-1β produced by tumor cells may pro-
mote MMP expression in stromal and epithelial cells [116–118]. As shown in Figure 5,
EGCG’s downregulation of NF-κB would prevent the production of these cytokines as
exemplified by TNFα (Figure 5) in tumor cells [105], leading to disruption of tumor and
stromal interactions.

4.7. Other Mechanisms

As described above, Kwon et al. [34] suggested positive feedback in which MMP2 can
activate FAK signaling leading to the upregulation of MMP2 itself in tumor cells. One can
expect that EGCG’s binding with MMP2 would block this feedback loop. Sternlicht et al. [73]
proposed MMP3 as a natural promoter that cleaves cell surface E-cadherin to release β-catenin,
leading to increased transcription of carcinogenic genes such as c-myc gene. EGCG’s inhibition
of MMP3 would be helpful to prevent cancer development.

5. Closing Remarks

Expressions of MMPs are different depending on cell types and stimulants. For ex-
ample, in human fibrosarcoma HT-1080 and HCC SK-Hep-1, cells express both MMP2 and
MMP9 [119], and glioblastoma T-98G cells express MMP2 but MMP9 only after stimulation
with PMA. Uterine leiomyosarcoma SK-UT-1 cells express no MMPs but PMA induces MMP9.

Human melanoma A-2058 cells express MMP2 but MMP9 at a low level [120]. PMA
at 100 ng/mL gave no effect on MMP2 secretion but potently upregulated MMP9 secretion.
TNFα gave no significant effect on the expression of MMP2 but increased MMP9 secretion.
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IL-1β had little effect on MMP2 or MMP9 secretion, but IL-1β at 25 ng/mL reduced
MMP2 level and MMP9 secretion. Lipopolysaccharide (LPS) had no significant effect on
MMP2 secretion but enhanced MMP9 secretion was found up to 25 µg/mL. Therefore,
extraordinarily complex mechanisms must be operating which can cause inconsistent
results and conclusions. Nevertheless, future studies on the modulation of MMPs by EGCG
would provide useful information on the beneficial effects of green tea intake on diseases
including cancer.
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Abbreviations

67LR 67 kDa laminin receptor
ADAM A disintegrin and metalloprotease
ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif 9
ADAMTSL4 ADAMTS like 4
AGEs Advanced glycation end products
AKT Protein kinase B
AMPK AMP-activated protein kinase
AP-1 Activator protein 1
BMP-6 Bone morphogenetic protein-6
CAMK II Calmodulin-dependent protein kinase II
CI Confidence interval
EC Epicatechin
ECG Epicatechin gallate
EGCG Epigallocatechin gallate
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
ERK1/2 Extracellular signal-regulated kinase 1/2
F-actin Filamentous actin
FAK Focal adhesion kinase
GM-CSF Granulocyte-macrophage colony-stimulating factor
HCC Hepatocellular carcinoma
Hsp27 Heat shock protein 27
HUVECs Human umbilical vein endothelial cells
IGF-II Insulin-like growth factor-II
IL Interleukin
JNK c-Jun aminoterminal kinase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MMPs Matrix metalloproteinases
MT1-MMP Membrane-type1 MMP
NF-κB Nuclear factor-κB
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ORs Odds ratios
OSCC Oral squamous cell carcinoma
p38 Protein-38
PDGF Platelet-derived growth factor
PI3K Phosphatidylinositol-3-kinase
Pit-1 POU class 1 homeobox 1 transcription factor
PMA Phorbol myristate acetate
PSA Prostate-specific antigen
qPCR Quantitative reverse transcription-polymerase chain reaction
RAGE Receptor for AGEs
RANKL Receptor activator of the nuclear factor kappa ligand
RhoC Ras homolog family member C
ROS Reactive oxygen species
SiRNA Small interfering RNA
Sp1 Specificity protein 1
STAT3 Signal transducer and activator of transcription 3
TGF-β Transforming growth factor-β
TIMP Tissue inhibitor of MMP
TNFα Tumor necrosis factor α
VEGF Vascular endothelial growth factor
WNT Wingless and Int-1
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