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Abstract: Tick and mite infestations pose significant challenges to animal health, agriculture, and
public health worldwide. The search for effective and environmentally friendly acaricidal agents has
led researchers to explore natural alternatives. In this study, we investigated the acaricidal potential
of the Monotheca buxifolia plant extract against Rhipicephalus microplus ticks and Sarcoptes scabiei
mites. Additionally, we employed a computational approach to identify phytochemicals from the
extract that could serve as drug candidates against these ectoparasites. The contact bioassay results
demonstrated that the M. buxifolia plant extract exhibited significant efficacy against R. microplus
and S. scabiei, with higher concentrations outperforming the positive control acaricide permethrin in
terms of mite mortality. Time exposure to the extract also showed a positive correlation with better
lethal concentration (LC50 and LC90) values. Similarly, the adult immersion test revealed a notable
inhibition of tick oviposition via the plant extract, especially at higher concentrations. The two-protein
primary structure, secondary structure and stability were predicted using the Expasy’s ProtParam
server, SOPMA and SUSUI server, respectively. Using Homology modeling, the 3D structure of the
protein was obtained and validated through the ERRAT server, and active sites were determined
through the CASTp server. The docking analysis revealed that Alpha-Amyrenyl acetate and alpha-
Tocopherol exhibited the highest docking scores for S. scabiei and R. microplus aspartic protease
proteins, respectively. These phytochemicals demonstrated strong binding interactions, suggesting
their potential as acaricidal drug candidates. In conclusion, the M. buxifolia plant extract displayed
significant acaricidal activity against R. microplus and S. scabiei. Moreover, the computational approach
identified promising phytochemicals that could serve as potential drug candidates for controlling
these ectoparasites.

Keywords: Sarcoptes scabiei aspartic protease (SsAP); Rhipicephalus microplus aspartic protease (RmAP);
docking; ectoparasites; Monotheca buxifolia extract; acaricide resistance; molecular dynamics simulations

1. Introduction

Sarcoptic mange, also known as scabies in human patients, is an extremely conta-
gious skin condition caused by Sarcoptes scabiei, an astigmatic mite that burrows into the
epidermis, actively penetrating the stratum corneum [1]. The adult mites mate, and the
females lay eggs in the skin. The hatched larvae create small burrows, referred to as molting
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pouches, where they molt into nymphs and eventually mature into adults. These parasites
have a worldwide distribution, affecting over 150 host species, and they demonstrate
remarkable epidemiological adaptability, enabling transmission among diverse hosts [2].
The disease can also manifest as a mild infection in animals, presenting symptoms such as
itching papules, erythema, scales, and alopecia. In chronic cases, hyperkeratosis and/or
exudative crust formation may be observed [3,4].

Sarcoptic mange is an exceptionally contagious skin disease that spreads through
direct skin-to-skin contact, fomites or contact with contaminated environments frequented
by heavily affected hosts [5,6]. Nymphs and females have remarkable survival capabilities
off the host, lasting up to 21 days, and exhibit higher resistance compared to larvae and
males [7,8]. Thus, the implementation of biocides and repellents in the environment be-
comes paramount. Wildlife, unfortunately, is particularly susceptible to sarcoptic mange,
and its outbreaks can lead to heightened morbidity and even fatal consequences [9], es-
pecially when naive populations are affected [10]. This disease is rapidly emerging [11]
and has been implicated in the decline of wildlife populations [12,13], resulting in reduced
reproduction rates and triggering mass mortality events [14,15].

The Rhipicephalus microplus tick (Acari: Ixodidae) is a profoundly impactful tick species
with devastating effects on bovine well-being and productivity. Its widespread presence in
various tropical and subtropical regions worldwide, particularly in Pakistan and India [16],
poses a severe threat to cattle populations. Infestations by these ticks lead to blood loss,
resulting in anemia and substantial economic losses due to reduced growth and production.
Moreover, these ticks serve as vectors for various diseases, including Babesia bigemina
and Anaplasma marginale, which cause economically significant and very deadly illnesses,
particularly in high-yielding crossbred and exotic cattle herds [17]. Ticks and tick-borne
illnesses generate an estimated USD 13.9 to 18.7 billion loss in cattle alone, with an annual
deficit of nearly 3 billion pieces of hide and skin [18]. Therefore, it is of the highest
significance to create highly efficient ways for managing cattle ticks and guaranteeing
optimum health and productivity in dairy animals.

Monotheca buxifolia, a member of the Sapotaceae family, is a very important indigenous
evergreen tree or thorny shrub known for its tasty fruits that grows in a variety of habitats
including northwest Pakistan, Afghanistan, and Iran. This excellent plant performs a
variety of essential functions, including feed, fuel, tiny wood, and fences. Its importance
extends to traditional medicine, where the fruit has been valued for its digestive, hematinic,
vermicide, and laxative characteristics, and the aerial portions are used to treat rheumatism
and urinary tract infections [19]. The plant extracts have been scientifically proven to
have a wide range of beneficial properties, including “hepatoprotective, urease inhibitory,
reno-protective, antidepressant, antiproliferative, antibacterial, antioxidant, anxiolytic,
antimalarial, analgesic, antipyretic, and anti-inflammatory activities” [19–24].

Aspartic protease is an enzymatic protein responsible for catalyzing the hydrolysis
of peptide bonds with the aid of a trapped water molecule [25]. These proteases contain a
pair of aspartic acid residues at their active site, facilitating various crucial physiological
processes in parasitic organisms, including “tissue invasion, migration, digestion, molting,
and reproduction”. For ticks, hemoglobin serves as a primary nutrient that is crucial for
their development and reproduction. Consequently, the digestion of hemoglobin is a vital
metabolic pathway occurring within digestive vesicles absorbed into gut epithelial cells
through the action of aspartic proteases [26]. In a S. scabiei cDNA library, researchers
identified a single aspartic protease, and functional assays revealed its ability to digest
human “hemoglobin, serum albumin, fibronectin, and fibrinogen” while not affecting
collagen III or laminin. The presence of this aspartic protease (SsAP) opens up possibilities
for interfering with its function, which may have implications for mite survival [27].

In this context, the present study aimed to assess the potential of M. buxifolia plant
extract to inhibit ticks and mites in vitro, as well as to investigate the inhibitory interactions
between the plant’s phytochemical and the aspartic protease proteins of ticks and mites
using in silico methods. It is worth noting that, prior to our research, there has been limited
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exploration of M. buxifolia plant extract for its acaricidal potential against these ticks and
mites. Furthermore, the specific phytochemicals derived from this plant have not been
previously utilized in docking experiments aimed at understanding their interactions with
the target proteins in ticks and mites. This novelty adds significance to our study, as it
contributes to the emerging knowledge about the potential use of M. buxifolia in pest control
and sheds light on the underlying molecular mechanisms.

2. Results
2.1. Contact Bioassay

The efficacy of the M. buxifolia plant extract against the S. scabiei var. cuniculi at
varying concentrations were tested in different time intervals, as shown in Table 1 and
Figures 1 and 2, along with the positive control, permethrin, and the negative control,
distilled water. The higher concentrations of 1 and 2 g/mL outperformed the positive
control, acaricide permethrin, in terms of the mites’ mortality. The theoretical lethal
concentrations responsible for the 50% and 90% mortality of the test mites’ population were
calculated according to Finney [28] calculation. The higher time exposure of the mites to
the extract resulted in better LC50 and LC90 values as shown in Table 2 and Figure 3. At 6 h
treatment, The LC50 value and its corresponding calculated confidence limits were 0.342
(0.202–0.467) g/mL, and the LC90 value and its corresponding confidence limits were 1.529
(1.037–3.429) g/mL. Similarly, the lethal time required to kill 50% and 90% (LT50 and LT90)
of the test mites’ populations at an extract concentration of 2 g/mL was 0.931 (0.673–1.192)
and 3.356 (2.474–5.479) h, respectively, as shown in Table 3, Figure 4.

Table 1. The average % mortality ± standard deviation (SD) of S. scabiei at different concentrations of
M. buxifolia plant extract.

Plant Concentration (g/mL) n Time Interval (h)

0.5 1 2 4 6

M
on

ot
he

ca
bu

xi
fo

lia

2 3 26.67 ± 05.77 a 56.67 ± 05.77 a 73.33 ± 05.77 a 90 ± 0 a 100 ± 0 a

1 3 10 ± 0 b 30 ± 0 b 50 ± 0 b 63.33 ± 05.77 ab 73.33 ± 05.77 a

0.5 3 0 ± 0 c 13.33 ± 05.77 d 33.33 ± 11.55 d 43.33 ± 11.55 c 56.67 ± 05.77 c

0.25 3 0 ± 0 c 0 ± 0 c 20 ± 0c d 33.33 ± 05.77 c 46.67 ± 05.77 c

C
on

tr
ol

G
ro

up

Permethrin 3 06.67 ± 05.77 bc 26.67 ± 05.77 b 43.33 ± 05.77 bc 73.33 ± 05.77 b 90 ± 0 b

Distilled Water 3 0 ± 0 c 0 ± 0 d 0 ± 0 e 0 ± 0 d 10 ± 0 d

Means with different letters in the same column are significantly different according to Tukey’s HSD test at a 5%
level of significance (p < 0.05) between the experimental plant extract and control.
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Figure 1. The lethal concentration (A) and lethal time (B), along with its confidence limits as the error
bar, for M. buxifolia extract against S. scabiei in vitro.
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Figure 2. (A,B) show the LC and LT, respectively, of M. buxifolia extract against R. microplus along with
its lower and upper confidence limits as error bars. (C,D) represent the significant difference between
the extract’s concentration for larval mortality and %IO, respectively whereas, the capital letters
in (C) represent the significant differences between the larval mortality values at 48 h for different
concentrations while the small letters represent the same for 24 h. (E,F) show the concentration vs.
response graph for larval mortality and %IO, respectively.

Table 2. Medium lethal concentration causing 50% and 90% mortalities (LC50 and LC90 values) of M.
buxifolia plant extract at varying time intervals against S. scabiei in vitro.

Time (h) LC50 (g/mL)
95% Confidence Limits

LC90 (g/mL)
95% Confidence Limits

Slope ± SE Intercept ± SE Chi Square (χ2) p-Value
LCL UCL LCL UCL

0.5 3.116 2.129 12.435 8.453 4.113 34.213 2.957 ± 0.946 −1.46 ± 0.241 1.024 1
1 1.642 1.256 2.559 5.325 3.179 16.4 2.508 ± 0.505 −0.54 ± 0.142 2.13 0.995
2 0.898 0.635 1.405 5.641 2.814 32.677 1.606 ± 0.373 0.075 ± 0.13 1.733 0.998
4 0.526 0.35 0.719 2.737 1.663 8.291 1.789 ± 0.383 0.499 ± 0.141 3.47 0.968
6 0.342 0.202 0.467 1.529 1.037 3.429 1.971 ± 0.421 0.918 ± 0.166 5.804 0.831

Table 3. Medium lethal time causing 50% and 90% mortalities (LT50 and LT90 values) of M. buxifolia
plant extract at different concentrations against S. scabiei in vitro.

Concentration (g/mL) LT50 (h)
95% Confidence Limits

LT90 (h)
95% Confidence Limits

Slope ± SE Intercept ± SE Chi Square p-Value
LCL UCL LCL UCL

2 0.931 0.673 1.192 3.356 2.474 5.479 2.301 ± 0.358 0.072 ± 0.133 2.814 0.999
1 2.338 1.719 3.301 13.878 7.894 42.191 1.657 ± 0.299 −0.611 ± 0.145 1.404 1

0.5 4.471 3.316 7.134 21.391 11.545 76.451 1.885 ± 0.353 −1.226 ± 0.189 5.913 0.949
0.25 5.967 4.522 9.821 20.05 11.514 69.739 2.435 ± 0.501 −1.889 ± 0.298 3.364 0.996
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2.2. Adult Immersion Test (AIT)

In the adult immersion test (AIT), the efficacy of M. buxifolia plant extract in inhibiting
the oviposition (IO) of ticks was assessed at different concentrations. The results revealed a
significant inhibition of egg laying by ticks when exposed to the extract. At a 40 mg/mL
concentration, the extract displayed a substantial IO of 35.612%, demonstrating its poten-
tial to hinder the reproductive capabilities of ticks. Lower concentrations of 20 mg/mL,
10 mg/mL, 5 mg/mL, and 2.5 mg/mL also exhibited notable IO values of 30.574%, 15.960%,
10.239%, and 1.326%, respectively (Figure 2, Table 4). In comparison, the control group
treated with permethrin (3 mg/mL) exhibited the highest IO of 54.755%, reaffirming its
effectiveness as a tick repellent. Conversely, the control group treated with distilled water
displayed a negative IO of −6.386%, indicating no inhibitory effects on egg laying. These
findings highlight the potential of the M. buxifolia extract, particularly at higher concentra-
tions, as a promising natural alternative for controlling tick populations by disrupting their
reproductive processes.

Table 4. Mean % larval mortality and %IO at different concentrations of M. buxifolia plant extract
against R. microplus.

Plant Concentration (mg/mL) n Mean % Mortality ± S.D
Mean %IO ± S.D

24 h 48 h

M
on

ot
he

ca
bu

xi
fo

lia

40 3 47.667 ± 3.512 a 89 ± 3.606 ab 35.612 ± 9.210 b

20 3 39 ± 2 bc 77.667 ± 6.429 bc 30.574 ± 2.261 bc

10 3 34 ± 1 cd 76.333 ± 3.215 cd 15.960 ± 1.920 cd

5 3 28.667 ± 1.528 d 64.667 ± 4.619 d 10.239 ± 4.122 d

2.5 3 18.667 ± 1.528 e 41.333 ± 3.215 e 1.326 ± 5.569 de

C
on

tr
ol Permethrin 5% (w/w) 3 42.667 ± 1.528 ab 91.333 ± 4.509 a 54.755 ± 8.611 a

Distilled Water 3 1.333 ± 1.528 f 4.667 ± 3.786 f −6.386 ± 2.160 e

Means not sharing any letters in the same column were significantly different according to Tukey’s HSD test at a
5% significance level (p < 0.05); S.D: standard deviation, n: number of replicates.

2.3. Larval Packet Test (LPT)

Table 5 provides the medium lethal concentration (LC50 and LC90) values of M. buxifolia
plant extract against R. microplus in vitro using the AIT. At 24 h, the extract exhibited an
LC50 value of 48.678 mg/mL, indicating the concentration required to cause 50% mortality,
while the LC90 value was 85.498 mg/mL, representing the concentration required for 90%
mortality. At 48 h, the extract showed a significantly lower LC50 value of 3.013 mg/mL and
an LC90 value of 43.759 mg/mL, indicating its increased potency over time. The statistical
analysis confirmed significant differences in effectiveness between the concentrations and
time points (p < 0.05).

Table 5. Medium lethal concentration causing 50% and 90% mortalities (LC50 and LC90 values) of
M. buxifolia plant leaf extract against R. microplus in vitro.

Time (h) LC50 (mg/mL)
95% Confidence Limits

LC90 (mg/mL)
95% Confidence Limits

Slope ± S.E. Intercept ± S.E. Chi Square p Value
LCL UCL LCL UCL

24 48.678 33.689 85.498 4925.155 1437.592 37,437.56 0.639 ± 0.081 -1.078 ± 0.09 3.689 0.994
48 3.013 2.022 3.988 43.759 30.086 77.304 1.103 ± 0.087 -0.528 ± 0.087 24.78 0.025

LCL: low confident limit, UCL: upper confident limit, S.E.: standard error.

Table 6 and Figure 2 present the lethal time (LT50 and LT90) values for M. buxifolia
extract against R. microplus in vitro using the AIT. The LT50 values ranged from 24.77 h (at
40 mg/mL concentration) to 60.179 h (at 2.5 mg/mL concentration), signifying the time
required to achieve 50% mortality. Similarly, the LT90 values ranged from 49.446 h (at
40 mg/mL concentration) to 226.023 h (at 2.5 mg/mL concentration), representing the time
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needed to attain 90% mortality. The statistical analysis did not reveal significant differences
between the concentrations (p > 0.05).

Table 6. Lethal time causing 50% and 90% mortalities (LT50 and LT90 values) at varying concentra-
tions for M. buxifolia against R. microplus in vitro.

Concentration (mg/mL) LT50 (h)
95% Confidence Limits

LT90 (h)
95% Confidence Limits

Slope ± S.E. Intercept ± S.E. Chi Square p Value
LCL UCL LCL UCL

2.5 60.179 51.172 80.082 226.023 142.238 554.957 2.23 ± 0.369 −3.968 ± 0.575 1.16 0.885
5 36.363 33.659 39.521 93.603 76.967 126.4 3.121 ± 0.355 −4.871 ± 0.547 2.096 0.718
10 30.913 28.8 33.004 67.871 59.667 81.415 3.752 ± 0.362 −5.591 ± 0.554 1.233 0.873
20 28.909 26.604 31.061 67.901 59.056 83.215 3.456 ± 0.362 −5.049 ± 0.552 5.102 0.277
40 24.77 22.808 26.492 49.446 45.073 56.056 4.269 ± 0.4 −5.95 ± 0.598 3.645 0.456

LCL: low confident limit, UCL: upper confident limit, S.E.: standard error.

These results indicate that the M. buxifolia plant extract exhibited concentration-
dependent effects on the lethal concentrations and lethal time in the AIT against R. microplus.
The extract demonstrated significant potency in inducing mortality, with lower concentra-
tions and longer exposure times showing greater effectiveness.

2.4. Primary Structure Prediction

The primary structure of aspartic protease proteins from R. microplus and S. scabiei
mite was analyzed using the highly reliable Expasy ProtParam server. The S. scabiei as-
partic protease protein was found to be 419 amino acids long with a molecular weight
of 46,274.01, while the R. microplus protein was 391 amino acids long with a molecular
weight of 42,221.45. The S. scabiei protein had 36 positively charged residues (Arg + Lys)
and 35 negatively charged residues (Asp + Glu), indicating its significance in potential
interactions. On the other hand, the R. microplus protein exhibited 31 positively charged
residues and 29 negatively charged residues, which still showcased its potential functional
importance. The computed GRAVY (“Grand Average of Hydropathicity”) values further
emphasized the distinct nature of these proteins. The S. scabiei protein displayed an incredi-
bly low GRAVY score of 0.003, highlighting its highly hydrophilic nature. In contrast, the
R. microplus protein showed a relatively higher GRAVY score of 0.105, signifying its better
interaction with water and implying a more hydrophilic characteristic. To ascertain the
stability of these proteins, the instability index (II) was computed. Remarkably, both target
proteins exhibited stability with II values of 33.04 for S. scabiei and 32.30 for R. microplus, as
shown in Table 7, both of which fall below the critical threshold of 50.

Table 7. Physicochemical properties of the protein through Expasy ProtParam server.

Protein
Name

Number
of Amino

Acids
Molecular

Weight Theoretical pI
Negatively

Charged
Residues

(Asp + Glu)

Positively
Charged
Residues

(Arg + Lys)

Total
Number of

Atoms
Instability

Index
Aliphatic

Index
Grand Average
of Hydropathicity

SsAP 419 46,274.01 7.68 35 36 6501 33.04 89.33 0.003

RmAP 391 42,221.45 8.13 29 31 5927 32.30 86.52 0.105

SsAP: Sarcoptes scabiei aspartic protease, RmAP: R. microplus aspartic protease.

2.5. Secondary Structure Prediction

The structure of a protein is intimately linked to its function, and this connection
is particularly evident in its secondary structure, which includes helices, sheets, turns,
and coils. These elements play a crucial role in defining the protein’s overall structure,
function, and interactions [29]. For the hypothetical protein, the secondary structure
analysis, conducted using the SOPMA server, revealed the following percentages: 22.43%
alpha helices, 40.57% random coils, 30.55% extended strands, and 6.44% beta-turns in the
S. scabiei aspartic protease protein. On the other hand, the R. microplus aspartic protease
protein exhibited 22.51% alpha helices, 40.15% random coils, 31.46% extended strands, and
5.88% beta-turns. Table 8 and the accompanying Figure 3 provide a clear representation of



Molecules 2023, 28, 6930 8 of 19

the representative secondary structures for both aspartic protease proteins in R. microplus
and S. scabiei.

Table 8. Data of secondary structures predicted from multiple alignments by SOPMA server.

Protein
Name

Alpha
Helix

310
Helix Pi Helix Beta

Bridge
Extended
Strand

Beta
Turn

Bend
Region

Random
Coil

Ambiguous
States

Other
States

SsAP 22.43% 0.00% 0.00% 0.00% 30.55% 6.44% 0.00% 40.57% 0.00% 0.00%

RmAP 22.51% 0.00% 0.00% 0.00% 31.46% 5.88% 0.00% 40.15% 0.00% 0.00%

SsAP: Sarcoptes scabiei aspartic protease, RmAP: R. microplus aspartic protease.

2.6. Functional Characterization

The SOSUI server effectively identified transmembrane regions for various
proteins. By submitting a protein of interest, this server categorizes it as cy-
toplasmic or transmembrane. To enhance transmembrane helix prediction, an
amphiphilic list of amino acid sequences was generated using the SOSUI server tool
(https://harrier.nagahama-i-bio.ac.jp/sosui/, accessed on 22 May 2023). This framework,
which combines amphiphilic amino acids, was utilized for isolating coat proteins and
estimating transmembrane helical regions. For soluble proteins and membrane proteins,
amino acid sequences were considered based on a sequence identity cutoff of 25%. Natural
occurrences revealed the presence of lysine, arginine, tyrosine, and tryptophan amino acids
near the ends of transmembrane helices. Amphiphilicity values are positive for polar
residues with a long hydrophobic stem beyond the γ carbon, whereas amphiphilicity
values are 0 for tiny polar and hydrophobic residues [30].

SOSUI server tool results show that both S. scabiei aspartic protease and R. microplus
aspartic protease protein are in the form of membrane proteins. The transmembrane
sections are rich in hydrophobic amino acids, with S. scabiei protein having a normal
hydrophobicity of 0.003341 and R. microplus protein having a normal hydrophobicity of
0.104859. Other built-in SOSUI server applications, such as SOSUI (Batch), validated
that both proteins are 100% membrane proteins. The SOSUI signal anticipated that both
proteins would include a signal peptide. SOSUI gramN predicted that the cytoplasm is the
subcellular localization site of S. scabiei aspartic protease while the subcellular localization
site of R. microplus aspartic protease protein is outer membrane (Table 9, Figure 4).

Table 9. SOSUI results of S. scabiei aspartic protease and R. microplus aspartic protease protein.

Proteins in
SOSUI Server Region Transmembrane Seq Type SOSUI (Signal)

SOSUI gramN
(Subcellular

Localization Site)
SOSUI (Batch)

SsAP 1–23 MISINLRLSLLFIVSLLTISNAE Primary signal peptide Cytoplasmic membrane protein

RmAP 5–26 LSTFVVLLALAGVASALLRVPL Primary signal peptide Outer membrane membrane proteins

SsAP: S. scabiei aspartic protease, RmAP: R. microplus aspartic protease.

2.7. Protein Model Building and Validation

When exclusively amino acid sequence data are provided, homology modeling may be
used to predict protein structure. The protein structure is typically more important than the
sequence alone in determining protein function. The biological principle behind homology
modeling, also known as comparative modeling, is that a similarity in structure between
two sequences predicts functional similarity. For sequence identities of more than 30% of
a known structure, accurate low-resolution X-ray structure prediction is often achievable.
In contrast, homology-based structure prediction can never be reliable with a sequence
identity lower than 30% [31]. By using homology modeling on the SWISS-MODEL website,
we were able to determine the three-dimensional structures of the aspartic protease proteins
from S. scabiei and R. microplus. Only one model was generated with a GMQE of 0.88 and
the best available template (2psg.1.A with 43.29% sequence identity) to build a 3-D model
for S. scabiei aspartic protease and 0.68 GMQE (template; 5ux4.1.A with 54.99% sequence

https://harrier.nagahama-i-bio.ac.jp/sosui/
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identity) for Rhipicephalus microplus aspartic protease. We utilized SAVESv6.0 to compare
each model’s ERRAT value and Ramachandran plot, as shown in Figure 5. The Ramachan-
dran plot analysis classified the residues into quadrilateral areas. Permitted regions are
represented by yellow in the graph, whereas restricted regions are shown in red. For
models created on the SWISS-MODEL server, PROCHECK produced a Ramachandran plot.
After the models were refined, their stereochemical quality was determined by performing
the Ramachandran map calculations with the help of the PROCHECK program. More
than 85% of the residues in our examined proteins are found in the most widely dispersed
region, demonstrating the precision and excellent quality of the modeled structure [32].
S. scabiei aspartic protease in the model has two residues in the forbidden area, but the same
protein in R. microplus contains none. Validation with Ramachandran plot in SAVESv6.0
shows that the ERRAT value for the aspartic protease protein in S. scabiei is 82.703, whereas
it is 80.719 for the aspartic protease protein in R. microplus (Figure 5A,B).

Molecules 2023, 28, x FOR PEER REVIEW  11  of  21 
 

 

 

Figure 5. (A,C) Shows the SAVES server’s ERRAT plot and Ramachandran plot, respectively for the 

validation of S. scabiei aspartic protease whereas, (B,D) represents the validation of R. microplus as-

partic protease through ERRAT servers plot and Ramachandran plot, respectively. 

Figure 5. (A,C) Shows the SAVES server’s ERRAT plot and Ramachandran plot, respectively for
the validation of S. scabiei aspartic protease whereas, (B,D) represents the validation of R. microplus
aspartic protease through ERRAT servers plot and Ramachandran plot, respectively.



Molecules 2023, 28, 6930 10 of 19

2.8. Active Sites Prediction

CASTp was used to find the key residues and region around the binding cavity of
S. scabiei aspartic protease (LEU-47, ALA-50, LEU-52, GLY-53, SER-57, SER-58, ASP-61,
SER-309, VAL-312, GLU-313, ASN-316, PRO-324, VAL-325, LYS-326, GLY-327, TYR-329,
ILE-375and GLY-376) and R. microplus aspartic protease protein (ALA-69, GLN-70, TYR-
71, VAL-87, ASP-89, SER-92, TYR-134, GLY-135, ALA-170, ALA-173, ALA-174, PHE-176,
ILE-179, ASP-276, GLY-278, THR-279, VAL-356 and ILE-365) as shown in Figure 6.
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and (B) R. microplus aspartic protease (RmAP).

2.9. Docking Analysis

The design of structure-based drugs is highly reliant on docking small molecule
compounds into a receptor’s binding site and estimating the complex’s binding affinity.
AutoDock Vina is a free and open-source molecular-docking, virtual-screening, and drug-
discovery tool with multicore capability, lightning-fast processing rates, and an intuitive
user interface. When the structure of the ligand–protein complex is known, the docking
tool’s ability to imitate the ligand’s binding mode to the protein may be assessed. The root
mean square deviation (RMSD) between the docked position and the ligand’s crystallo-
graphically observed binding site is widely used as a criterion, and a value less than 2 Å is
typically regarded as successful.

CASTp was used to find the key residues and region around the binding cavity of the
S. scabiei aspartic protease and the R. microplus aspartic protease protein. The active-site
residues of both the protein making different numbers of hydrogen bonds and the hy-
drophobic bonds were identified. In this study, S. scabiei aspartic protease and R. microplus
aspartic protease proteins were thus docked with the selected compounds to assess the bind-
ing interactions. Alpha-Amyrenyl acetate interacts with the S. scabiei receptor via a series of
amino acid residues—the hydrogen bond (Tyr 329), pi-alkyl (Ala 50 and Tyr 329), and alkyl
(Leu 47, Ile 375)—with the docking score of −7.3 Kcal/mol. The ranking of the docking
score is as follows: Alpha-Amyrenyl acetate > Lupenol > Butelin > 3-Deoxyestradiol > cis-
13,14-Epoxydocosanoic acid > Indole > alpha-Tocopherol > 5-Hydroxytryptamine > Ascor-
byl 6-stearate > 3,4,4-Trimethyl-5-pyrazolone. Furthermore, the binding interactions of com-
pounds and R. microplus aspartic protease proteins is as follows: Alpha-Tocopherol > Alpha-
Amyrenyl acetate > 3-Deoxyestradiol > Lupenol > Butelin > 5-Hydroxytryptamine > Ascor-
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byl 6-stearate > Indole > cis-13, 14-Epoxydocosanoic acid > 3,4,4-Trimethyl-5-pyrazolone.
Alpha-Tocopherol binds to the R. microplus aspartic protease protein via a series of bonds:
hydrogen bond (Gly 139), pi-Alkyl and Alkyl (Tyr 134, Ile179, Ile379, Ala173, Ala 170, Ala
174, Phe 176, Val 87), Pi-Pi stacked(Tyr 134), and Pi-Anion (Asp276). The summaries of the
docking study are shown in Figure 7.
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2.10. Docking Validation

Our docking protocol underwent thorough validation across all target receptors, a
crucial step taken to ensure the reliability of the molecular docking procedures and software.
To validate the results, we employed Autodock Vina (version 1.1.2), and a potential grid
box was created using AutoGrid4 with a spacing of 0.375 Å, approximately one-fourth
of the length of a C-C covalent bond. The dimensions of the grid box were centered
on X: 21.8344 Y: −5.6644 Z: 19.7712 Å for the S. scabiei aspartic proteinase protein and
X: 21.6564 Y: −10.6987 Z: 22.5169 Å for the R. microplus aspartic proteinase protein. We
carefully examined the interactions of the docking poses with the active site residues.
Ultimately, we selected the pose with the highest binding affinity, which was determined to
be −7.1 and −6.8 kcal/mol for S. scabiei aspartic protease and R. microplus aspartic protease,
respectively. This validation exercise was deemed successful because the docked complexes
precisely replicated the original ligand poses, matching the native ligands with RMSD
values of 1.83 Å S. scabiei aspartic proteinase protein (Figure 8) and 1.04 Å for R. microplus
aspartic proteinase protein (Figure 9).



Molecules 2023, 28, 6930 12 of 19Molecules 2023, 28, x FOR PEER REVIEW  14  of  21 
 

 

 

Figure 8. Protocol validation of molecular docking experiment with S. scabiei aspartic protease using 

AutoDock Vina and Discovery studio. Comparison of binding modes for re-docked ligand (A) vs. 

reference compound pepstatin (5FP) [33] (B). Amino acid residues’  interaction with (B) standard 

drug and (A) re-docked ligand, accomplished in Discovery studio. 

 

Figure 9. Protocol validation of the molecular docking experiment with R. microplus aspartic prote-

ase protein using AutoDock Vina and Discovery studio. (A) Comparison of binding modes for re-

Figure 8. Protocol validation of molecular docking experiment with S. scabiei aspartic protease using
AutoDock Vina and Discovery studio. Comparison of binding modes for re-docked ligand (A) vs.
reference compound pepstatin (5FP) [33] (B). Amino acid residues’ interaction with (B) standard
drug and (A) re-docked ligand, accomplished in Discovery studio.
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3. Discussion

The necessity for tick management puts the dairy industry’s viability at risk in locations
where ticks thrive and proliferate [34]. The same is the case for mite infestations. Chemical
acaricides are often employed for this purpose, although [35] revealed that the development
of acaricide resistance in tick species is a serious problem. Furthermore, the use of chemical
acaricides may pollute the environment and contaminate cattle meat and milk, as well as
promote tick and mite resistance [36]. In response to these issues, there is increased interest
in the use of natural plant-based tick-management solutions. Many studies have looked
at the efficiency of plant extracts and phytochemicals as acaricides, and the findings have
been encouraging [25].

The current study revealed that the mean mortality of adult ticks was increased signif-
icantly with increased dosage (concentration) and exposure time after in vitro treatment
for the tested botanicals. The same was the case for S. scabiei mites, whose mortality was
also time- and dose-dependent. These results are in line with the findings of [37,38], in
which the mortality effect of botanicals was indicated to be dose-, concentration- and
exposure-time-dependent. Our study also revealed that all methanolic extracts of the tested
botanical leaves at the tested concentrations induced a significant acaricidal effect against
S. scabiei mites and R. microplus compared with the negative control.

Lead and target identification, followed by lead optimization, was a lengthy and costly
process in the traditional drug development cycle. In the modern age, computational
biology has created a low-cost, rapid method for finding novel drugs [39]. Potential
therapeutic candidates for use against our target proteins are identified using molecular
docking, an analysis of the likely binding affinities of two structures. The aspartic protease
enzymes of S. scabiei mites and R. microplus were found to play an essential role in the
survival and sustenance of the parasites by facilitating the breakdown of host hemoglobin
during the blood-feeding process [27,40]. Therefore, preventing ticks and mites from
producing aspartic protease may disrupt their blood-feeding process and perhaps restrict
their survival and reproductive success by preventing them from digesting host hemoglobin.
This method has the potential to be investigated as a means of decreasing the harm ticks
and mites do to their hosts. Butelin, Lupenol, and Buterol are examples of phytochemicals.
Alpha-Indole-3-deoxyestradiol, 13-cis-epoxydocosanoic acid, 14-epoxydocosanoic acid,
tocopherol, 5HTP, Ascorbic Acid, and both 6-stearate and 3,4,4-trimethyl-5-pyrazolone
isolated from M. buxifolia have been shown to meet all the requirements for classification
as pharmaceuticals. Thus, the aforementioned phytochemicals were used in docking
experiments with the aspartic protease parasite enzymes. Since we wanted to stop these
specific enzymes from working, we bound inhibitors to their active sites. All of the
phytochemicals were shown to have stronger affinities to the active pockets and lower
binding energies compared to the synthetic drug. Furthermore, the existence of typical
hydrogen bonds in the protein–ligand complex’s 2D bond contacts demonstrated robust
binding. Aspartic protease inhibitory action was shown by plant-derived compounds
with significant affinities, such as Alpha-Amyrenyl acetate against R. microplus and alpha-
Tocopherol against S. scabiei.

4. Materials and Methods
4.1. Plant Collection, Identification and Extract Preparation

Aerial parts from M. buxifolia were collected from Abdul Wali Khan University Mar-
dan’s (AWKUM) botanical garden in Khyber Pakhtunkhwa (coordinates: 34.1917◦ N,
72.0347◦ E). The plant materials were inspected for damage and rinsed. The leaves were
then taken to the herbarium of the Department of Botany, AWKUM, and assigned the
accession number Awkum.Bot. They were then air-dried for 2 weeks. After 15 days, the
dried leaves were ground into powder, and stock solutions were prepared as described
by [34]. The resulting solution was concentrated, yielding a stock extract for further dilu-
tions and tests. For the mite bioassay, the stock solution was diluted to 0.25, 0.5, 1, and
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2 g/mL, whereas for the adult immersion test (AIT) and the larval packet test (LPT), the
concentrations were diluted to 2.5, 5, 10, 20, and 40 mg/mL concentrations.

4.2. Collection and Identification of Mites

Mites were collected from rabbits at AWKUM’s rabbit farms, where hay served as bed-
ding and was changed daily. Upon detecting signs of mange, skin scraps were taken from
the rabbits using the method described by [23] and immediate treatment was administered.
The skin scraps were then examined under a compound microscope to identify S. scabiei
var cuniculi.

4.3. Collection and Identification of Ticks

In strict adherence to the guidelines outlined by the World Association for the Ad-
vancement of Veterinary Parasitology [41] a careful manual collection of fully engorged R.
microplus ticks was conducted from cattle and buffaloes at various farms located in Mar-
dan, Khyber Pakhtunkhwa, with precise coordinates provided as 34.1986◦ N, 72.0404◦ E.
Subsequently, the ticks underwent a comprehensive cleaning process and were morpholog-
ically identified as R. microplus through the utilization of standard tick identification keys,
employing a microscope [42]. A total of 300 adult engorged female ticks were carefully
selected for inclusion in the study. Some of these ticks were employed to obtain larvae for
the larval packet test, while the remaining ticks were carefully divided into separate groups
to conduct the adult immersion test, with a focus on evaluating the acaricidal effects of a
fungal extract.

4.4. Contact Bioassay

The study was first approved by the ethical committee of AWKUM. Skin scraps were
taken from the infested rabbits raised at the rabbit form adhering to the Guide for the Care
and Use of Laboratory Animals (8th edition) [43]. The infested skin was first briefly cleaned
and then scraped into a micro Petri plate using sterile surgical blade until the skin appeared
red. The Petri plate containing skin scraps was incubated at 37 ◦C for the mites to emerge
out of the skin scraps. The experimental setup involved the inoculation of ten mites into
individual Petri plates using a fine needle. Following that, 0.5 mL samples of the plant
extract were introduced directly onto the mites within the Petri plates. This procedure was
carried out independently for each concentration of the extract, and each concentration
was replicated three times.

4.5. Adult Immersion Test and Larval Packet Test

The extracts efficacy against R. microplus ticks was determined using the adult immer-
sion test (AIT) and larval packet test (LPT) according to the protocol outlined by Ayub
et al, [37] and Matos et al. [44]. The tick’s larval mortality was recorded at 24 and 48 h for
different concentrations. Similarly, female ticks and their laid eggs were weighed in AIT.
The effectiveness of the crude extracts in AIT was evaluated by calculating the percent
inhibition of oviposition (% IO) using the following formula [45]:

% IO =
Egg laying Index (control)− Egg layingIndex (treated)

Egg laying Index control
× 100%

where egg-laying index = mean weight of eggs laid ÷ mean weight of engorged females.

4.6. Sequence Retrieval

The amino acid sequences of aspartic protease protein from S. scabiei (accession num-
bers: V5NEJ5) and R. microplus aspartic proteinase protein with accession number C3UTE0
were obtained from the UniProtKB database. Both the protein sequences were retrieved in
FASTA format and used for further analysis.
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4.7. Characterization of the Physicochemical Properties

The protein’s physicochemical characterization required the calculation of many criti-
cal characteristics using well-established methodologies. Expasy’s ProtParam server [46]
was used to calculate the theoretical isoelectric point (pI), molecular weight, total number
of positive and negative residues, extinction coefficient [47], instability index [48], aliphatic
index [49], and grand average hydropathy (GRAVY) [50]. The corresponding results can be
found in the provided table.

4.8. Functional Characterization

In this study, the SOSUI server (https://harrier.nagahama-i-bio.ac.jp/sosui/, accessed
on 22 May 2023 [51]) was employed to assess the amphiphilicity index and hydropathy
index of the aspartic protease protein found in R. microplus and S. scabiei mite. These
indices were used to estimate whether the protein was in the cytoplasm or bridged the
transmembrane. Furthermore, the SOSUI server’s numerous tools, such as SOSUI (Batch),
SOSUIsignal, SOSUIgramN, and SOSUImp1, were used to predict parts of the secondary
structure of the aspartic protease protein from its supplied amino acid sequence [52]. This
prediction helps in locating the hypothetical protein inside a cell.

4.9. Secondary Structure Prediction

The SOPMA tool (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=
/NPSA/npsa_sopma.html, accessed on 22 May 2023 [27]) was utilized to compute the
secondary structural characteristics of the protein sequences chosen for this investigation.
The obtained results are comprehensively reported in Table 8.

4.10. Building and Evaluation of the 3D Structure Model

The FASTA sequences of the target proteins were submitted to the SWISS-MODEL
server (https://swissmodel.expasy.org/, accessed on 25 May 2023) for prediction of the 3D
structure model using automated comparative modeling as described by [53]. To ensure
the reliability of the predicted 3D structure model for the hypothetical protein, multiple
quality assessment tools were employed. Firstly, the 3D model quality was assessed using
SAVES (https://saves.mbi.ucla.edu/, accessed on 26 May 2023, which is a comprehensive
platform for protein structure validation. The Ramachandran plot was constructed using
the PROCHECK server [54] to visualize the distribution of backbone dihedral angles (ψ
against ϕ) for all amino acid residues in the protein structure. The analysis of this plot
helps to evaluate the stereochemical quality and identify any potential deviations from
ideal conformations in the model. Furthermore, the protein structure was cross-validated
using the ERRAT server (https://services.mbi.ucla.edu/ERRAT, accessed on 1 June 2023).
This tool assesses the statistics of nonbonded interactions between different atom types
within a 9-residue sliding window [55]. The plot of the error function versus the window
position provides valuable insights into the accuracy and consistency of the protein crystal-
lographic structure. By integrating the results from these various assessment methods, the
reliability and accuracy of the predicted 3D structure model for the hypothetical protein
were thoroughly verified.

4.11. Active Site Determination

The use of the Computed Atlas of Surface Topography of Proteins (CASTp) server
(http://sts.bioe.uic.edu/castp/, accessed on 2 June 2023) has proven to be an immensely
valuable and indispensable tool for determining the active sites of proteins. Through
CASTp, a highly detailed, comprehensive, and quantitative analysis of the topographical
features of proteins is achieved. This analysis enables the precise localization and mea-
surement of active pockets on both the protein’s surface and its interior 3D structure. As a
result, CASTp facilitates the accurate prediction of critical regions and key residues within
the protein that play a significant role in interacting with ligands [56]. To enhance the

https://harrier.nagahama-i-bio.ac.jp/sosui/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://swissmodel.expasy.org/
https://saves.mbi.ucla.edu/
https://services.mbi.ucla.edu/ERRAT
http://sts.bioe.uic.edu/castp/
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understanding and interpretation of the CASTp results, the visualization of the outcomes
has been effectively accomplished using the PyMOL (version 2.5.4) software.

4.12. Ligand Preparation

The thirteen structures of chemical constituents of M. buxifolia, Alpha-Amyrenyl
acetate, Lupenol, Butelin, 3-Deoxyestradiol, cis-13,14-Epoxydocosanoic acid, Indole, Alpha-
Tocopherol, 5-Hydroxytryptamine, Ascorbyl 6-stearate and 3,4,4-Trimethyl-5-pyrazolone,
were collected from published literatures [21,57]. The ligands’ 2D chemical structures were
drawn using ChemDraw Ultra 2008, and their energy minimization was performed using
Chem3D Ultra. The resulting ligand structures were saved in .pdb format.

4.13. Molecular Docking Analysis

The binding mode and interaction of target proteins with individual chemical con-
stituents of M. buxifolia were thoroughly investigated using AutoDock Vina software
(version 1.1.2). The docking process aimed to explore a range of possible conformations
and orientations for the ligands at the binding sites. Prior to docking, the protein structures
were prepared in PyRx (version 0.8) software, generating PDBQT files with added hydrogen
atoms to all polar residues. The ligands’ bonds were set to be rotatable to enhance flexibility
during docking. To carry out the protein-fixed ligand-flexible docking, the Lamarckian
Genetic Algorithm (LGA) method was employed for all calculations. The binding site on
the target proteins, S. scabiei aspartic proteinase protein and R. microplus aspartic proteinase
protein, was defined by establishing a grid box with a grid spacing of 0.375 Å. For the
S. scabiei aspartic proteinase protein, the grid box was centered on coordinates X: 21.8344,
Y: −5.6644 and Z: 19.7712 Å, while for the R. microplus aspartic proteinase protein, it was
centered on coordinates X: 21.6564, Y: −10.6987 and Z: 22.5169 Å. To ensure the reliability
of the results, ten runs with AutoDock Vina were performed for each ligand structure in all
cases, saving the best pose from each run. The final affinity value was determined by aver-
aging the affinity of the best poses obtained in the ten runs. The analysis of protein–ligand
conformations, including interactions such as hydrogen bonds and bond lengths, was con-
ducted using PyMol (version 2.5.4) and Discovery Studio Visualizer (version 4.5), allowing
for a comprehensive examination of the complex structures and their interactions.

4.14. In Silico Docking Protocol Validation

The validation of our docking protocol aimed to establish its precision and reliability
in replicating the binding model and molecular interactions observed in experimentally
modeled protein structures during our current in silico studies. To validate the procedure,
we utilized an aspartic protease inhibitor as a test case. The validation process involved
manually removing modeled proteins and redocking the inhibitor into the active site using
AutoDock Vina (version 1.1.2) software. This entailed extracting inhibitor heteroatoms
from the protein complex, saving them as a separate inhibitor in PDB format, while keeping
the grid parameters consistent. This rigorous validation ensured the accurate binding
of the inhibitor to the active site cleft, with minimal deviation compared to the actual
co-crystallized complex. Subsequently, we superimposed the redocked complex onto the
reference co-crystallized complex using PyMOL 2.3, calculated the root mean square devia-
tion (RMSD), and generated a 2-dimensional image highlighting the relevant amino acid
residues with Discovery Studio (version 4.5) software. This process ensured the reliability of
our docking methodology and its fidelity in reproducing binding characteristics observed
in experimental crystallographic data.

4.15. Statistical Analysis

All statistical approaches were made in R and RStudio. The data were first arranged
in Microsoft Excel (v 2302) and then imported into the R working environment for further
statistical analysis. Descriptive statistics of the data were calculated and presented in a
table with mean ± standard deviation. The significant difference between the different
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concentrations were calculated using one-way ANOVA (analysis of variance) followed by
the Tukey honesty significance difference (HSD) test. Furthermore, 50% and 90% lethal
concentration and lethal time (LC50, LC90 and LT50, LT90) were calculated in R using the
“ecotox” package, and all the data were graphically presented using “ggplot2 and ggpubr”
R package.

5. Conclusions

Based on the study conducted, we can confidently assert that the M. buxifolia plant
possesses notable acaricidal properties, effectively eliminating ticks and mites. Moreover,
our computational approach has identified promising phytochemicals with the potential to
serve as viable drug candidates against S. scabiei and R. microplus. These findings warrant
further investigation through clinical trials, paving the way for the development of an
effective acaricidal drug. The robust efficacy of the most potent chemicals within the plant
extract positions them as integral components of a comprehensive strategy to combat
R. microplus ticks and S. scabiei mites.
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