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Abstract: Zinc oxide nanoparticles have high levels of biocompatibility, a low impact on environmen-
tal contamination, and suitable to be used as an ingredient for environmentally friendly skincare
products. In this study, biogenically synthesized zinc oxide nanoparticles using Dendrobium anosum
are used as a reducing and capping agent for topical anti-acne nanogels, and the antimicrobial effect
of the nanogel is assessed on Cutibacterium acne and Staphylococcus aureus. Dendrobium anosmum leaf
extract was examined for the presence of secondary metabolites and its total amount of phenolic
and flavonoid content was determined. Both the biogenically and chemogenic-synthesized zinc
oxide nanoparticles were compared using UV-Visible spectrophotometer, FE-SEM, XRD, and FTIR.
To produce the topical nanogel, the biogenic and chemogenic zinc oxide nanoparticles were mixed
with a carbomer and hydroxypropyl-methyl cellulose (HPMC) polymer. The mixtures were then
tested for physical and chemical characteristics. To assess their anti-acne effectiveness, the mixtures
were tested against C. acne and S. aureus. The biogenic zinc oxide nanoparticles have particle sizes
of 20 nm and a high-phase purity. In comparison to chemogenic nanoparticles, the hydrogels with
biogenically synthesized nanoparticles was more effective against Gram-positive bacteria. Through
this study, the hybrid nanogels was proven to be effective against the microbes that cause acne and to
be potentially used as a green product against skin infections.

Keywords: biogenic synthesis; Cutibacterium acne; FE-SEM; FTIR; hybrid nanogel; phytochemicals;
UV-Vis; XRD; zinc oxide nanoparticles; green product

1. Introduction

Green nanotechnology is a rapidly evolving field that aims to address the develop-
ment towards environmentally sustainable nanotechnology applications. The divergence
in plants, peculiarly in traditional herbal plants, has attracted research for their utilization
for centuries [1]. Dendrobium spp. has been long used in traditional Chinese medicine
(TCM) and has a significant variation in secondary metabolites, which possess a strong
defense mechanism from pathogenic attacks and also benefits humans with the bioactive
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constituents they possess [2]. In addition to its ornamental value, the D. anosmum plant
holds significant medicinal importance among the local communities across Southeast
Asia. The uniqueness of the various metabolites found in D. anosmum aid the enhance-
ment in metallic nanoparticle (NP) maturation, which has piqued further interest in the
employment of green-synthesized products in various applications [3]. The development
of biogenic metallic nanoparticles was accomplished by the utilization of plant extracts
with a comparatively higher efficiency source and technical mass production from fungi,
algae, or bacteria [4]. Green-synthesized products have been proven to lower potentially
toxic impacts by eliminating the traditional use of chemicals and solvents [5].

Acne vulgaris is a chronic inflammatory and self-limiting skin disorder resulting
from the abnormal keratinization of the pilosebaceous unit (hair follicles alongside with
sebaceous gland), bacterial colonization, high sebum production, genotypic influence, and
hormonal changes [6]. In Malaysia, due to the high consumption of dairy and glycemic-
load diets, statistical analysis indicated that 1 in 2 citizens, from adolescents to young
adults, shows signs of acne vulgaris skin disorder [7,8]. At present, treatments focus on
antibiotics to proclaim antibacterial effects by limiting the main acne-triggering bacteria,
belonging to the Cutibacterium acne, Malassezia furfur, and Staphylococcaceae family [9,10].
However, due to the misuse and overuse of antibiotics, antimicrobial resistance (AMR) has
been classified as the most consequential health threat in the 21st century [11]. Interest
towards ZnO NPs has been growing since the discovery of their antibacterial properties
in recent years and are intended as alternatives to antibiotics. They are well known for
their low toxicity, UV-absorption rate, and biodegradability, making them an excellent
candidate in the biomedical field [12]. The penetration pathway of ZnO NPs into the
stratum corneum or the accumulation of zinc ions within skin folds or roots of the hair
follicle shows a lack of penetration of ZnO NPs into the viable epidermis that might lead to
a toxic response [13,14]. The incorporation of metallic nanoparticles in nanogel polymers
has been proven to be more biocompatible as anti-acne treatment medicine than the present
anti-acne gelling agent [15,16]. It has been suggested that the incorporation of nano-sized
materials into polymer matrices will result in a hybrid composite material and exhibit
enhanced antibacterial activity properties [17].

In this work, we screen Dendrobium anosmum for secondary metabolites to highlight
the beneficial properties of ZnO NPs using chemogenic and biogenic methods. The synthe-
sized ZnO NPs were incorporated in different types of polymers (carbomer and HPMC),
forming a topical antibacterial nanogel. The study aims to establish the antibacterial ef-
ficacy of ZnO NPs and topical nanogels against Gram-positive (Cutibacterium acne and
Staphylococcus aureus) bacteria. The results of this study can be considered as a preliminary
step towards developing a novel pharmaceutical anti-acne agent utilizing eco-friendly
nanomaterials.

2. Materials and Methods
2.1. Preparation of the Plant Extract

The extraction process was conducted referring to [18]. Dendrobium anosmum Lindl.
leaves were freshly picked from the mother plant and rinsed under running tap water; then,
they were air-dried under indirect sunlight conditions. The dried leaves were ground into a
powder using an electrical grinder. By using an aqueous extraction technique, 4 g of the leaf
powder was mixed with 100 mL of deionized water and heated to 70 ◦C for 20 min. The
plant extract was filtered using Whatman filter paper no. 1 (filtraTech, Saint-Jean-de-Braye,
France) and was stored for further analysis.

2.2. Phytochemical Screening

To determine the phytochemicals or secondary metabolites in the plant extract of
Dendrobium anosmum, preliminary screenings for alkaloids [19], carotenoid [20], coumarin [21],
flavonoids [22,23], phenols [24], phlobatannin [25], saponin [26], steroid [27], tannins [28],
and terpenoids [29] were performed.
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2.2.1. Determination of the Total Phenolic Content

The total phenolic content for plant extract was measured using the Folin–Ciocalteu
assay (Sisco Research Laboratories Pvt. Ltd, Mumbai, India) as described by Dhanapal
and Azlim Almey [30,31]. Gallic acid was used as the standard by preparing 1 mg/mL
using methanol as the solvent. The stock solution was diluted with deionized water,
forming a working concentration ranging from 0.02 mg/mL to 0.14 mg/mL. The plant
extract with a volume of 100 µL was added with 750 µL of 10% Folin–Ciocalteu reagent
and then incubated in the dark at room temperature. A 750 µL of 6% sodium carbonate
(Na2CO3) was added into the incubated solution and mixed gently. The solution was kept
in the dark for 90 min before taking the absorbance reading at 760 nm using the UV-Vis
spectrophotometer (Thermo Scientific GENESYS 10S, Thermo Fisher Scientific, Waltham,
MA, USA). The total phenolic content was expressed in mg of gallic acid equivalents
(GAE)/g of dry matter with reference to the gallic acid standard calibration curve.

2.2.2. Determination of the Total Flavonoid Content

The total flavonoid content was determined using the aluminum chloride method
described by Samanta [32]. Quercetin hydrate with 1 mg/mL was prepared as a standard
stock solution. Methanol was used as a solvent for stock dilution into a working concen-
tration between 0.2 mg/ mL and 1 mg/mL. Then, 100 µL of plant extract was added to
sodium nitrite (NaNO2) at a 5% concentration. The mixture was then incubated at room
temperature for approximately 6 min. A volume of 150 µL with 10% aluminum chloride
hexahydrate (AlCl3·6H2O) was prepared and added to the mixture, and then incubated
at room temperature for 6 min. Following that, 800 µL of 10% NaOH was added and
mixed thoroughly before absorbance was taken at 510 nm using UV-Vis spectrophotometer.
The total flavonoid content was expressed in mg of quercetin equivalents of dry matter,
referring to the quercetin hydrate standard calibration curve.

2.3. Synthesis of the Zinc Oxide Nanoparticles
2.3.1. Chemogenic Synthesis of Zinc Oxide Nanoparticles

The chemogenic synthesis of zinc oxide nanoparticles was conducted using the co-
precipitating method by Chikere [33]. Chemically synthesized zinc oxide nanoparticles
(C-ZnO NPs) was synthesized by completely dissolving 12 g of zinc nitrate hexahydrate
(Zn(NO3)2·6H2O) in 100 mL of deionized water in a beaker with a magnetic stirrer for
25 min. The constant stirring continued as the heating process reached a temperature of
70 ◦C. Sodium hydroxide (NaOH) with 3.2 g weight was prepared and dissolved in 30 mL
deionized water in a separate beaker with approximately 10 min of stirring. The drop-wise
technique was applied for NaOH addition into (Zn(NO3)2·6H2O) under continuous stirring.
The mixture was maintained at 70 ◦C for 2 h with constant stirring until a white suspension
was formed that confirmed the synthesis process. The solution was left to cool and was
filtered using Whatman filter paper no. 1. The filtered sample was transferred to a ceramic
crucible for furnace calcination at 450 ◦C for 2 h.

2.3.2. Biogenic Synthesis of Zinc Oxide Nanoparticles

The green zinc oxide nanoparticle synthesis technique was proposed by Basnet [34].
It was initiated by heating 50 mL of the plant extract at 60 ◦C. Zinc nitrate hexahydrate
(Zn(NO3)2·6H2O), at a weight of 2 g, was added into the hot plant extract with continuous
stirring. The reaction mixture was maintained at a temperature between 60 ◦C and 70 ◦C
until the formation of approximately 5 mL of a blackish-brown solution, indicating that the
synthesis of green ZnO NPs (G-ZnO NPs) was accomplished. The resultant solution was
calcinated at 450 ◦C for 2 h.

2.4. Characterization of the ZnO NPs

The morphology and structure of ZnO NPs were analyzed using varied analytical
instruments [35,36]. The preliminary characterization of the absorption spectrum was
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recorded by the UV-visible Spectrophotometer (Thermo Scientific GENESYS 10S, Thermo
Fisher Scientific, Waltham, MA, USA). FESEM (JEOL JSM-6701F, JEOL, Tokyo, Japan) was
used to obtain the morphological structure and element composition. The X-ray Diffraction
analysis was conducted using Shimadzu XRD 6000 (Shimadzu, Kyoto, Japan) with Cu
Kα (λ = 1.5406 Å) radiation in a 2θ range from 10◦ to 80◦. The FTIR (Perkin Elmer RX1
spectrophotometer, Perkin Elmer, Waltham, MA, USA) analysis was conducted in a range
of 400–4000 cm−1 with a resolution of 4 cm−1 by using KBr pellets (Fisher Scientific,
Waltham, MA, USA).

2.5. Formulation of the Nano-sized Topical Gel

The cold mechanical method described by Prabu [37] was employed for the nano-
sized topical gel formulation. The 2 polymers used were Carbopol-940 and Hydroxypropyl
Methylcellulose (HPMC). A total of 2 g of each polymer was sprinkled uniformly on the
surface of 80 mL of deionized water. The mixture was left overnight for the complete
absorption of the polymers. The concentration of chemogenic and biogenic ZnO NPs was
set to 16 mg/mL. A total of 2 g of glycerol was added to the nanogels, followed by the
addition of deionized water to a total of 100 mL.

2.6. Physiochemical Evaluation

The physical state of the topical gel was determined by several parameters, namely
color, appearance, and consistency [37]. Moreover, a pH adjustment to ∼pH 5.5 was con-
ducted to suit a healthy individual skin pH. Furthermore, the viscosity test was conducted
using Viscometer (Brookfield DV2T, AMETEK Brookfield, Middleboro, MA, USA) with
spindle no. 7. The spreadability test was determined by separating 2 standard glass slides
with 6 cm in dimension and 40 g in weight, with the absence of an external force attached
to a glass slide with gel sandwiched in between. The time required for the upper slide to
move from the bottom was measured.

2.7. Bacterial Strains and Growth Conditions

Cutibacterium acne (ATCC 11827) and Staphylococcus aureus (ATCC 29213) were used in
this study. The C. acne strain was grown in anaerobic conditions on Columbia Agar w/5%
sheep blood (CBA; Isolac, Shah Alam, Malaysia), and the S. aureus strain was grown on
Mueller–Hinton (MH) agar [38,39]. A single colony was transferred and resuspended in
0.85% saline solution to a final cellular concentration of 0.5 McFarland turbidity standard
suspension.

2.8. Anti-Acne Efficacy Assay

The anti-acne effectiveness of pure zinc oxide nanoparticles (C-ZnO NPs and G-ZnO
NPs) and nanogels (Carbopol and HPMC) were evaluated using the agar well diffusion
method [39,40]. A saline suspension of C. acne at 0.5 mL was spread evenly on CBA; then,
wells with a diameter of 8 mm were punctured using a cork borer. ZnO NP solutions
(0.1 mL) with different concentrations (2, 4, 8, and 16 mg/mL) were pipetted into the
wells. Nanogels incorporated with 16 mg/mL ZnO NPs were pipetted at the volume of
0.1 mL into the wells. The agar plates were incubated at 37 ◦C anaerobically for 24 h. The
diameter zone of inhibition was measured after the incubation period. A similar protocol
was applied to S. aureus by using MH agar and incubated under aerobic conditions.

2.9. Statistical Analysis

Microsoft Excel 365 for Microsoft 365 MSO (Version 2306)was used to perform the
statistical analysis of the data. The datasets were obtained in triplicate from multiple
samples, and the values are reported as mean ± standard deviation (SD). A one-way
ANOVA was used to assess the significant differences between values of the zone of
inhibition shown against both bacteria. A statistical significance level of p ≤ 0.05 was
utilized to ascertain the occurrence of statistically significant results.
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3. Results and Discussion
3.1. Phytochemical Screening

The phytochemical analysis revealed the presence of secondary metabolites in the
plant extract, having a potential therapeutic and physiological effect. The phytochem-
ical constituents detected in the Dendrobium anosmum aqueous extracts are carotenoids,
coumarin, flavonoids, phenols, saponin, steroids, tannins, and terpenoids, with the absence
of alkaloids and phlobatannin compounds, as shown in Table 1. The phytoconstituents
in the plant extract studied, primarily phenols and flavonoid, have been documented to
act as reducing and capping agents in the ZnO NP biosynthesis process. This reflects
D. anosmum’s suitability as a biogenic ZnO NP synthesis candidate [41,42]. Furthermore,
D. anosmum’s pharmacological significance was demonstrated with the presence of sec-
ondary metabolites that are responsible for its therapeutic capabilities [43].

Table 1. Phytochemical constituents of Dendrobium anosmum leaf crude extracts.

Phytochemical/Secondary
Metabolites Observation Dendrobium anosmum Leaf

Aqueous Extract

Alkaloid No orange-red precipitate formation −
Carotenoid Dark blue colour at interface +
Coumarin Yellow colour solution +
Flavonoids Yellow precipitate formation +

Phenols Formation of bluish black colour solution +
Phlobatannin No red precipitate formation −

Saponin Formation of a persistent foam +
Steroids Reddish brown interface with fluorescent green with yellow +
Tannins White precipitate formation +

Terpenoids Reddish brown colour formation +

(+) Positive detection of phytochemical compounds. (−) Negative detection of phytochemical compounds.

3.2. Total Phenolic Content and Total Flavonoid Content

The determination of the total phenolic content (TPC) and total flavonoid content
(TFC) of the D. anosmum leaf extract was determined using aqueous extraction. The total
phenolic and flavonoid contents are often linked with the result of phytochemical studies.
However, their concentrations remain unknown. The total phenolic content determined
from the plant extract was 15.125 ± 0.18 mg GAE/g dry matter (standard curve equation:
y = 3.1661x − 0.0564, r2 = 0.961). Additionally, the total flavonoid content determined
was 13.101 ± 0.13 mg QE/g dry mass (standard curve equation: y = 0.64x + 0.2226,
r2 = 0.976). This shows that there is a higher total phenolic content than total flavonoid
content, as flavonoids are naturally occurring polyphenolic secondary metabolites in
plants [44]. The results obtained show a lower extraction efficiency by comparing to other
extraction techniques [45–47]. The presence of phenolic and flavonoid contents additionally
indicates the possibility of the utilization of D. anosmum extract in zinc oxide nanoparticle
synthesis, despite the polar nature of water limiting the solubility of non-polar, hydrophobic
compounds and the lack of selective extraction [48].

3.3. Characterization of ZnO Nanoparticles
3.3.1. Yield of ZnO Nanoparticles

Table 2 compares the yield of nanoparticles produced by chemogenic and biogenic
processes. It was found that the biogenic synthesis of ZnO was able to produce a higher
yield than that of the chemogenic protocol with values of 69.75 ± 0.50% and 15.99 ± 0.25%,
respectively. The green-synthesized ZnO NP possesses a higher yield, indicated by weight.
Several factors affecting the low-weight yield of chemical synthesis are the formation of
toxic by-products during the synthesis process, which reduces the yield of the desired
product, and the multiple-step synthesis process, such as centrifugation and filtration,
which increases the chances of weight loss during each step [49]. Biogenically synthe-
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sized nanoparticles is desired for an upscale synthesis because of its higher yield and
biocompatibility than the chemically synthesized product [50].

Table 2. The yield of nanoparticles obtained using chemogenic and biogenic synthesis techniques.

Nanoparticles Synthesized
Technique Weight (g) Weight of Salt Precursor Used (g) Yield (%)

Chemogenic 1.92 ± 0.03 12.00 15.99 ± 0.25
Biogenic 1.40 ± 0.01 2.00 69.75 ± 0.50

3.3.2. UV-Vis Spectroscopy Analysis

UV-Vis spectrophotometer provides the absorption spectra of both chemogenically
synthesized zinc oxide nanoparticles (C-ZnO NPs) and biogenically synthesized ZnO NPs
(G-ZnO NPs), as shown in Figure 1. An observable redshift absorption peak at 376 nm was
obtained from the chemically synthesized ZnO NPs; the absorption peak of biogenically
synthesized ZnO NPs was detected at 352 nm with a less intense peak. The presence
of ZnO NPs in both samples was determined to be in the range of 350–380 nm using
the same concentration of 1 mg/mL ZnO NPs dispersed in deionized water. Due to its
lower absorption peak observed, the G-ZnO NPs can be regarded to form in a smaller
size than that of chemogenically synthesized. UV-Vis detection for nanoparticles relies on
observing peaks corresponding to electronic transitions spanning from the valence band to
the conduction band [51]. The less intense absorption peak in biogenically synthesized ZnO
NPs is caused by the aggregation of nanoparticles, which leads to an electronic structure
change; therefore, a broader, less intense peak was observed.
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Figure 1. UV-Vis spectrum of the chemically and green-synthesized ZnO nanoparticles.

Figures 2 and 3 show the energy band gaps of the synthesized ZnO NPs, respectively,
at 3.38 eV and 3.40 eV, for chemogenically synthesized ZnO nanoparticles (C-ZnO NPs)
and biogenically synthesized ZnO nanoparticles (G-ZnO NPs). An average bulk ZnO is
3.37 eV lower than both synthesized ZnO NPs [52]. The relationship between the observed
band gap energy and the nanoparticle size follows an inverse proportionality, consistent
with the finding that G-ZnO NPs exhibit smaller crystalline sizes compared to C-ZnO NPs.
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3.3.3. Morphological Analysis

The field emission scanning electron microscope (FE-SEM) shows the morphology
and size of C-ZnO NPs and G-ZnO NPs. Figure 4 depicts the SEM image of C-ZnO NPs;
the spherical shape of the ZnO nanoparticles was observed with an average size of 58.8 nm
at ×30,000 magnification. Figure 5 shows the SEM image of G-ZnO NPs, showing a mixed
composition with the majority being particles of spherical shape with an average size of
27.7 nm at ×60,000 magnification. The aggregation behavior can be observed more in the
biogenically synthesized ZnO NPs than in the chemogenically ZnO NPs. Regarding the
sizes of both nanoparticles, the biogenic ZnO nanoparticles had a smaller particle size than
the chemically synthesized ZnO nanoparticles. The morphology difference can be ascribed
to the utilization of natural reducing and capping agents, including phenolic compounds,
saponin, alkaloids, flavonoids, terpenoids, and carbohydrates, instead of the chemically
manufactured sodium hydroxide solution (NaOH) [53]. The salt precursor and calcination
temperature remained the same in both synthesis processes; therefore, it is suggested that
capping agents contributed to the variation of the particles’ shape and size.
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3.3.4. Crystalline and Structural Analysis

Table 3 shows the unit cell and crystalline size of C-ZnO NPs and G-ZnO NPs, while
Figures 6 and 7 show the XRD pattern, respectively, for ZnO NPs using different synthesis
techniques. The pattern of the synthesized C-ZnO NPs was aligned with that in the
International Centre for Diffraction Data, ICDD: 01-070-8070; that of the G-ZnO NPs was
aligned with ICDD: 01-078-4493. The phase purity obtained in both samples was 95.6% and
95.5%, respectively. All synthesized ZnO NPs had hexagonal wurtzite structures, which
are reported in other studies [54–57]. The average crystalline size was determined using
Debye–Scherrer’s equation:

D =
0.94λ

βcosθ

Despite the diffraction differences, the peaks corresponding to the presence of impu-
rities were absent, reflecting that pure nanoparticles were synthesized. Three additional
peaks were observed in C-ZnO NPs, evidenced by the determination of higher-purity ZnO
NPs.
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Table 3. Unit cells and crystalline size of the chemogenically and biogenically synthesized ZnO NPs.

Samples
Unit Cells

Average Crystalline Size (nm)A
(Å)

c
(Å)

Chemogenic 3.2489 5.2049 30.40
Biogenic 3.2494 5.2058 29.15
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3.3.5. Fourier-Transform Infrared Functional Group Determination

The FTIR spectra recorded in Figure 8 and Table 4 show a comparison study between
the functional groups within the three samples, which include commercial ZnO (Sime
Scientific), C-ZnO NPs, and G-ZnO NPs. Bands around 3435 cm−1 were observed in
all three samples, which refer to a hydroxyl group (O-H) stretch vibration. This can be
attributed to the presence of water molecules on the ZnO surface as well as environmental
influences [58]. Two additional bands were identified only in the commercial ZnO at
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the wavelengths of 2360 cm−1 and 2343 cm−1 and were assigned to the gas-phase CO2
molecules in the air [59,60]. The peak, however, was absent in the G-ZnO sample. An-
other observation includes the N=N=N asymmetric stretching that was observed around
2065 cm−1 in both C-ZnO NPs and G-ZnO NPs, which corresponds to a possible nitro-
gen source from the salt precursor of zinc nitrate hexahydrate [61]. Furthermore, the
carbonyl group stretching (C=O) around 1636 cm−1 resulted from the band formation in
all three nanoparticles. A similar band was determined at 1384 cm−1 in all three samples,
which are attributed to the presence of the asymmetric stretching of nitrate ion (NO3

−1)
bending [62]. An absorption band at 1082 cm−1 was observed only in G-ZnO NPs, which is
assigned to the alkane (C-C) stretching of the phytochemical residues on the surface of the
nanoparticles [63]. In both C-ZnO NPs and G-ZnO NPs, a (C-H) stretching was observed at
the wavelengths of 830 cm−1 and 871 cm−1, respectively [64]. The absorption bands around
530 cm−1 and 489 cm−1 correspond to the (Zn-O) stretching vibration of metal–oxygen.
This band reflects the presence of ZnO NPs and the quantity of the nanoparticles for further
characterization [65]. The FTIR screening reflects the functional groups’ biomolecules of
the leaf extracts and the phytochemicals, which aids the reducing and capping during the
ZnO NPs formation. These secondary metabolites help to prevent the agglomeration of
NPs in an aqueous medium [66].
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Table 4. Functional groups of the transmittance bands of commercial and chemogenically and
biogenically synthesized ZnO NPs.

Commercial
Peaks (c)

Chemical
Peak (cm−1)

Green
Peaks (cm−1)

Functional
Groups

3854 - - O-H stretching
3435 3435 3412 O-H stretching
2360 - - O=C=O stretching
2343 - - O=C=O stretching

- 2095 2066 N=N=N stretching
1636 1636 1637 C=O stretching
1383 1384 1384 N=O bending
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Table 4. Cont.

Commercial
Peaks (c)

Chemical
Peak (cm−1)

Green
Peaks (cm−1)

Functional
Groups

- - 1082 C-C stretching
- 830 871 C-H stretching

534,502 499 532,489 Zn-O stretching

3.4. Physiochemical Evaluation of the Topical Nanogel

Table 5 shows the topical nanogel using Carbopol 940 and HPMC that was produced
with several differences. Carbopol 940 prior to being incorporated in ZnO NPs is a transpar-
ent gel and HPMC is a semi-transparent gel; both gels are free from lumps, impurities, and
composition-dependent, resulting in a different presentation. The appearance of both hy-
brid nano-sized gels differs with the incorporation of 16 mg/mL of C-ZnO NPs and G-ZnO
NPs, respectively, forming C-Carbopol (chemogenically synthesized ZnO NPs incorporated
in Carbopol 940), G-Carbopol (biogenically synthesized ZnO NPs incorporated in Carbopol
940), C-HPMC (chemogenically synthesized ZnO NPs incorporated in HPMC), and G-
HPMC (biogenically synthesized ZnO NPs incorporated in HPMC). Significant differences
in appearance were observed, despite both ZnO NPs being white powders. The Carbopol
940 gel remains as transparent gel with visible white nanoparticles observed within the
gel, while HPMC shows a homogenized distribution of NPs over the gel, as shown in
Figure 9. G-HPMC is a cream color gel that can be considered to have phytochemicals in the
nanoparticles in the HPMC gel. The consistency of the Carbopol 940 gel is thick and smooth
compared to that of the HPMC gel with a slender, smooth uniform texture. The viscosity of
the Carbopol gel was determined to be much higher, at 45,386 ± 8.29 centipoises, than that
of the HPMC gel, with 20,000 ± 2.16 centipoises. Regarding the determined viscosity, the
HPMC gel shows a higher spreadability at 85.23 ± 0.19 g·cm/s and the Carbopol 940 gel
has 6.56 ± 0.24 g·cm/s. The viscosity and spreadability are inversely proportional, and
the observation of the HPMC gel is comparable with the result obtained in [37]. The
Carbopol 940 gel exhibits a higher viscosity due to the pH adjustment. Both gels were
adjusted to a pH of ~5.5, close to a healthy skin pH, with high agreement on the biophysical
parameters of barrier function, scaling, moisturization, and ensuring the survival of skin
microflora [67,68]. The viscosity of the Carbopol 940 gel is controlled by the neutralization
of the aqueous dispersion in the range of around 40,000–60,000 centipoises, aligned with
the result obtained by Ismail [16].

Table 5. Physiochemical, pH, viscosity and spreadability of the nanogels.

Characteristic Carbopol 940 HPMC

Color Transparent Semi-transparent
Appearance Transparent Cream color
Consistency Thick and smooth Smooth

pH 5.27 ± 0.01 5.38 ± 0.04
Viscosity (centipoises) 45,386 ± 8.29 20,000 ± 2.16
Spreadability (g·cm/s) 6.56 ± 0.24 85.23 ± 0.19
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Figure 9. Image showing the physical appearance of the polymers incorporated with the synthesized
ZnO NPs at a concentration of 16 mg/mL. (A) Carbopol gel with C-ZnO NPs. (B) Carbopol gel with
G-ZnO NPs. (C) C-HPMC gel with C-ZnO NPs. (D) HPMC gel with G-ZnO NPs.

3.5. Anti-Acne Efficacy

The efficacy of the anti-acne activity by ZnO NPs and nanogels was evaluated using
C. acne and S. aureus by using positive (tetracycline, 30 µg/mL) and negative (deionized
water) controls [69]. Through our observation in Table 6, it can be seen that both the
ZnO NP and nanogel samples show an inhibition zone in both C. acne and S. aureus, with
26 ± 1 mm and 33 ± 1 mm, respectively. The results of the antibacterial activity of all the
samples are summarized in Figures 10 and 11, and the efficacy was best observed in the
order of G-Carbopol > C-Carbopol > G-HPMC > C-HPMC > G-ZnO NPs > C-ZnO NPs.
The trend of the zone of inhibition observed against C. acne did not follow the proportional
concentration rule. Both C-ZnO NPs and G-ZnO NPs showed an increase in the zone of
inhibition, which was reduced as the concentration reached 16 mg/mL. The maximum
zone of inhibition recorded for C-Zn NPs and G-ZnO NPs was 4 mg/mL. However, the
Carbopol/ZnO gel showed a positive result against C. acne. G-Carbopol possesses a larger
zone of inhibition of 15 ± 1 mm, followed by 14 ± 1 mm of C-Carbopol. The HPMC/ZnO
NPs showed a similar 12 ± 1 mm zone of inhibition by both nanoparticles incorporated
in the nanogel. From the results obtained, the incorporation of ZnO in the topical gel
increases the surface area compared to the pure ZnO NPs, allowing a higher diffusion and
interaction with the bacteria [68]. A possible factor that leads to a low zone of inhibition by
pure ZnO NPs is the use of Columbia agar w/5% sheep blood. MH agar is commonly used
in diffusion assays to determine the zone of inhibition, as it is classified as a ‘loose’ agar
that aids in the rate of diffusion effectively [70]. The Columbia agar w/5% sheep blood is a
highly nutritious medium for cultivating and isolating difficult-to-grow microorganisms
and is less porous than the MH agar, leading to a lower diffusion rate [71]. Studies on
anti-acne efficacy suggested the possible cultivation of CBA and MH agar under aerobic
conditions; however, no growth was observed after a cultivation period of 2 weeks with
consistent checking [40,72]. G-ZnO NPs exhibit a distinctive zone of inhibition against
S. aureus of 19 ± 1 mm. Overall, the biogenic ZnO NPs showed a higher antibacterial activity
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than the chemogenically synthesized ZnO NPs. The nanogel-incorporated biogenically
synthesized ZnO NPs simultaneously reflect a high effectiveness against acne-vulgaris-
triggering bacteria. The one-way ANOVA analysis showed a similar significance (p < 0.001)
against both bacteria using different samples of ZnO NPs.

Table 6. Zone of inhibition exhibited by the ZnO NP and nanogel sample.

Control Tetracycline Concentration (µg/mL) Zone of Inhibition (mm)
C. acne S. aureus

Positive 30 26 ± 1 33 ± 1
Negative 0 - -

Sample Concentration of ZnO NPs (mg/mL) Zone of inhibition (mm)
C. acne S. aureus

C-ZnO NPs 2 11 ± 1 -
4 12 ± 1 -
8 11 ± 1 -
16 - 13 ± 1

G-ZnO NPs 2 12 ± 1 -
4 12 ± 1 -
8 10 ± 1 -
16 10 ± 1 19 ± 1

C-Carbopol 16 14 ± 1 12 ± 1
G-Carbopol 16 15 ± 1 15 ± 1

C-HPMC 16 12 ± 1 14 ± 1
G-HPMC 16 12 ± 1 15 ± 1
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Figure 10. Image showing the antibacterial zone of inhibition (ZOI) of ZnO NPs and nanogels against
Cutibacterium acne. (A) Positive control; (B) C-ZnO NPs at 2, 4, and 8 mg/mL; (C) C-ZnO NPs at
16 mg/mL and negative control; (D) G-ZnO NPs at 2, 4, and 8 mg/mL; (E) G-ZnO NPs at 16 mg/mL;
(F) C- and G-Carbopol and negative control; and (G) C- and G-HPMC and negative control.
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Figure 11. Image showing the antibacterial zone of inhibition (ZOI) of ZnO NPs and nanogels against
Staphylococcus aureus. (A) Positive control; (B) C-ZnO NPs at 2, 4, and 8 mg/mL; (C) C-ZnO NPs at
16 mg/mL and negative control; (D) G-ZnO NPs at 2, 4, and 8 mg/mL; (E) G-ZnO NPs at 16 mg/mL;
(F) C- and G-Carbopol and negative control; and (G) C- and G-HPMC and negative control.

4. Conclusions

Dendrobium anosmum contains a wide range of secondary metabolites, including
carotenoids, coumarin, flavonoids, phenols, saponin, steroids, tannins, and terpenoids,
identified through phytochemical screening on a leaf aqueous extract and, therefore, the de-
termination of the total phenolic and flavonoid contents was studied. Dendrobium anosmum
exhibited the ability to produce zinc oxide nanoparticles with the desired shape, size, and
structure compared to the chemogenic synthesis technique. The physiochemical character-
istics of the biogenically synthesized nanoparticles using Dendrobium anosmum extract were
determined, which produced a smaller size, high purity, and a higher yield of the end prod-
uct. The topical nanogel formulation based on Carbopol-940 and HPMC polymers showed
great compatibility when combined with the chemically and biogenically synthesized ZnO
NPs. Both ZnO NPs exhibited a strong antibacterial action against Gram-positive C. acne
and S. aureus, with the green-synthesized ZnO NPs being superior to the chemogenically
synthesized ones. The polymer and G-ZnO hybrid nanogels exhibited an increased potency
against both C. acne and S. aureus due to the increased surface area when in contact with
the bacteria, which led to the conclusion that the anti-acne efficacy was improved.
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