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Abstract: The aim of this study was to investigate the biochemical properties and gel-forming
capacity of duck myofibrillar proteins under the effects of 2,2′-azobis(2-methylpropionamidine)
dihydrochloride (AAPH)-mediated oxidation. Duck myofibrillar proteins were extracted and treated
with different concentrations of AAPH solutions (0, 1, 3, 5, 10 mmol/L) and then analysed for
carbonyl content, dynamic rheology, protein profiles and gel-forming properties (colour, water
holding capacity, gel strength and microstructure). The results showed that with increasing AAPH
concentration, the carbonyl content of the proteins exhibited an increasing trend (p < 0.05); SDS-PAGE
pattern changes indicated that moderate oxidation (3 mmol/L AAPH) induced myosin aggregation
via covalent bonds including disulfide, enhanced protein–protein interactions, and thus affected the
gel strength of the DMPs’ heat-induced gels. However, high oxidation (5 and 10 mmol/L AAPH) led
to the partial degradation of the myosin heavy chain (MHC) isoforms, as evidenced by lower storage
modulus and irregular microstructures, which significantly reduced gelation ability. These results
suggest that the internal relationship between alkylperoxyl radical-induced oxidation should be taken
into account in the processing of duck meat, as mild protein oxidation is conducive to improving
gel quality.

Keywords: AAPH; protein oxidation; myofibrillar protein; gel properties

1. Introduction

For a long time, the oxidation of lipids and the role of micro-organisms have been
considered important factors in the deterioration of meat product quality. In recent years,
the influence of protein oxidation on the quality of meat products has been gradually
recognized [1,2]. Muscle protein could improve the tissue structure of meat products, in
particular its gelling properties, thus playing an important role in the quality and sensory
performance of meat products [3]. However, the substance of myofibrillar proteins is
very sensitive to reactive oxygen free radicals. The oxidation of meat is inevitable during
processing and storage. In addition, oxidative damage can alter the physical, chemical
and functional properties of proteins, thus reducing the sensory and nutritional quality
of the products [4]. Under the action of multi-layer metal ions, the oxidation of myofib-
rillar proteins can lead to the formation of protein carbonyls, which greatly reduces its
gel-forming properties [5]. At the same time, Liu et al. found that mild oxidation can
promote the cross-linking of disulfide bonds between protein molecules, thus making
the protein network structure more stable [6]. Our previous papers mainly investigated
the effects of oxidation modification on the gel-forming capacities of duck myofibrillar
proteins (DMPs). We revealed that excessive oxidation led to the explicit cross-linking of
DMPs, which negatively affected the gel-forming capacities of DMPs by hydroxy radicals
and malondialdehyde. However, the moderate oxidation of malondialdehyde was benefi-
cial for improving its gel-forming properties [7,8]. 2,2′-azobis(2-methylpropionamidine)
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dihydrochloride (AAPH) generates alkylperoxyl radicals upon degradation, which pref-
erentially oxidize their main targets, tryptophan, cysteine, methionine, tyrosine and, to a
lesser extent, histidine residues, respectively, thereby causing protein oxidation [9,10]. In
general, the actual meat product system is composed of protein and lipids. When lipids
are rapidly oxidized, proteins are subsequently susceptible to oxidation as promoted by
lipid-derived radicals and hydroperoxides [11]. However, to our knowledge, discussion in
the literature concerning the oxidation effect of alkylperoxyl radicals on the gel-forming
capacity of duck myofibrillar proteins has been limited. Some recent studies have shown
the effect of alkylperoxyl radicals on the oxidation of porcine myofibrillar protein [12] and
casein [13]. The partial main chain breakage of proteins was also found. In this study,
AAPH was used as a typical free radical intermediate for the oxidation of lipids [14]. Its
effects on the different degrees of oxidation status (carbonyl, cross-linking) and the proper-
ties of the DMPs’ heat-induced gels, including their rheological characteristics and textures,
were investigated, and their internal correlation was also discussed. The aim was to provide
a theoretical basis to lay a foundation for the further control of the oxidation levels of duck
meat and the rational use of oxidants.

2. Results and Discussion
2.1. Total Carbonyl Content

As shown in Figure 1, with increasing AAPH concentration, the protein carbonyl
content tended to increase gradually, reaching a maximum of 12.0 nmol/mg protein at
10 mmol/L AAPH. In general, the most reactive radicals tend to be the least selective.
Thus, all side chain sites are oxidised to a greater or lesser extent by hydroxyl radicals [10].
A recent study has also reported that AAPH thermolysis induces casein crosslinking via
the formation of Schiff bases between carbonyl groups (a known oxidation product of
N-terminal amino groups and lysine residues) [13]. The direct oxidation of glutamyl
or prolyl side chains by peroxyl radicals could also break peptide bonds, subsequently
leading to peptide cleavage as a result of the α-amidation pathway or the formation of
2-pyrrolidone [15]. The cleavage of backbones is considered a major mechanism of protein
carbonylation [16]. Therefore, oxidative damage to proteins can be reflected by carbonyl
derivatives [17,18].
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2.2. SDS-PAGE Pattern

Oxidation cross-links proteins and simultaneously produces a variety of polymers,
and the cross-linking is mostly associated with the myosin [19]. As shown in Figure 2, the
concentration of AAPH has a certain effect on the structural composition of the proteins.
When the AAPH concentration is 0, 1 and 3 mmol/L, it can promote the cross-linking of
proteins and generate protein polymers. When the AAPH concentration is 5–10 mmol/L, it
can partially degrade protein components. In the case of non-reducing conditions (-DTT),
because there are a large number of high molecular weight myosin cross-links in the DMPs,
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the proteins are clustered in large quantities in an upper layer of stacking gel; it can be
speculated that the proteins are attacked by alkylperoxyl radicals, causing the sulfhydryl
group to form a disulfide bond and other covalent bonds, leading to the cross-linking
of the proteins, thereby increasing its molecular weight and aggregation. Furthermore,
the band intensity of the myosin heavy chain (MHC) cross-links first increased and then
decreased as the AAPH concentration increased, reaching a maximum at 3 mmol/L AAPH
concentration, and then decreased as the AAPH concentration increased. It is notable that
myofibrillar proteins have a large number of sulfhydryl groups, among which myosin alone
contains 42 sulfhydryl groups [20], which are easily attacked by reactive oxygen species
to form disulphide bonds, leading to changes in protein structure and further affecting
protein function. This stage is a reversible oxidation reaction, whereas irreversible oxidation
reactions can also produce sulfinic acid and sulfonic acid [21]. Under the reducing condition
(+DDT), the high molecular weight protein almost completely disappeared in an upper
layer of stacking gel, and the intensity of the MHC and actin increased, indicating that
disulfide bonds play an important role in protein cross-linking, and MHC and actin proteins
are the main proteins that undergo cross-linking and aggregation during oxidation [22].
Around 17 kD, the samples without DTT have clear bands of myosin light chain 3 and fuzzy
bands of myosin light chain 2, whereas in the reduced condition, the intensity of the myosin
light chain 3 band of the samples decreases and myosin light chain 2 could be clearly
seen. At the same time, a higher concentration of AAPH could induce the aggregation
of myosin and the denaturation of myosin, troponin and tropomyosin, and lead to the
partial degradation of the proteins [23]. In particular, both the actin and myosin light
chains interacted with other peptides. This resulted in an increase in molecular weight,
as indicated by the migration site. As reported, this means that the alkylperoxyl radicals
would induce the formation of secondary free radicals which self-react to produce inter-
and intra-molecular covalent bonds. The formation of ditryptophan bonds has also been
implicated in the oxidative cross-linking of proteins. It is known that carbonyl groups
undergo secondary reactions with basic residues (N-terminal amino groups) to generate
Schiff bases, thereby inducing protein cross-linking [24].
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Figure 2. Results of gel electrophoresis (SDS-PAGE) of duck myofibrillar proteins at different concen-
trations of AAPH (0, 1, 3, 5 and 10 mmol/L). Note: 0 is marker; 1–5 are without DTT, and AAPH
concentrations are 0, 1, 3, 5 and 10 mmol/L; 6–10 are with DTT and AAPH concentrations are 0, 1, 3,
5 and 10 mmol/L. MHC: myosin heavy chain, actin: actin, MLC: myosin light chain.

2.3. Dynamic Rheological Properties

From Figure 3, it can be seen that the change in the rheological properties of DMP
oxidation is also related to the concentration of AAPH. At the end of the heating phase,
the storage modulus of the protein increases with the increasing AAPH concentration
(0–3 mmol/L). Meanwhile, the trend of the loss modulus is similar to that of the storage
modulus. At the same time, at the heating stage, the value of the storage modulus is always
higher than that of the loss modulus at the same temperature. The research of Feng and
Xiong et al. [25] showed that at a high temperature of 65 ◦C, the denaturation of myosin
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causes the expansion of the structure, and the activated groups are also exposed. This
change promotes the cross-linking of the proteins, which improves the viscoelasticity of
the colloid and increases the storage modulus (G’). It was noteworthy that according to
the analysis of SDS-PAGE in Section 2.2, after treatment with a higher concentration of
AAPH, the MHC was degraded to a certain extent [26]. Among the proteins, the change
range of protein G’, 3 mmol/L of AAPH oxidation treatment, was steeper and higher
than those of the other concentrations of AAPH oxidation treatment. Simultaneously, the
decrease in myosin thermal stability was caused by the partial degradation of the MHC,
which was in turn caused by the high concentration oxidation. This led to the denaturation
of myosin at the later stage of heating, which remarkably reduced the G’ of the system.
Apparently, moderate oxidation is conducive to improving the strength of the protein gel
to some extent. A significant amount of protein aggregation is caused by protein oxidation.
Protein aggregation or a change in protein structure will have a major effect on its functional
properties, and the most obvious is the change in the gel strength. It is noteworthy that
for a sample to which 3 mmoL of AAPH was added, the gelation peak shifted forward to
63 °C compared to other groups. We speculate that mild protein oxidation could help the
heat inducing self-aggregation of the tail region of myosin molecule, resulting in an impact
on the start of the gelation process [27,28].
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Figure 3. Change in the storage modulus (G’) of duck myofibrillar proteins at different concentrations
of AAPH (0, 1, 3, 5 and 10 mmol/L).

2.4. Gel Strength

Figure 4 shows the effect of oxidation on the gel strength of myofibrillar protein
gel. It can be seen from the figure that the strength of the myofibrillar protein gel first
subtly increases and then decreases. This shows that protein oxidation can improve the
gel strength of myofibrillar protein to a certain extent. In general, the higher the gel
strength, the denser, stronger and more stable the structure of the gel. Xiong [29] has
shown that myofibrillar proteins can easily form a protein gel under thermal action after
low concentration oxidation treatment, and the strength of the gel is increased due to
the interaction between the proteins. Utrera et al. [30] showed that protein carbonylation
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caused by oxidation also changes the gel properties of the protein. According to the results
of SDS-PAGE, high concentration oxidation treatment will reduce the polymerisation ability
and brittleness of the protein gel.
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2.5. Whiteness and Water Holding Capacity of Gel

Protein denaturation affects the whiteness of the gel [31]. As shown in Figure 5a, the
whiteness of the gel decreased significantly with increasing AAPH concentrations (p < 0.05).
However, the whiteness tends to decrease when AAPH is added, which is not at all desired
when processing. The water holding capacity (WHC) of the gel can reflect the roughness of
its internal structure, which means that the gel could hold more water or prevent water
seepage under different physical and chemical conditions. As can be seen from Figure 5b,
as the AAPH concentration increases, the water holding capacity of the protein gel tends to
first increase and then decrease. When the AAPH concentration is 4 mmol/L, the maximum
water holding capacity is reached. When the AAPH concentration is 10 mmol/L, the water
holding capacity of the gel decreases, which may be due to the degradation of protein
components under high concentration oxidation, making it more difficult for gel to form.
Lund et al. [32] have indicated the consequences of protein oxidation in muscle food have
often been associated with changes in solubility and protein functionality, such as gelation
and emulsifying properties, or WHC.
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2.6. Water Status in Gel

It can be seen from Figure 6 that the concentration of AAPH has an effect on the
NMR relaxation time of the DMPs’ heat-induced gel. Han Minyi et al. [33] previously
reported that there were generally four types of peaks in the NMR relaxation curve of
myofibrillar protein gel after fitting, which corresponded to the states of four kinds of
water, including bound water (T2b), moderately immobilized water (T21), immobilized
water (T22), and free water (T23). The second peak and the third peak were collectively
classified as water. In our study, it can be seen from the figure that the T2 relaxation
intensity has a peak of moderately immobilized water between 10–95 Ms (T21), a peak of
immobilized water between 100–1000 Ms (T22) and a peak of free water after 1000 Ms (T23).
The peak with the largest area in the figure corresponds to immobilized water, indicating
that myofibrillar proteins cross-link together when heated to form a network structure that
binds a large amount of water molecules. When the concentration of AAPH is relatively
low (0–3 mmol/L), the area of free water gradually decreases, whereas the result is the
opposite when the concentration of AAPH is higher than 5 mmol/L. These results showed
the same trend as the previous WHC results. Li Yin et al. combined the traditional drying
method with the low field NMR technology and proved that the free water content is
inversely proportional to the water holding capacity of the gel [34].
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2.7. Gel Microstructure

The microstructure of the protein gel is an important parameter for studying its
structure and properties. The SEM image of the protein gel treated with 4% glutaraldehyde
is shown in Figure 7. The results show that the internal structure of the gel changed
significantly after AAPH oxidised the protein. Proper oxidation can promote protein cross-
linking, thus encouraging irregular aggregates to participate in the gel [35], improving the
network structure. As shown in Figure 7, the structure of the DMPs’ gel deteriorates as
the AAPH concentration increases and the degree of deterioration also increases. When
the concentration of AAPH is 10 mmol/L, the micropores continue to expand and break,
forming fibre fragments, and the gel structure begins to collapse as irregular cracks appear.
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3. Materials and Methods
3.1. Sample Preparation and Reagents

Duck breasts, obtained from a local market in Lishui District, Nanjing, Jiangsu
Province, were taken to the lab at 4 ◦C, then divided into 30 g per sealed bag and stored
at −80 ◦C before use. The reagents, including 2,2-Azobis (2-methylpropionamidine) dihy-
drochloride, were obtained from Shanghai Macklin Biochemical Co., Ltd., Shanghai, China,
and are analytically pure.

3.2. Extraction of Duck Myofibrillar Proteins (DMPs)

Duck myofibrillar proteins were extracted according to the process detailed by Zhu
et al. [36] Briefly, the −80 ◦C frozen duck breasts were taken out and placed into centrifuge
tubes, and 5 times the volume of extraction solution was added (100 mmol/L NaCl,
2 mmol/L MgCl2, 1 mmol/L EGTA, 10 mmol/L K2HPO4, pH 7.0) and then centrifuged
at 4 ◦C, 4000× g for 10 min. The supernatant was then discarded. The above steps were
repeated three times, and the solution was also filtered through two layers of sterilized
gauze in the meantime. Subsequently, the precipitation was homogenised with 5 times
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the volume of the extract (12.5 mmol/L NaCl, 2.5 mmol/L MgCl2, 1. 25 mmol/L EGTA,
12.5 mmol/L K2HPO4, 1% Triton X-100, pH 7.0), then centrifuged at 4 ◦C 4000× g for
10 min to remove the membrane protein; finally, 4 times the volume of 0. 1 mol/L NaCl was
added, then centrifuged at 4 ◦C, 4000× g, for 10 min. The final precipitate was collected to
obtain duck myofibrillar proteins.

3.3. Oxidation of Duck Myofibrillar Proteins

The oxidation of duck myofibrillar proteins was carried out according to the proce-
dures detailed by Zhou et al. [12] with slight modifications. Briefly, the protein content of
the DMPs was firstly measured using the biuret method and then diluted to 30 mg/mL.
The oxidation solution for the duck myofibrillar proteins was prepared according to Table 1,
then incubated for 24 h at 4 ◦C and shaken while avoiding light. After oxidation, the DMPs
were immediately centrifuged at 4 ◦C 8000× g for 10 min. The precipitate was washed
twice with an appropriate volume of distilled water and centrifuged again under the same
conditions. The supernatant was then discarded, and the precipitate was considered a
sample of oxidised myofibrillar protein.

Table 1. Preparation of oxidation solution for myofibrillar proteins.

AAPH Concentraton (mmol/L) 0 1 3 5 10

DMPs solution (mL) 6
AAPH stock solution (mL) 0 0.2 0.6 1 2

20 mmol/L, pH 6.5 PBS (mL) 4 3.8 3.4 3 2
Note: AAPH stock solution concentration is 50 mmol/L.

3.4. Carbonyl Content

The carbonyl content of the protein was determined according to the 2,4-dinitrophenylh
ydrazine colour development method used by Soglia et al. [37] with slight modifications. In
brief, the carbonyl content is expressed in nmol/mg protein in terms of the molar extinction
coefficient 22,000 L/(mol·cm), then calculated according to Equation (1):

Carbonyl content (nmol/mg protein) =

[
A370 −A370(blank)

]
× 106

22, 000×
[
A280 −

(
A370 −A370(blank)

)
× 0.43

] (1)

3.5. Sodium Dodecyl Sulfonate Polyacrylamide Gel Electrophoresis Analysis (SDS-PAGE)

SDS-PAGE was performed according to the method described by Jia et al. [38] with
slight modifications. The concentration of the protein solution was adjusted to 2 mg/mL,
and mixed with an equal amount of 2 × standard SDS sample loading buffer, with or
without dithiothreitol (DTT), and heated for 3 min in a dry heater at 100 ◦C. SDS-PAGE
electrophoresis ran at 220 V for 45 min using NuPAGETM 5–12% Bis-Tris gel (NuPAGETM,
Invitrogen, Carlsbad, CA, USA). The gel was then stained with Coomassie brilliant blue
G-250 before conducting analyses.

3.6. Dynamic Rheological Test

The protein solution was measured using a rheometer (MCR-301, Anton Paar, Graz,
Austria) in oscillatory mode as described by Zhuang et al. [39]. Brief parameters were set
as follows: a 50 mm flat plate with a gap of 1 mm, a frequency of 0.1 Hz, a strain of 2%, a
temperature rise from 25 ◦C to 85 ◦C at a rate of 2 ◦C / min, and a temperature fall rate of
5 ◦C / min. The storage modulus (G’) and loss modulus (G”) were then recorded.
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3.7. Gel Preparation

According to the method described by Xia et al. [40], the protein solution (40 mg/mL)
was heated at 80 ◦C for 35 min to induce gelation, then cooled with ice water for 30 min,
and stored 4 ◦C to equilibrate overnight.

3.8. Gel Strength Measurement

The strength of the gel was measured using the texture analyser (TAXT plus Plaser,
Stable Micro Systems, Godalming, UK). The following parameters were used: a P/0.5r
probe, a 0.5 mm/s rate, a 0.5 mm/s test rate, a 0.5 mm/s post-test rate, a 5 mm probe depth
distance and a trigger force of 4 g, and repeat each treatment sample 3 times.

3.9. Gel Whiteness and Water Holding Capacity

The whiteness of the gel was measured using Minolta CR-400 (illuminant D65) equip-
ment (Minolta Camera, Osaka, Japan) calibrated with a standard white board. A C light
source was used as the light source for the measurement, and the L*, a* and b* of the
gel were recorded. The whiteness of the gel is calculated according to methods used by
Salvador et al. [41] as shown in Equation (2):

Whiteness = 100−
√
(100− L∗)2 + a∗2 + b∗2 (2)

The water holding capacity (WHC) of the gel was determined using centrifugation
methods according to Zhu et al. [42].

3.10. Water Status in Gel

The T2 relaxation time of the water in the samples was measured using an NMR
analyser (MesoMR23-060H-1, Niumag Electric Co., Shanghai, China) according to methods
described by Xia et al. [43]. Firstly, a standard oil sample was calibrated, then about 2 g
of the sample was placed in a centrifuge tube inside the instrument, and then the CPMG
sequence was selected according to the spin–spin relaxation time. The proton resonance
frequency was set at 22.6 MHz and the measurement was performed at 32 ◦C. The following
parameters were set: the number of repeated samples is 4, the waiting time is 2000 ms, the
number of echoes is 9000.

3.11. Gel Microstructure

The gel samples were first cut into cubes (3 × 3 × 3 mm3), fixed with 4% glutaralde-
hyde, then observed using a Hitachi S-3000N scanning electron microscope (Tokyo, Japan)
at an accelerating voltage of 20 kV.

3.12. Statistical Analysis

SPSS 19.0 (version 20, SPSS Inc., Chicago, IL, USA) was used for one-way ANOVA, and
Duncan’s multiple comparison method was used for statistical analysis (p < 0.05 indicates
significant difference).

4. Conclusions

As the concentration of AAPH increases, the carbonyl group content of the duck
myofibrillar proteins increases. At relatively low concentrations of AAPH (1–3 mmol/L),
the protein is attacked by peroxy radicals, which cross-link the protein, increase its molec-
ular weight and form aggregates. Under the action of high concentrations of AAPH
(5–10 mmol/L), protein components are partially degraded. In particular, at 10 mmol/L
AAPH, the gel structure begins to collapse and large irregular cracks appear, making gel
formation more difficult. It can be seen that the alkylperoxyl radical system has an obvious
effect on the gel properties of duck myofibrils. It is noteworthy that a mild concentration
of AAPH (3 mmol/L) can effectively improve the texture properties and water retention
capacity of the gel.
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