
Citation: Liu, L.; Zhang, Q.; Wei, Y.;

Zhao, Q.; Liao, B. A Biological

Feature and Heterogeneous Network

Representation Learning-Based

Framework for Drug–Target

Interaction Prediction. Molecules 2023,

28, 6546. https://doi.org/10.3390/

molecules28186546

Academic Editors: Sławomir Filipek,

Shuguang Yuan and Hideya

Nakamura

Received: 20 July 2023

Revised: 6 September 2023

Accepted: 7 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

A Biological Feature and Heterogeneous Network
Representation Learning-Based Framework for Drug–Target
Interaction Prediction
Liwei Liu 1,2, Qi Zhang 1, Yuxiao Wei 3, Qi Zhao 4,* and Bo Liao 2,*

1 College of Science, Dalian Jiaotong University, Dalian 116028, China; liutree80@163.com (L.L.);
qiz991003@163.com (Q.Z.)

2 Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University,
Haikou 571158, China

3 College of Software, Dalian Jiaotong University, Dalian 116028, China; w635312612@163.com
4 School of Computer Science and Software Engineering, University of Science and Technology Liaoning,

Anshan 114051, China
* Correspondence: zhaoqi@lnu.edu.cn (Q.Z.); boliao@yeah.net (B.L.)

Abstract: The prediction of drug–target interaction (DTI) is crucial to drug discovery. Although
the interactions between the drug and target can be accurately verified by traditional biochemical
experiments, the determination of DTI through biochemical experiments is a time-consuming, labori-
ous, and expensive process. Therefore, we propose a learning-based framework named BG-DTI for
drug–target interaction prediction. Our model combines two main approaches based on biological
features and heterogeneous networks to identify interactions between drugs and targets. First, we
extract original features from the sequence to encode each drug and target. Later, we further consider
the relationships among various biological entities by constructing drug–drug similarity networks
and target–target similarity networks. Furthermore, a graph convolutional network and a graph
attention network in the graph representation learning module help us learn the features representa-
tion of drugs and targets. After obtaining the features from graph representation learning modules,
these features are combined into fusion descriptors for drug–target pairs. Finally, we send the fusion
descriptors and labels to a random forest classifier for predicting DTI. The evaluation results show
that BG-DTI achieves an average AUC of 0.938 and an average AUPR of 0.930, which is better than
those of five existing state-of-the-art methods. We believe that BG-DTI can facilitate the development
of drug discovery or drug repurposing.

Keywords: drug–target interactions; graph convolutional network; graph attention network; repre-
sentation learning; machine learning

1. Introduction

The determination of drug–target interaction (DTI) is of great significance for the
development of new drugs and the understanding of drug side effects. There are currently
tens of thousands of Food and Drug Administration-approved drugs on the pharmaceutical
market, as well as new drugs that are being validated in clinical trials [1]. These new drugs
may interact with potential unseen targets, treat unknown diseases, and produce certain
side effects. Although traditional biochemical experiments can accurately verify DTI, the
identification of DTI using biochemical experiments is a time-consuming, laborious, and
expensive process [2]. In order to accelerate the development of new drugs and reduce the
workload of laboratory experiments, it is important to establish an effective DTI recognition
model. The existing computation-based methods for predicting DTI mainly include the
following two types: biological feature-based methods and network-based methods.

The first type is biological feature-based methods. The main idea of these methods is
to extract the features of drugs and targets through their biological sequences. Based on
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the extracted features, a deep learning model is used for DTI recognition. Bleakley et al.
converted the DTI recognition problem into a binary classification problem by using the
binary local model method [3]. In 2017, Meng et al. proposed a model called PDTPS [4],
which extracted features from protein sequences and medicinal chemical structures and
applied relevance vector machines [5] to predict DTI. In 2018, Wang et al. developed a
stacked autoencoder-based model [6], which extracted features of proteins by way of a
position-specific scoring matrix [7] and applied a random forest algorithm to predict DTI. In
2022, Cheng et al. proposed a model for predicting DTI using interaction and independent
features based on the attentional mechanism [8]. Specifically, protein sequences were
extracted by using multiscale one-dimensional convolution, and word2vec was used for
pre-training during word embedding. The RDKit tool was used to convert the SMILES
sequence into a graph structure and input it into the multi-layer graph attention network
(GAT) for drug feature extraction. In the same year, Zhao et al. constructed a model named
HyperAttentionDTI [9], which applied biological sequences to deep learning models with
attentional mechanisms to predict DTI. A one-dimensional convolution of three stacked
layers was used to learn sequence features from the inputs. The attention mechanism
module produced an attention fraction value for each pair of amino acids. After the
attention module, the multilayer fully connected neural network (FCNN) was used for the
prediction of the DTI. In 2023, Bai et al. introduced a model named DrugBAN [10], which
extracted features from drug molecular diagram and target protein sequences through
a graph convolutional network (GCN) and a 1D convolutional neural network (CNN),
and used FCNN to predict DTI. Some biological features can be extracted from literature
information; such approaches use drug and target descriptions as features rather than
biological sequences. In 2015, Alkema et al. introduced important techniques for text
mining such as askMEDLINE, PubNet, PubViz, CoPub, etc. [11]. These methods can
be used to effectively analyze the growing number of research papers in the field of
bioinformatics. In 2016, Fu et al. presented a machine learning model based on semantic
similarity to identify DTIs [12].

The second type is the network-based approach. Networks can describe complex
and diverse relationships between drugs and proteins. The main idea of these methods
is to extract features by constructing an interaction network and a similarity network. In
2017, Luo et al. proposed a model named DTINet [13], which established heterogeneous
networks by obtaining multiple drug-related information and protein-related information,
and predicted DTI through the networks. Not long after this, Yan et al. developed a
model that extracted features from heterogeneous information on drugs and targets and
applied multi-kernel learning and clustering methods to predict DTI [14]. In 2020, Zhao
et al. introduced a model that extracted features from a drug–protein pair network and
combined GCN and a deep neural network to predict DTI [15]. In 2021, Peng et al. presented
a model named EEG-DTI [16]. Specifically, they constructed a complex heterogeneous
network containing drugs, proteins, diseases, and side effects. The features of drugs and
targets were performed using a three-layer GCN learning framework. Finally, the inner
product method was used to predict DTI. In the same year, An et al. developed a model
named NEDTP [17], which is a similarity-based method for predicting DTI. The author
constructed a similar network of nodes through 15 heterogeneous information networks
including drug–drug interaction, drug–disease association, drug–side effect association, the
gene ontology biological process, protein–protein interaction, protein–disease association,
protein sequence similarity, etc. The second-order biased random walk algorithm and
word2vec were used for feature sampling and node vector representation learning. Finally,
the model used a gradient boosting decision tree [18] to predict DTI. In 2022, Li et al.
combined a transformer module with a communicative message passing neural network
to better capture the two-way effects between drugs and targets, and predicted DTI using
multilayer perceptron [19].

The relationship between drugs and targets is complex and varied. We should consider
the features of drugs and targets in multiple networks, such as drug–disease associations,
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drug–drug similarities, drug–drug interactions, drug–side effect associations, protein–
protein similarities, and disease–protein associations. The existing methods usually do not
consider interaction types sufficiently and therefore do not take into account the relationship
between multiple biological entities well. In some methods, drugs, diseases, proteins, side
effects, etc. are taken as network nodes to obtain more correlational relationships when
constructing heterogeneous networks.

However, there are some obvious disadvantages to the previous methods. First, these
methods do not make full use of the biometric features of drugs, targets, and abundant
topological information in heterogeneous networks to predict DTI. Specifically, biological
feature-based methods do not take into account the features of drugs and targets in hetero-
geneous networks containing multiple biological entities (i.e., drugs, proteins, diseases, side
effects), nor how to extract and incorporate them. Network-based methods only consider
the topological information of drug target pairs and do not comprehensively consider the
biological structure information of drugs and targets. Increasing node types also creates
the problem of increasing computational complexity and makes the model more depen-
dent on the existing data, which may eventually reduce the generalization ability of the
model. Second, the predictive classification process of these methods is often fused with
the feature extraction module to form an end-to-end DTI prediction model [20–22], but
these methods also reduce the flexibility and interpretability of the model and sometimes
introduce overfitting problems.

To solve the existing difficulties, we propose a new framework for predicting DTI
based on biological feature and graph representation learning, named BG-DTI, to identify
the interactions between drugs and targets. In our study, we first extract biological sequence
information on drugs and targets using sequence embedding, a CNN layer and a pooling
layer, and then consider both biological sequence information and network information
and add drug–drug similarity and target–target similarity to complete the heterogeneous
network. Based on heterogeneous networks, we use a combination method of GCN and
GAT to learn the features representation of drugs and targets. Lastly, we use the random
forest classifier to predict whether there is an interaction between drugs and targets. After
model construction, we conduct a five-fold cross-validation (5-fold CV) experiment to
evaluate the performance of BG-DTI. Meanwhile, we also compare BG-DTI with state-of-
the-art methods on a benchmark dataset. All the results show that BG-DTI performs better
than existing state-of-the-art methods, and it is an efficient model for DTI prediction.

2. Results
2.1. Performance Evaluation

The drug–target heterogeneous network data often have the problems of large positive
and negative sample disparity and unbalanced samples, which will affect the effect and
stability of the model. We conduct over-sampling and under-sampling of positive and
negative samples, respectively, to balance samples after sampling, thus improving the
generalization ability of BG-DTI. We compare the effect of the model on various sampled
datasets while keeping other parameters values unchanged. The final parameters of BG-
DTI are shown in Appendix A Table A1. In model evaluation, the area under the receiver
operating characteristics curve (AUC) and the precision–recall curve (AUPR) are used as
the model evaluation criteria [23,24]. Among them, the receiver operating characteristics
(ROC) curve abscissa and ordinate are FPR (false positive rate) and TPR (true positive rate),
respectively. The precision–recall (PR) curve abscissa and ordinate are precision rate and
recall rate, respectively. The formulas of these metrics are shown as follows:

TPR =
TP

TP + FN
(1)

FPR =
FP

TN + FP
(2)
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
, (4)

where TP (True Positive) and TN (True Negative) are the number of correctly predict
positive and negative samples, respectively. FP (False Positive) and FN (False Negative)
are the number of wrongly predicted positive and negative samples, respectively.

The results are shown in Figure 1. When over-sampling and under-sampling are used,
the model shows a significant improvement in the AUC and AUPR indexes. Compared
with the model without positive sample over-sampling, the AUC of BG-DTI with positive
sample over-sampling increases by 5.1%. In AUPR performance, it increases by 5.0%. This
indicates that the data balance in the network can improve the generalizability of the model
and improve the stability of the model. We use the 5-fold CV method to evaluate the model.
In order to ensure the accuracy of the experimental results, the following test results are
the average value of 30 runs. We show the performance of 5-fold CV in Table 1. When the
number of folds is five, the average AUC and AUPR of BG-DTI in the benchmark dataset
reach 0.938 and 0.930, respectively.
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Table 1. The 5-fold CV testing results of BG-DTI on benchmark dataset.

Validation Set 1 2 3 4 5 Avg.

AUC 0.932 0.945 0.931 0.940 0.943 0.938
AUPR 0.926 0.940 0.929 0.927 0.928 0.930

2.2. Comparison with Previous Methods

To demonstrate the superiority of our model, we use 5-fold CV to compare the perfor-
mance of BG-DTI and five other methods, namely MultiDTI [25], HyperAttentionDTI [9],
NeoDTI [26], DTINet [13], and HNM [27] on the benchmark dataset. Table 2 shows the
performance comparison of BG-DTI and comparative models, and the specific descriptions
of these comparative models are as follows:

• MultiDTI is a machine learning method based on multi-modal representation learning.
It integrates heterogeneous network information between new chemical entities to
predict DTI.

• HyperAttentionDTI is a sequence-based deep learning model. It uses attention mech-
anisms to improve the prediction of DTI and narrow the search space for drug and
target binding sites.
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• NeoDTI is a method using a graph neural network, which can integrate multiple
information sources and automatically learn the topological structure information of
each node vector in the network.

• DTINet is a deep learning method for predicting DTI. It uses random walk and
singular value decomposition to compute the embedding vectors of the drug and
target. DTINet identifies the DTIs based on these embedding vectors.

• HNM is a computational framework based on a heterogeneous network model. The
model calculates the intensity between disease–drug pairs using an iterative algorithm
on the heterogeneous graph, which also contains drug target information.

Table 2. Performance comparison of BG-DTI and other methods on the same benchmark dataset.

Model MultiDTI NeoDTI DTINet HNM HyperAttentionDTI BG-DTI

AUC 0.791 0.927 0.914 0.890 0.889 0.938
AUPR 0.855 0.874 0.923 0.572 0.897 0.930

For a fair comparison, we adopt the default parameter values of the respective original
implementations for the five methods and compare them on the benchmark dataset. It can
be intuitively shown that BG-DTI performs better than the existing state-of-the-art methods
from Table 2, in which both AUC and AUPR of our model are above those of other models.
Specifically, BG-DTI achieves an average AUC of 0.938, which is 14.7%, 1.1%, 2.4%, 4.8%,
and 4.9% higher than that of MultiDTI, NeoDTI, DTINet, HNM, and HyperAttentionDTI,
respectively. The average AUPR of BG-DTI is 0.930, which is 7.5%, 5.6%, 0.7%, 35.8%,
and 3.3% higher than that of MultiDTI, NeoDTI, DTINet, HNM, and HyperAttentionDTI.
From the results, we can see that the predictive accuracy of HNM is much lower than
that of BG-DTI, and the reason may be that HNM does not obtain enough topological
structure information and heterogeneity information in heterogeneous networks. DTINet
outperforms other models and obtains the second-best performance, which may be be-
cause this model further introduces medicinal chemical structure information and protein
sequence information into the heterogeneous network by creating two additional similarity
networks. In summary, the evaluation results show that BG-DTI performs better than
existing state-of-the-art methods.

2.3. Performance on the Cold Start Validations

The task of DTI is to find new drugs that interact with existing targets in the real world.
In practice, the number of known targets is limited, and most of them are used for model
training, which means that the cold start validations are closer to the situation in the real
world. To reflect the challenging situations in which the predictor will be used in practice,
we conduct three cold start validations. Table 3 shows the performance comparison of
BG-DTI with other methods in terms of three settings from the same benchmark dataset
with 5-fold CV, and the three settings are as follows:

• Blind drug: There is no overlap of drugs between the training and test datasets.
• Blind protein: There is no overlap of proteins between the training and test datasets.
• Blind pair: There is no overlap between the training and test datasets. None of the

drugs and proteins in the training datasets are present in the test datasets.

As shown in Table 3, BG-DTI shows remarkable performances in terms of the three
cold start validations. In the blind drug test, the AUC score of BG-DTI is 0.911 and the
AUPR score is 0.887, whereas the competitors perform poorly. In the blind protein test,
we discover no significant difference between the five comparative models and BG-DTI.
Nevertheless, BG-DTI performs slightly better than the other models in terms of AUC
score and is barely behind the top-ranked model in terms of AUPR score. With reference
to the blind pair setting, the AUC score of BG-DTI is 0.904, which is 8.4% higher than the
best baseline HyperAttentionDTI (0.820) and 10.0% higher than that of DTINet (0.804).
The AUPR score of BG-DTI is 0.875, which is 5.7% higher than the best baseline DTINet
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(0.818) and 7.4% higher than that of MultiDTI (0.801). In general, our model achieves a
reasonable performance on three cold start validations, indicating that BG-DTI trained on
the benchmark dataset generalizes well to independent virtual screening tasks and deals
with the challenges in real experiments.

Table 3. Comparison of BG-DTI with other methods in terms of three settings from the same
benchmark dataset with 5-fold CV.

Model
Blind Drug Blind Protein Blind Pair

AUC AUPR AUC AUPR AUC AUPR

MultiDTI 0.730 0.844 0.709 0.775 0.717 0.801
NeoDTI 0.805 0.753 0.803 0.710 0.797 0.732
DTINet 0.798 0.830 0.795 0.768 0.804 0.818
HNM 0.713 0.576 0.687 0.553 0.737 0.572

HyperAttentionDTI 0.815 0.775 0.811 0.734 0.820 0.753
BG-DTI 0.911 0.887 0.828 0.772 0.904 0.875

2.4. Ablation Experiments

To evaluate the effects of biological features, heterogeneous networks, node similarity,
and the prediction module in BG-DTI, we conduct ablation studies using 5-fold CV on the
benchmark dataset, to evaluate the impact of four components on the predictive perfor-
mance of BG-DTI. In the experiment, we keep the default parameter values unchanged.

• DTI-bio: we remove the biometric feature extraction module, and the input features of
the nodes in heterogeneous networks are modified to the random generation vector.

• DTI-het: we remove the graph representation learning model of drug and target
in BG-DTI.

• DTI-sim: we remove the drug–drug similarity information and protein–protein simi-
larity information in the heterogeneous network.

• DTI-rf: we apply multilayer perceptron instead of the random forest prediction mod-
ule, constituting an end-to-end DTI prediction model. The classification score thresh-
old is set to 0.5.

Table 4 shows the performance comparison of BG-DTI and its four variants in terms of
AUC and AUPR on the same benchmark dataset. The results show that the performance of
BG-DTI is better than that of DTI-bio, DTI-het, DTI-sim, and DTI-rf. BG-DTI obtains the best
AUC score of 0.938, and it is 5.7%, 6.3%, 6.1%, and 9.7% higher than that of DTI-bio, DTI-het,
DTI-sim, and DTI-rf, respectively. The AUPR score of BG-DTI is 0.930, which is 4.4%, 4.1%,
5.0%, and 20.7% higher than that of DTI-bio, DTI-het, DTI-sim, and DTI-rf, respectively.
It indicates that these parts in our design can improve the predictive performance. The
performance of both DTI-bio and DTI-het are lower than that of BG-DTI, suggesting that
biometric features extraction and graph representation learning of the drug–target are
necessary for predicting DTI. Furthermore, it is worth noting that the AUPR of DTI-rf is
20.7%, 16.3%, 16.6%, and 15.7% lower than that of BG-DTI, DTI-bio, DTI-het, and DTI-sim,
respectively. The reason is that DTI-rf correctly predicts more negative samples and a
large proportion of positive samples are also predicted as negative. This shows that the
random forest algorithm can effectively improve the recognition performance of DTI, and
the end-to-end model may make the prediction more dependent on the composition and
distribution of training data.
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Table 4. The AUC and AUPR performance on ablation experiments.

Model AUC AUPR

BG-DTI 0.938 0.930
DTI-bio 0.881 0.886
DTI-het 0.875 0.889
DTI-sim 0.877 0.880
DTI-rf 0.841 0.723

3. Materials and Methods
3.1. Datasets

Currently, the most widely used DTI datasets are the Luo et al. dataset [13], the
Yamanishi et al. dataset [28], and the Davis dataset [29]. By deleting the overlapping data
with little correlation in the above three datasets, we make the remaining data constitute a
complete dataset. The new dataset contains six related networks (drug–disease association
network, drug–drug interaction network, drug–protein interaction network, drug–side
effect association network, protein–disease association network, protein–protein interac-
tion network), and drug and protein sequences. Of these, 598 drug nodes represented
by SMILES sequences and 1352 original protein sequences represented by amino acid
sequences are extracted from the Drugbank database, the PubChem database, and the
UniProts database. From the Davis database, 4862 disease nodes are obtained. From SIDER
database 2.0, 3640 side effect nodes are extracted [30]. All related network data are given as
Boole matrices. That is, 1 indicates a known interaction or correlation and 0 indicates an
unknown or no interaction or correlation. The information of our benchmark dataset is
shown in Table 5.

Table 5. Summary of the benchmark dataset.

Types Items Numbers

Node

Drug 598
Target 1352

Disease 4862
Side effect 3640

Edge

Drug–drug 7498
Drug–target 1643

Disease–drug 173,205
Drug–side effect 69,300

Target–target 6206
Disease–target 1,444,324

3.2. Overview of BG-DTI

In this part, we present BG-DTI, a biological feature and heterogeneous network repre-
sentation learning-based framework for drug–target interaction prediction. The workflow
of BG-DTI is illustrated in Figure 2, which includes three modules for model construc-
tion: a drug and target biometric feature extraction module, a graphical representation
of the learning module, and the DTI prediction module. The detailed descriptions of
these modules are introduced as follows. First, we take the SMILE sequence of the drug
and amino acid sequence of the target as input, and fully extract adjacent information
from the sequence through sequence embedding, CNN layer, and pooling layer, so as
to shorten the feature length of the sequence and reduce the computational complexity
and time while preserving the original association relationship and global information
in the sequence. Second, we construct a drug–target heterogeneous network through the
association relationship among various biological entities. In addition to the drug–drug
interaction edge, the drug–protein interaction edge, and the protein–protein interaction
edge, we also add an additional drug–drug similarity edge and a protein–protein similarity
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edge to the heterogeneous network. We then stack a GCN layer and a GAT layer to enlarge
the receptive field on the graph, effectively aggregate information of multi-hop neighbors,
and learn the features of drugs and targets from the heterogeneous network. In order to
prevent the loss of feature information, we combine the output of the first and third layers to
obtain the final representation of drug and target features. Last, we splice the characteristic
representations of drugs and targets to obtain the fusion descriptors of drug–target pairs.
Finally, the random forest algorithm is used to predict DTI.
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Figure 2. Overview of BG-DTI. The workflow of BG-DTI includes three modules for model construc-
tion: drug and target biometric feature extraction module, graph representation of learning module,
and DTI prediction module.

3.3. Drug and Target Biological Feature Extraction

Each protein sequence T = a1, a2, · · · , an, where ai represents the ith amino acid and n
is the sequence length. In order to fully extract the amino acid adjacent information in the
sequence, we represent every k adjacent amino acids as a one-hot encoding. For example, if
k is 3 and n is 5, then the protein sequence T is expressed as (a1, a2, a3), (a2, a3, a4), (a3, a4, a5).
In this work, each protein original embedding is composed of 203 = 800 one-hot encoding.
Similarly, for each drug SMILES sequence, D = b1, b2, · · · , bn, where bi represents the
ith atom or structure indicator and m is the sequence length. We represent each bi as a
one-hot encoding, and each original drug embedding is composed of 61 one-hot encodings.
Finally, the original embedding of drug and protein sequences is expressed as De ∈ RC×LD ,
Te ∈ RC×LT , where C is the embedding channel size, and LD and LT respectively represent
the maximum length of drug and target.

After obtaining the original embedding of the drugs and targets, we input the original
embedding vector into the 6-layer CNN to shorten the length of the sequence and reduce
computational complexity and time while preserving the original correlation and global
information in the sequence.

In order to fully extract the adjacent information in the sequence, we use multiple
convolution kernels for each convolution layer to learn about this region embedding.
For each sequence, convolution kernels are used for convolution calculation, and each
convolution kernel is responsible for extracting a specific segment of information in the
sequence. The calculation expression is as follows:

X′i = WiX + bi (5)

X′ =
[
X′1||X′2|| · · · ||X′N

]
, (6)

where X ∈ RC×L is the original embedded representation of a given sequence, Wi ∈ R3×L

and bi ∈ R(L−2)×1 respectively denote the weight and bias of the ith convolution kernel, L
is the length of the original embedded representation of drug or protein, X′ ∈ R(L−2)×N is
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the representation of a sequence after convolution processing with N convolution kernels,
|| is a concatenation operation.

After that, we used two identical convolution layers to fully extract the information
between the sequence region embedding and its adjacent embedding. N convolution
kernels are used for convolution calculation to extract the interaction information between
the specific region embedded in the sequence and its left and right neighbors as below:

X′′i =
n

∑
k=1

(
Wk,iσ

(
X′i
)
,+, bk,i

)
(7)

X′′ = [X′′1 ||X
′′
2 || · · · ||X

′′
N ], (8)

where X′i is the ith channel of X′, Wk,i ∈ R3×L denotes the weight of the kth convolution
kernel in the ith channel of X′, bk,i ∈ R(L−2)×1 denotes the bias of the kth convolution kernel
in the ith channel of X′, σ is ReLU nonlinear activation function, and X′′ ∈ R(L−2)×N is a
representation of a sequence after convolution processing with one convolution layer.

Inspired by ResNet [31], we then connect a feature aggregation module consisting
of a pooling layer and two convolution layers. We set the pooling layer as the non-linear
pooling function of “maximum pooling”, so that the sequence length of sequence feature
vectors is reduced by half each time after pooling. After that, the connected convolutional
layer is equivalent to linearly weighting the result of the action of nonlinear functions,
which strengthens the role of the pooling layer in reducing information redundancy and
also reduces the information loss caused by pooling. Finally, we concatenate the pooling
results with the convolution results and calculate the expression as follows:

Xt+1 = P
(
Xt)+ θ(P

(
Xt)
)
, (9)

when t = 0, Xt = X′′′ and where X′′′ ∈ R(L−2)×N denotes the representation of the
sequence after the convolution processing of two convolution layers, P is the max pooling
function, θ is the convolution calculation of two convolution layers.

3.4. Construct a Heterogeneous Network

In addition to the six original associations in the network, we add additional drug–
drug similarity and protein–protein similarity information to the heterogeneous network
by considering both biological sequence information and network information.

The network similarity of drug–drug and protein–protein are calculated using the
Jaccard similarity coefficient. Specifically, the drug–disease association network, drug–drug
interaction network, and drug–side effect association network are used to calculate the
similarity measure of each two drug nodes, D1 and D2, in the network. The formula is
shown as follows.

J =
N11

N01 + N10 + N11
, (10)

where N11 is the total number of nodes that have edges connected to D1 and connected to
D2, N01 is the total number of nodes that have edges connected to D1 and not connected to
D2, and N10 is the total number of nodes that have edges connected to D2 and not connected
to D1.

In the same way, protein similarity is calculated using the target–disease association
network and the target–target interaction network, respectively. The sequence similarity
between drugs is calculated based on molecular fingerprints [32,33]. First, MACC fin-
gerprints of molecules in drug sequences are calculated, and the Tanimoto coefficient is
obtained based on the similarity comparison of MACC fingerprints. Finally, the Tanimoto
coefficient is used to measure the similarity between drugs. MACC fingerprints refer to
fingerprints derived from the chemical structure database developed by MDL. A total of
166 substructures are examined, plus 1 bit to hold the information in the RDKit, for a total of
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167 bits for the fingerprint. If it has a substructure, store 1, otherwise store 0. The Tanimoto
coefficient is an extension of the Jaccard coefficient. The formula is shown as follows.

T =
N11

N01 + N10 − N11
, (11)

where N11 denotes the number of shared fingerprints of two drugs, N01 denotes the total
number of fingerprints of D1, and N10 denotes the total number of fingerprints of D2.

The sequence similarity between proteins is calculated using the Levenshtein similarity
coefficient. Specifically, we characterize similarity by looking at differences in the length
and types of amino acids in different protein sequences as follows:

I = |S1 − S2|+ 2E (12)

L =
S1 + S2 − I

S1 + S2
, (13)

where S1 is the number of amino acids of P1, S2 is the number of amino acids of P2, and E
is the sum of the difference between the number of amino acids in P1 and P2.

For each pair of drugs, we calculate four similarity scores based on network similarity
and biological sequence similarity. Therefore, for any pair of drugs, we can obtain four
similarity scores. Next, we set a given threshold, and if one of the similarity scores is greater
than this threshold and this has no interaction with the drugs, we add a similarity edge
between the two drugs. Similarly, for each pair of targets, we calculate three similarity
scores based on network similarity and biological sequence similarity. We then determine
whether similar edges are added between two targets by a given threshold that we set.

3.5. Graph Representation Learning of Drug and Target

One of the key aims of the DTI recognition model is to find a more advanced, better
performance, and more reasonable feature extractor. Recently, GCN and GAT have been
widely used in feature extraction of graph networks [34–37]. In order to realize feature
aggregation among related nodes in heterogeneous networks, graph convolution is a
common method on the network.

In this section, we propose a graph learning module composed of GCN and GAT
layers to learn feature representations from heterogeneous networks. As shown in the
graph representation learning module in Figure 1, we add a graph attention layer between
the two graph convolution layers to help the GCN layer extract high-level features of the
drug and target. The following sections explain the details.

We represent the heterogeneous network as G = (V, E, R), where Vi ∈ V denotes a
node in the heterogeneous network (i.e., drugs, proteins).

(
Vi , r, Vj

)
∈ E is an edge in the

heterogeneous network, and r ∈ R represents an edge type in the heterogeneous network.
Specifically, R includes five types of edges: drug–drug interaction, drug–drug similarity,
drug–protein interaction, protein–protein interaction, and protein–protein similarity. In the
GCN layer, we aggregate the features among relevant nodes as follows:

X(l+1) = ∑
r

σ
(

Ar
− 1

2 S̃r Ar
− 1

2 X(l)W(l)
r

)
, (14)

where Sr denotes the network adjacency matrix with edge type r, S̃r = I + Sr. Ar is the
network degree matrix with edge type r, W is the trainable weight parameter matrix, X(l) is
the features representation of the node in l layer. σ represents the ReLU activation function.
When l = 0, we use drug and target biometric feature vectors as original features to encode
each node.
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In the GAT layer, we aggregate the features among relevant nodes as follows:

X(l+1)
i = ∑

r
σ

(
1
K

K

∑
k=1

∑
j 6=i

ϕr
k
ijWr

(l)
k X(l)

j

)
(15)

ϕr
k
ij =

exp
(

L
(
aT

k
[
WkXi||WkXj||Bkrij

]))
∑t 6=i exp

(
L
(
aT

k [WkXi||WkXt||Bkrit]
)) , (16)

where K is the number of attention mechanisms in multi-head attention, ϕr
k
ij denotes the

kth attention coefficients between nodes i and j with edge type r. Wk is the weight matrix of
the kth attention mechanism, X(l)

j is the features representation of node Vj in the l layer. ||
is a concatenation operation, L is the LeaklyReLU activation function. ak denotes the weight
vector of the kth attention mechanism, and Bk denotes the weight of the edge rij that is to
be learned.

So far, we obtain the feature coding of each node in the heterogeneous network
under each layer. For the nodes in the network, the previous models can only aggregate
the information of neighbors within one hop by using a layer graph convolution neural
network layer number. In order to fully extract the interaction information between nodes
and their neighbors in heterogeneous networks, we enlarge the receptive field of the graph
by stacking the graph convolution layer and the graph attention layer from the inter-layer
perspective, and effectively aggregate the information of multi-hop neighbors [38].

However, stacking multi-layer GCN and GAT may lead to the common problem of
feature over-smoothing and the vanishing gradient problem [39,40], that is, the output of the
hidden layer representation of each node tends to converge to the same value. In addition,
it is inevitable to lose feature information in the feature transmission process between
layers. In order to solve the feature over-smoothing and vanishing gradient problems,
scholars have put forward some corresponding methods. For example, HGANDTI [41]
avoids the problem of over-smoothing features generated by stacking multiple layers
by enlarging receptive fields from an intra-layer perspective. LightGCN [42] prevents
the problem of missing feature information by considering the output representation of
different GCN layers.

Inspired by the above model, we add a fusion layer and combine the output fea-
ture vectors of different layers to obtain the final drug and target feature representation
XD ∈ Rdv×d and XT ∈ RTv×d. The feature aggregation process between different layers of
relevant nodes is as follows:

X(1) = GAT
(

S, X(0)
)

(17)

X(2) = GAT
(

S, X(1)
)

(18)

X(3) = GCN
(

S, X(2)
)

(19)

X = CNN
(

X(1), X(3)
)

. (20)

In order to train the joint representation learning framework of biological sequences
and heterogeneous network features, we use binary cross entropy to measure the gap
between the DTI matrix and the preference matrix and use it as a loss function for training
the joint representation learning framework. The loss function is shown as follows:

Loss = − 1
N ∑

(i,j)
yij log

(
uij
)
+
(
1− yij

)
log
(
1− uij

)
, (21)
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where yij is the label value between drug i and target j, uij is the predicted value between
drug i and target j in the preference matrix U = XDXT

T , and N = i× j is the number of
drug–target pairs.

3.6. DTI Prediction

We use the feature joint representation learning framework to connect the drug and
target feature representations XD and XT to obtain the fused descriptors of the drug–target
pairs. The fusion descriptor for a pair of drug i and target j is as follows:

Zij =
(

Xi
D, X j

T

)
, (22)

where Xi
D and X j

T are the feature representations of drug i and target j, respectively.
Random forest is an efficient integrated classification algorithm [43]. It generates a

list of base evaluators through N times of training, and then evaluates its predicted results
through the average or voting principle. Thus, overfitting of training data can be effectively
alleviated [44]. Currently, it has been widely used to solve problems in bioinformatics
fields, such as predicting disease-associated circRNAs [45,46]. Inspired by Lertampaiporn
et al. [45], we use fusion descriptors of drug–target pairs (Zij) as categorical features and
use a random forest classifier to predict whether DTI has interaction.

4. Discussion and Conclusions

In recent years, the prediction of DTI has been of great significance for the discovery
of new drugs and the repositioning of drugs. Although the interactions between the
drug and target can be accurately verified by biological experiments, it is often a time-
consuming and expensive process. Therefore, it is urgent to develop computational models
to predict DTI. In this work, we propose a framework based on biological feature and
heterogeneous network representation learning for the prediction of DTI, called BG-DTI.
Our model combines two mainstream methods, biometric-based and network-based, to
extract the characteristics of drugs and targets and to predict the interactions between
drugs and targets using the random forest algorithm. We create a benchmark dataset based
on the Luo et al. dataset [13], the Yamanishi et al. dataset [28], and the Davis dataset [29],
and compare BG-DTI with previous methods on this benchmark dataset. Comparative
experiments show that BG-DTI performs better than existing state-of-the-art methods. The
ideal predictive ability of BG-DTI mainly depends on the following factors: First of all,
none of the previously proposed methods combined biometric features with heterogeneous
network methods, while BG-DTI made full use of the sequence feature information of
drugs and targets and topological information on the graph through the biological feature
extraction module and the graph representation learning module. Second, the predictive
process of the previous methods is often fused with the feature extraction module to form
the end-to-end DTI prediction model, but these methods also reduce the flexibility and
interpretability of the model and sometimes introduce the problem of overfitting. BG-
DTI uses random forest as a predictive classifier to obtain a higher quality classification
strategy. The results of the ablation experiment show that the drug and target biometric
feature extraction module and the graph representation of the learning module can provide
more abundant and accurate drug and target information for the prediction of DTI. The
random forest algorithm can make the optimal classification decision based on the extracted
drug target features, thus improving the prediction performance of DTI [47]. In addition,
although BG-DTI is mainly used to predict DTI, it is a portable method and it can be widely
used to solve problems in bioinformatics fields such as predicting the correlation between
circRNAs and diseases [48–51].

However, BG-DTI also suffers from some limitations. First, as shown in Figure 2, the
performance of BG-DTI under highly unbalanced datasets is not ideal. Second, as shown in
Table 4, the performance of BG-DTI on the blind protein test and the benchmark dataset
is quite different. The reason for the performance gap may be that the method based
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on protein sequence extraction means that the model learns insufficient protein structure
information. Rational use of protein structure information is an important idea to further
improve DTI prediction performance. Third, the prediction of BG-DTI is only aimed at
whether the drug target is associated, and there is no detailed prediction of the associations
type (e.g., agonist, inhibitor, potentiator, and antagonist) [15]. In the future, we will design
and develop a new version of BG-DTI that can perform a more detailed classification of
DTI types.
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Abbreviations

DTI drug–target interaction
GAT graph attention network
FCNN fully connected neural network
GCN graph convolutional network
CNN convolutional neural network
5-fold CV 5-fold cross validation
AUC TPR-FPR area under the curve
AUPR Precision-Recall area under the curve

Appendix A

Hyperparameter settings of BG-DTI (Table A1); other ablation study results (Fig-
ure A1); The ROC curve of BG-DTI (Figure A2); and detailed testing results of BG-DTI
(Table A2).

Table A1. The hyperparameter settings of BG-DTI.

Hyperparameter Values

Loss function Cross-entropy Loss function
Optimizer Adam

The number of input features of each drug 1500
The number of input features of each target mechanism 15,000

Epoch 30
Batch size 512

Learning rate 0.00001
Dropout 0.5

Number of Attention head 4
The number of decision trees in the random forest 200

https://github.com/wyx2012/BG-DTI
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Figure A1. The other ablation study results.

Table A2. The detailed testing results of BG-DTI.

Epoch Mean AUC Mean AUPR

1 0.926 0.921
2 0.925 0.915
3 0.931 0.934
4 0.920 0.922
5 0.940 0.933
6 0.936 0.931
7 0.931 0.922
8 0.933 0.937
9 0.943 0.911
10 0.937 0.920
11 0.927 0.919
12 0.942 0.922
13 0.947 0.931
14 0.928 0.922
15 0.939 0.925
16 0.926 0.931
17 0.951 0.937
18 0.941 0.933
19 0.921 0.929
20 0.949 0.934
21 0.932 0.930
22 0.943 0.932
23 0.941 0.924
24 0.945 0.929
25 0.929 0.934
26 0.949 0.937
27 0.942 0.931
28 0.954 0.938
29 0.955 0.935
30 0.951 0.936
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