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Abstract: Ketamine analogues have been emerging in recent years and are causing severe health
and social problems worldwide. Ketamine analogues use 2-phenyl-2-aminocyclohexanone as the
basic structure and achieve physiological reactions similar to or even more robust than the prototype
of ketamine by changing the substituents on the benzene ring (R1 and R2) and amine group (RN1).
Therefore, the mass spectrometry (MS) fragmentation pathways and fragments of ketamine analogues
have certain regularity. Eight ketamine analogues are systematically investigated by GC-QTOF/MS
and LC-Q-Orbitrap MS/MS with the positive mode of electrospray ionization. The MS fragmen-
tation patterns of ketamine analogues are summarized according to high-resolution MS data. The
α-cleavage of carbon bond C1-C2 in the cyclohexanone moiety and further losses of CO, methyl
radical, ethyl radical and propyl radical are the characteristic fragmentation pathways of ketamine
analogues in EI-MS mode. The loss of H2O or the sequential loss of RN1NH2, CO and C4H6 are
the distinctive fragmentation pathways of ketamine analogues in ESI-MS/MS mode. Moreover,
these MS fragmentation patterns are first introduced for the rapid screening of ketamine analogues
in suspicious powder. Furthermore, the structure of the ketamine analogue in suspicious powder
is 2-(Methylamino)-2-(o-tolyl)cyclohexan-1-one, which is further confirmed by NMR. This study
contributes to the identification of the chemical structure of ketamine analogues, which can be used
for the rapid screening of ketamine analogues in seized chemicals.

Keywords: ketamine analogues; fragmentation patterns; GC-QTOF/MS; LC-Q-Orbitrap MS/MS;
structure identification

1. Introduction

In recent years, new psychoactive substances (NPS) are continuing to emerge in the
form of stand-alone compounds or mixtures and are gradually replacing traditional drugs
as the dominant abuse drug in many countries [1]. Until 2021, the United Nations Office on
Drugs and Crime (UNODC) has received reports from 133 countries and regions world-
wide, documenting 1079 kinds of new psychoactive substances. Among these, ketamine
is one of the most abused new psychoactive substances, reported by 93 countries and
regions [2]. Ketamine is a representative substance of arylcyclohexanoneamine derivatives,
which acts as an antagonist to the N-methyl-D-aspartate (NMDA) receptor in the human
body [3]. Additionally, because of its effects on the central nervous system, which can
cause hallucinations, dissociation, and euphoria, ketamine is one of the most widely abused
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hallucinogens [4,5]. With the increasing attention being paid to the abuse and addiction of
ketamine by governments, ketamine is now classified as a strictly controlled substance in
many countries worldwide. Recently, the abuse of a class of substances similar in struc-
ture and action to ketamine has become apparent [6]. The chemical structure of common
ketamine analogues is exhibited in Scheme 1. In order to retain the antagonistic activity
against the NAMD receptor, illegal elements mainly modify the substituents on the benzene
ring and amino group of ketamine to obtain analogues [7,8]. In the last decade, ketamine
analogues such as deschloroketamine (DCK), 2-fluoro-deschloroketamine (2F-DCk), etc.,
have continued to appear and are utilized for recreation purposes [9]. Moreover, these
ketamine analogues all exhibit antagonistic effects on NMDA and achieve the same effects
when they are abused recreationally [10].
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With the rapid evolution of the chemical structure of ketamine analogues, the quick
detection and structure identification of these substances is of great significance. Fourier
transform infrared spectroscopy (FT-IR), Raman spectrometer and nuclear magnetic reso-
nance spectrometer (NMR) are powerful tools for the structure identification of unknown
substances. Xu et al. (2021) analyzed 28 kinds of fentanyl-class substances by FT-IR and
Raman spectrometer, which is the first choice for the rapid identification of fentanyl-class
substances in-field [11]. However, these instruments are only suitable for suspicious pow-
der with high-purity unknown substances. The high accuracy, flexibility and efficiency of
gas chromatography (GC) and liquid chromatography (LC) have made them the leading
separation techniques in chromatography. GC and LC are capable of achieving the physical
separation of multiple components in a mixture, and mass spectrometry (MS) provides
information about the structure [12]. Additionally, due to its widespread use in many
forensic laboratories worldwide, chromatography-mass spectrometry technology is the
preferred analytical method for the analysis of unknown substances in the absence of
reference standards. Liu et al. (2021) identified three new types of synthetic cannabinoids
based on gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass
spectrometry (LC-MS), NMR and FT-IR, which are beyond the class-wide ban of synthetic
cannabinoids in China [13]. Fan et al. (2021) developed fragmentation patterns of synthetic
cannabinoids based on electrospray ionization mass spectrometry and applied the frag-
mentation patterns to quickly screen the synthetic cannabinoids in electronic cigarette oil
and tobacco from drug cases [14]. Qin et al. (2020) studied the fragmentation patterns of
fentanyl analogues by high-resolution electron ionization mass spectrometry (EI-MS) and
high-resolution electrospray ionization tandem mass spectrometry (ESI-MS), which could
facilitate the detection and quantitation of fentanyl analogues [15]. The development speed
of reference standards cannot keep up with the emergence speed of new analogues, and
the prices of reference standards remain high due to the rapid evolution of the chemical
structure of NPS [16]. Therefore, it is of great interest to develop MS fragmentation patterns
to screen and structure identification of unknown substances, especially in mixtures.

Herein, eight ketamine analogues reference standards are systematically investigated
by high-resolution gas chromatography-quadrupole time-of-flight mass spectrometry
(GC-Q-TOF/MS) and liquid chromatography-quadrupole-orbitrap mass spectrometry
(LC-Q-Orbitrap MS/MS). The fragmentation patterns of ketamine analogues are devel-
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oped to facilitate forensic laboratories’ rapid screening of new substances with a similar
structure. Additionally, evolutionary rules and fragmentation patterns are applied to detect
and identify a new ketamine analogue in suspicious powder seized from a drug case. The
structure of the new ketamine analogue is further confirmed by NMR. This is the first time
that MS fragmentation patterns of ketamine analogues have been established and applied
to the structure elucidation of new unknown ketamine analogue.

2. Results and Discussion
2.1. Overview of the Common Structure, EI-MS and ESI-MS/MS Fragmentation Patterns of
Ketamine Analogues

Ketamine analogues belong to aromatic cyclohexanone amine derivatives, which are
composed of an aryl ring, a cyclohexyl ring and an amine [17]. The chemical structure of
common ketamine analogues, which is displayed in Scheme 1, is as follows: (i) The basic
structure of ketamine analogues is 2-phenyl-2-aminocyclohexanone. (ii) The substituent
R1 on aryl ring consists of a halogen atom (fluorine (F), chlorine (Cl) and bromine (Br)) or
hydrogen atom (H). (iii) The substituent R2 on the aryl ring is made up of hydroxy (OH),
methoxy (MeO) or a hydrogen atom (H). (iv) The substituent RN1 on amine group is mainly
composed of an alkyl, such as methyl (CH3), ethyl (CH2CH3) and propyl (CH2CH2CH3).

2.2. Mass Spectra Results of Ketamine Analogues Reference Substances

Table 1 presents the compound structures, EI-MS and ESI-MS accurate and theoretical
mass data for eight ketamine analogues reference substances, with deviation values essen-
tially less than ±5 ppm. Table 2 exhibits the EI-MS and ESI-MS/MS data of eight ketamine
analogue reference substances.

Table 1. Compound structures, EI-MS and ESI-MS accurate and theoretical mass data and RSD of
eight ketamine analogue reference substances.

No. Compound
Structures Formula Accurate m/z

([M+])
Theoretical m/z

([M+])
Accurate m/z

([M + H]+)
Theoretical m/z

([M + H]+) RSD (ppm) a

1

DCK:
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(Path 6), 122.0406 (Path 7), 115.0547 (Path 6), 109.0542 (Path 8), 102.0345 (Path 7), 
75.0232 (Path 8) 

6 281.0423 
253.0480 (Path 1, 2), 238.0219 (Path 3), 224.0092 (Path 5), 209.9915 (Path 4, 7), 194.9801 
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Comp. Precursor Ion (m/z) Fragmentation Ions (m/z) 
ESI-MS/MS 

1 204.13843 186.12746 (Path 10), 173.09630 (Path 9), 145.10135 (Path 9), 91.05433 (Path 9) 
2 218.15404 200.14333 (Path 10), 173.09624 (Path 9), 145.10124 (Path 9), 91.05428 (Path 9) 

C13H16FNO 221.1205 221.12159 222.12936 222.12887 −4.93/2.20
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Table 1. Cont.

No. Compound
Structures Formula Accurate m/z

([M+])
Theoretical m/z

([M+])
Accurate m/z

([M + H]+)
Theoretical m/z

([M + H]+) RSD (ppm) a

6

Br-Ketamine:
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Table 2. EI-MS and ESI-MS/MS fragmentation ions of eight ketamine analogues reference substances.

Comp. Molecular Ion (m/z) Fragmentation Ions (m/z)

EI-MS

1 203.1302 175.1358 (Path 1, 2), 160.1127 (Path 3), 146.1042 (Path 5), 132.0811 (Path 4, 7), 117.0699 (Path 6), 104.0500
(Path 7), 91.0546 (Path 8), 77.0389 (Path 8)

2 217.1463 189.1518 (Path 1, 2), 174.1283 (Path 3), 160.1144 (Path 5), 146.0970 (Path 4), 132.0813 (Path 7), 117.0701
(Path 6), 104.0500 (Path 7), 91.0546 (Path 8), 77.0389 (Path 8)

3 247.1567 219.1619 (Path 1, 2), 204.1387 (Path 3), 190.1301 (Path 5), 176.1085 (Path 4), 162.0915 (Path 7), 147.0805
(Path 6), 134.0603 (Path 7), 121.0650 (Path 8),91.0539 (Path 8), 77.0388 (Path 8)

4 237.0913 209.0965 (Path 1, 2), 194.0732 (Path 3), 180.0591 (Path 5), 166.0418 (Path 7), 145.0885 (Path 1) 138.0105
(Path 7), 125.0151 (Path 8), 115.0542 (Path 6), 102.0341 (Path 7), 75.0229 (Path 8)

5 221.1205 193.1265 (Path 1, 2), 178.1034 (Path 3), 164.0942 (Path 5), 150.0718 (Path 4, 7), 135.0606 (Path 6), 122.0406
(Path 7), 115.0547 (Path 6), 109.0542 (Path 8), 102.0345 (Path 7), 75.0232 (Path 8)

6 281.0423 253.0480 (Path 1, 2), 238.0219 (Path 3), 224.0092 (Path 5), 209.9915 (Path 4, 7), 194.9801 (Path 6), 181.9616
(Path 7), 168.9652 (Path 8), 145.0900 (Path 1), 115.0553 (Path 6), 102.0470 (Path 7), 75.0229 (Path 8)

7 251.1072 223.1125 (Path 1, 2), 208.0890 (Path 3), 194.0758 (Path 5), 180.0579 (Path 4), 166.0423 (Path 7), 151.0312
(Path 6), 138.0108 (Path 7), 125.0156 (Path 8), 115.0545, 102.0342 (Path 8), 75.0232 (Path 8)

8 231.1617 203.1669 (Path 1, 2), 188.1438 (Path 3), 174.1284 (Path 5), 160.1124 (Path 4), 146.0967 (Path 7), 131.0855
(Path 6), 118.0654 (Path 7), 105.0701 (Path 8), 91.0544 (Path 8), 77.0387 (Path 8)

Comp. Precursor Ion (m/z) Fragmentation Ions (m/z)

ESI-MS/MS

1 204.13843 186.12746 (Path 10), 173.09630 (Path 9), 145.10135 (Path 9), 91.05433 (Path 9)

2 218.15404 200.14333 (Path 10), 173.09624 (Path 9), 145.10124 (Path 9), 91.05428 (Path 9)

3 248.16451 230.15408 (Path 10), 203.10672 (Path 9), 175.11182 (Path 9), 121.06484 (Path 9)

4 238.09952 220.08894 (Path 10), 207.05742 (Path 9), 179.06247 (Path 9), 125.01547 (Path 9), 163.03113

5 222.12936 204.11887 (Path 10), 191.08719 (Path 9), 163.09216 (Path 9), 109.04510 (Path 9)

6 282.04880 264.03821 (Path 10), 251.00664 (Path 9), 223.01180 (Path 9), 168.96486 (Path 9), 172.08832

7 252.11505 234.10452 (Path 10), 207.05725 (Path 9), 179.06230 (Path 9), 125.01538 (Path 9), 163.03096

8 232.16963 214.15903 (Path 10), 187.11192 (Path 9), 159.11699 (Path 9), 105.07034 (Path 9)
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The following are the common EI-MS fragmentation patterns (as shown in Scheme 2)
on the basis of the GC-Q-TOF/MS analysis of eight ketamine analogue reference sub-
stances [18]: (i) The nitrogen atom of ketamine analogues is initially ionized via EI.
(ii) Second, the α-cleavage of the carbon bond C1-C2 in the cyclohexanone moiety sta-
bilizes the positive charge on the nitrogen atom, followed by the neutral loss of a CO
(28 Da) and a five-membered ring formed to generate the stable fragment a via the fragmen-
tation pathway 1 or the neutral loss of a CO (28 Da) to generate the unstable fragment b via
the fragmentation pathway 2. (iii) The unstable fragment b is prone to causing hydrogen
transfers to generate the fragment c, leading to the radical approach to the positive nitrogen
atom. (iv) Subsequently, fragment c loses a methyl radical (15 Da) and undergoes rearrange-
ment to form a six-member ring to yield the fragment d via the fragmentation pathway 3.
(v) Also, fragment c loses a propyl radical (43 Da) and undergoes rearrangement to form
a five-member ring to generate the fragment e through the fragmentation pathway 4.
(vi) The fragment f is generated by the loss of an ethyl radical (29 Da) from the fragment c
based on the fragmentation pathway 5. (vii) The fragment f can further fragment into the
ion g by losing an NRN1 according to the fragmentation pathway 6. NRN1 is often made of
CH3N (29 Da), C2H5N (43 Da) and C3H7N (57 Da). (viii) Another fragmentation pathway
of the fragment f yields the fragment h by loss of an RN1 (RN1 is usually composed of CH2
(14 Da), C2H4 (28 Da) and C3H6 (42 Da)) via the fragmentation pathway 7, further yielding
the fragment i by the loss of a C2H4 (28 Da). (ix) When R1 and R2 are halogen and hydrogen
atoms, respectively, fragment i can continue to lose halogenated hydrogen (HF (20 Da),
HCl (36.5 Da), HBr (80 Da)) to yield the fragment j (m/z 104). (x). Ketamine analogues
yield the fragment k by the cleavage of the carbon bond via the fragmentation pathway 8.
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The following are the common fragmentation patterns of ESI-MS/MS (illustrated in
Scheme 3) according to a LC-Q-Orbitrap/MS analysis of eight ketamine analogue reference
substances. (i) Ketamine analogues easily yield the characteristic fragments l and m by the
loss of an RN1NH2 (RN1NH2 usually consists of CH3NH2 (31 Da), CH3CH2NH2 (49 Da)
and CH3CH2CH2NH2 (42 Da)) and a CO (28 Da) through the fragmentation pathway 9 and
further fragment into the fragment n by hydrogen transfer and the cleavage of the carbon
bond. (ii) Another fragmentation pathway of ketamine analogues yields the fragment o by
the loss of H2O (18 Da) via the fragmentation pathway 10.
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2.3. Structure Elucidation of Ketamine Analogues Reference Substances
2.3.1. 2-phenyl-2-(methylamino)cyclohexanone (DCK) and 2-(Ethylamino)-2-
phenylcyclohexan-1-one (2-oxo-PCE)

Scheme 4 shows the EI-MS and ESI-MS/MS spectra of DCK and 2-oxo-PCE. Data
obtained from GC-Q/TOF high-resolution mass scanning showed that the molecule weights
of DCK and 2-oxo-PCE are 203.1302 and 217.1463, respectively. The nitrogen atoms of DCK
and 2-oxo-PCE are first ionized through EI, and then the α-cleavage takes place on the
carbon bond C1-C2 in the cyclohexanone moiety of DCK and 2-oxo-PCE to stabilize the
positive charge on the nitrogen atom. Subsequently, the ion at m/z 203.1302 of DCK yields
the stable fragment at m/z 175.1357 by the neutral loss of a CO (28 Da) and a five-membered
ring formed according to the fragmentation pathway 1 or generates the unstable fragment
at m/z 175.1357 based on the fragmentation pathway 2 by neutral loss of a CO (28 Da). The
ion at m/z 217.1463 of 2-oxo-PCE follows the same fragmentation pathways to produce
the stable fragment ion and an unstable fragment ion, and the mass-to-charge ratio of
these two fragments is 189.1518. The unstable fragment at m/z 175.1357 of DCK easily
undergoes hydrogen transfer, allowing the radical to approach the ortho-nitrogen atom,
further yielding the product ions at m/z 160.1127, m/z 146.1042 and m/z 132.08111 by
the loss of methyl radical, ethyl radical and propyl radical based on the fragmentation
pathways 3, 5 and 4, respectively. The unstable fragment at m/z 189.1518 of 2-oxo-PCE also
produces fragments at m/z 174.1283, m/z 160.1144 and m/z 146.0970 in this sequence. The
fragment at m/z 146.1042 of DCK continues to yield the fragments at m/z 132.0811 (loss of a
CH2 via the fragmentation pathway 7), m/z 104.0500 (loss of a C2H4) and m/z 117.0699 (loss
of a CH3N via the fragmentation pathway 6). The fragment at m/z 160.1144 of 2-oxo-PCE
also obtains the same fragment ions at m/z 132.0813 (loss of a C2H4), m/z 104.0500 (loss of
a C2H4) and m/z 117.0701 (loss of a C2H5N) via the same fragmentation pathways. These
results suggest that substituents RN1 at the nitrogen atom were different. The substituents
RN1 at the nitrogen atom of DCK and 2-oxo-PCE are methyl and ethyl, respectively. The
fragments at m/z 91 and m/z 77, which are produced by DCK and 2-oxo-PCE, are the
characteristic fragments of phenyl.

Data obtained from Q Orbitrap high-resolution mass scanning showed that the
molecule weights of DCK and 2-oxo-PCE are 204.13843 and 218.15404, respectively. The
HCD spectrums of DCK and 2-oxo-PCE show the fragments at m/z 173 (loss of a CH3NH2
from the DCK and loss of a CH3CH2NH2 from the 2-oxo-PCE based on the fragmentation
pathway 9), m/z 145 (loss of a CO from the ion at m/z 173) and m/z 91 (loss of a C4H6
from the ion m/z 145). The protonated molecule of DCK at m/z 204.13843 and the pro-
tonated molecule of 2-oxo-PCE at m/z 218.15404 are prone to yielding the fragments at
m/z 186.12746 and m/z 200.14333, respectively, by the neutral loss of H2O based on the
classical fragmentation pathway 10. Schemes S1 and S2 show the EI-MS and ESI-MS/MS
fragmentation pathways of DCK and 2-oxo-PCE.
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2.3.2. 2-(3-methoxyphenyl)-2-(ethylamino)cyclohexanone (MXE)

Data obtained from GC-Q/TOF high-resolution mass scanning shows that the molecule
weight of MXE is 247.1567. The stabilized fragment ion at m/z 219.1619 is derived from
the α-cleavage of the carbon bond C1-C2 on cyclohexanone, the loss of a CO and a five-
membered ring formed from the molecular ion of MXE at m/z 247.1567 according to the
fragmentation pathway 1. On the other hand, the unstabilized fragment ion at m/z 219.1619
arises from the α-cleavage of the carbon bond C1-C2 on cyclohexanone and the loss of a CO
from the molecular ion of MXE at m/z 247.1567 according to the fragmentation pathway 2.
Further losses of methyl radical, ethyl radical and propyl radical based on the fragmenta-
tion pathways 3, 5 and 4, respectively, yield the ions at m/z 204.1387, m/z 190.1301 and
m/z 176.1095. The fragment at m/z 190.1301 yields the fragments at m/z 162.0915 (loss of
a C2H4) and m/z 134.0603 (loss of a C2H4) following the fragmentation pathway 7. Also,
the diagnostic fragment at m/z 147.0805 is produced via the fragmentation pathway 6 by
losing a C2H5N from the ion at m/z 190.1301, confirming that the substituent RN1 on the
amine group is ethyl. An additional featured fragmentation pathway of the molecular ion
of MXE at m/z 247.1567 is mainly the cleavage of carbon bond to yield the fragment at m/z
121.0650, further fragmenting into the ions at m/z 91.0539 and m/z 77.0388 by sequential
loss of HCHO and methyl radical. These results proved that the substituent R1 on the
benzene ring of MXE is the methoxy group (-OCH3).

Data obtained from LC-Q/Orbitrap high-resolution mass scanning shows that the
molecule weight of MXE is 248.16451. The HCD spectrum shows ions at m/z 203.10672
(loss of a CH3CH2NH2 from the protonated molecule of MXE at m/z 248.16451 via the
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fragmentation pathway 9), m/z 175.11182 (loss of a CO from ion at m/z 203.10672), m/z
121.06484 (loss of a C4H6 from ion at m/z 175.11182) and m/z 230.15408 (loss of a H2O
from the protonated molecule of MXE at m/z 248.16451 via the fragmentation pathway 10).
Schemes S3 and S4 show the EI-MS and ESI-MS/MS spectra and fragmentation pathways
of MXE.

2.3.3. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone (Ketamine), 2-(2-Fluorophenyl)-
2-(methylamino) cyclohexan-1-one (F-Ketamine), 2-(2-Bromophenyl)-2-(methylamino)
cyclohexan-1-one (Br-Ketamine) and 2-(2-Chlorophenyl)-2-(ethylamino)
cyclohexanone (NENK)

Data obtained from GC-Q/TOF high-resolution mass scanning shows that the molecule
weights of ketamine, F-ketamine, Br-ketamine and NENK are 237.0913, 221.1205, 281.0423
and 251.1072, respectively. The α-cleavage of the carbon bond C1-C2 occurs in ketamine to
produce the ion at m/z 237.0913. The additional loss of a CO from the ion at m/z 237.0913
forms the unstable ion at m/z 209.0965 or forms a five-membered ring from the ion
at m/z 237.0913 to yield the stable product ion at m/z 209.0965. The unstable ion at
m/z 209.0965 also easy yields product ions at m/z 194.0732 (loss of a methyl radical),
m/z 180.0591 (loss of an ethyl radical) and m/z 132.0811 (loss of a propyl radical) based
on the fragmentation pathways 3, 5 and 4, respectively. F-ketamine produces the ions at
m/z 221.1205 (α-cleavage of the carbon bond C1-C2), m/z 193.1265 (loss of a CO or loss
of a CO and formation of a five-membered ring), m/z 178.1034 (loss of a methyl radical),
m/z 164.0942 (loss of an ethyl radical) and m/z 150.0718 (loss of a propyl radical) in this
sequence. Br-ketamine and NENK also undergo the same fragmentation pathways to
produce the ions at m/z 281.0423 (α-cleavage of the carbon bond C1-C2), m/z 253.0478
(loss of a CO or loss of a CO and formation of a five-membered ring), m/z 238.0219 (loss
of a methyl radical), m/z 224.0092 (loss of an ethyl radical) and m/z 209.9915 (loss of a
propyl radical) of Br-ketamine and the ions at m/z 251.1072 (α-cleavage of the carbon bond
C1-C2), m/z 223.1125 (loss of a CO or loss of a CO and formation of a five-membered
ring), m/z 208.0890 (loss of a methyl radical), m/z 180.0579 (loss of an ethyl radical) and
m/z 194.0758 (loss of a propyl radical) of NENK. The ion at m/z 180.0591 of ketamine, the
ion at m/z 164.0942 of F-ketamine and the ion at m/z 224.0092 of Br-ketamine yield the
fragments at m/z 166.0418, m/z 150.0718 and m/z 209.9915 by the loss of a CH2, further
losing a C2H4 to produce the fragments at m/z 138.0105, m/z 122.0406 and m/z 181.9616,
respectively. Also, the ions at m/z 151.0312, m/z 135.0606 and m/z 194.9801 are produced
by the loss of a CH3N from the ion at m/z 180.0591 of ketamine, the ion at m/z 164.0942
of F-ketamine and the ion at m/z 224.0092 of Br-ketamine, respectively. However, the
ion at m/z 194.0758 of NENK yields the fragments at m/z 166.0423 (loss of a C2H4) and
m/z 151.0312 (loss of a C2H4N). And the ion at m/z 166.0423 can further generate the ion at
m/z 138.0108 through the loss of a C2H4. Based on the above information, the substituents
RN1 on the amino group of ketamine, F-Ketamine and Br-Ketamine are methyl, and that
of NENK is ethyl. Moreover, the ions at m/z 125.0151, m/z 109.0542, m/z 168.9652 and
m/z 125.0156, which are produced by Ketamine, F-Ketamine, Br-Ketamine and NENK,
respectively, via the fragmentation pathway 8. The further loss of HF, HCl or HBr yields the
same ion at m/z 75. Additionally, the common ions at m/z 105 and m/z 102 can similarly
elucidate the halogen substituents on the benzene ring of ketamine analogues.

Data obtained from LC-Q/Orbitrap high-resolution mass scanning shows that the
molecule weights of ketamine, F-ketamine, Br-ketamine and NENK are 238.09952, 222.12936,
282.04880 and 252.11505, respectively. A neutral loss of H2O from the protonated molecule
of ketamine, F-ketamine, Br-ketamine and NENK fragments into the ions at m/z 220.08894,
m/z 204.11887, m/z 264.03821 and m/z 234.10452, respectively, via the fragmentation path-
way 10. Additionally, the ions at m/z 207.05742, m/z 179.06247 and m/z 125.01547 of
ketamine, the ions at m/z 191.08719, m/z 163.09216 and m/z 109.04510 of F-ketamine and
the ions at m/z 251.00664, m/z 223.01180 and m/z 168.96486 of Br-ketamine are prone to
yielding by losing a CH5N, a CO and a C4H6, respectively, via the fragmentation pathway
9. On the other hand, NENK is apt to produce the ions at m/z 207.05725, m/z 179.06230,
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and m/z 125.01538 by losing a C2H7N, a CO and a C4H6, respectively, via the same frag-
mentation pathway 9. The common ions at m/z 207 of ketamine and NENK can further
yield the ions at m/z 163 by the loss of a C2H4O. Another fragmentation pathway of Br-
ketamine concerns the loss of an HBr and a CH2O to generate the ion at m/z 172.08832.
The findings of the LC-Q/Orbitrap high-resolution mass scanning can further validate that
the substituents RN1 on the amino group of ketamine, F-ketamine and Br-ketamine are
methyl and the substituent RN1 of NENK is ethyl. Schemes S5–S12 show the EI-MS and
ESI-MS/MS fragmentation pathways of ketamine, F-ketamine, Br-ketamine and NENK.

2.3.4. 2-(Ethylamino)-2-(m-tolyl)cyclohexan-1-one (DMXE)

Data obtained from GC-Q/TOF high-resolution mass scanning shows that the molecule
weight of DMXE is 231.1617. The molecular ion at m/z 231.1617 fragments into the stable
ion at m/z 203.1668 and the unstable ion at m/z 203.1668 via the fragmentation pathways
1 and 2, respectively. The fragmentation pathway of the unstable ion at m/z 203.1668
concerns the loss of methyl radical, ethyl radical and propyl radical, leading to the ions
at m/z 188.1438, m/z 174.1284 and m/z 160.1124 based on the fragmentation pathways
3, 5 and 4, respectively. The diagnostic ion at m/z 131.0855 can be attributed to the loss
of C2H5N from the ion at m/z 174.1284, revealing that the substituent RN1 of DMXE is
ethyl. The ion at m/z 174.1284 further yields the ions at m/z 146.0967 and m/z 118.0654 by
consecutive loss of two C2H4. The ions at m/z 105, m/z 91 and m/z 77 are produced by
DMXE via the fragmentation pathway 8.

Data obtained from LC-Q/Orbitrap high-resolution mass scanning shows that the
molecule weight of DMXE is 232.16963. The protonated molecule at m/z 232.16963 eas-
ily yields fragments at m/z 187.11192 (loss of a CH5N from the ion at m/z 232.16963),
m/z 159.11699 (loss of a CO from the ion at m/z 187.11192), m/z 105.07034 (loss of a
C4H6 from the ion at m/z 159.11699)and m/z 214.15903 (loss of a H2O from the proto-
nated molecule at m/z 232.16963) following the typical fragmentation pathways 9 and 10.
Schemes S13 and S14 show the EI-MS and ESI-MS/MS spectra and fragmentation pathways
of DMXE.

2.4. Analysis of Mass Spectrometry Fragmentation Patterns of Ketamine Analogues

With the comparison of the EI-MS and ESI-MS/MS fragmentation patterns of ketamine
analogues, the characteristic ions a (α-cleavage, loss of a CO and form a five-member ring,
28 Da), c (α-cleavage and loss of a CO, 28 Da), d (loss of a methyl radical, 15 Da), f (loss
of an ethyl radical, 29 Da) and e (loss of a propyl radical, 43 Da) can be susceptible to
generation via the fragmentation pathways 1, 2, 3, 5 and 4, respectively, in EI-MS mode,
which can be used to rapidly identify the basic structure of ketamine analogues. On the
other hand, in ESI-MS/MS mode, the diagnostic ions m (loss of a CO), n (loss of a C4H6)
and o (loss of a H2O) can be easily produced via the fragmentation pathways 9 and 10,
which can also be employed to rapidly infer the basic structure of the ketamine analogs
quickly. The ions h and g generated via the fragmentation pathways 6 and 7 in EI-MS
mode and the ion l produced via the fragmentation pathway 9 in ESI-MS/MS mode are
employed to confirm the structure of substituent RN1 on the amino group. Also, when the
substituent R1 is -F, -Cl or -Br, the ion i can undergo further cleavage to lose an HF, HCl or
HBr, thus determining the structure of substituent R1.

3. Qualitative Analysis of Suspicious Powder

Scheme 5 exhibits the EI-MS and ESI-MS/MS spectra of compound 1. Table 3 shows
the accurate mass numbers of the molecular ion, the protonated molecular and predomi-
nant product ions and their proposed chemical formula obtained for the suspicious powder
measured by EI-QTOF/MS and ESI-Q-Orbitrap MS/MS, and the deviation values are ap-
proximately under ±5 ppm. The EI-QTOF/MS displays the molecular ion at m/z 217.1461
(C14H19NO+), and the ESI-Q-Orbitrap/MS shows the protonated ion at m/z 218.15405
(C14H20NO+). The mass difference between compound 1 and a known compound DCK
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is 14 Da (CH2), which indicates that compound 1 in suspicious powder has an additional
methyl moiety compared with DCK. The molecular ion at m/z 217.1461 yields fragments
at m/z 189.1515 (α-cleavage, loss of a CO and formation of a five-member ring), m/z
189.1515 (α-cleavage and loss of a CO), m/z 174.1282 (loss of a methyl radical), m/z
160.1125 (loss of an ethyl radical) and m/z 146.0967 (loss of a propyl radical) based on the
fragmentation pathways 1, 2, 3, 5 and 4, respectively, in EI-MS mode. Moreover, the HCD
spectrum exhibits the characteristic ions at m/z 200.14354 (loss of a H2O), 159.11697 (loss
of a CO) and m/z 105.06996 (loss of a C4H6) through the fragmentation pathways 9 and
10 in ESI-MS/MS mode. These results indicate that the basic structure of compound 1 is
2-phenyl-2-aminocyclohexanone, and compound 1 belongs to the ketamine analogues. The
ions at m/z 131.0849 (loss of a CH3N), m/z 146.0967 (loss of a CH2) and m/z 132.0814 (loss
of a CH2) are produced by the ion at m/z 160.1125 based on the fragmentation pathways
6 and 7, respectively, in EI-MS mode, and the ion at m/z 187.11191 (loss of a CH3NH2) is
generated by the protonated molecule at m/z 218.15405 via the fragmentation pathway 9
in ESI-MS/MS mode, indicating that the structure of substituent RN1 is methyl. Also, the
molecular ion at m/z 217.1461 yields fragments at m/z 105.0702 (the cleavage of carbon
bond), m/z 91.0546 (loss of a CH2) and m/z 77.0389 (loss of a CH2) via the fragmentation
pathway 8 in EI-MS mode. In ESI-MS/MS mode, the difference in the chemical formula
between the ion at m/z 105.06996 (C8H9

+) produced by compound 1 and the ion at 91.05479
(C7H7

+) generated by DCK is an extra CH2. These results confirm that compound 1 has an
additional methyl on the benzene ring. Schemes 5 and 6 show the EI-MS and ESI-MS/MS
spectra and fragmentation pathways of compound 1. As a consequence of the above
information, the structure of compound 1 is reasonably inferred to be 2-(Methylamino)-2-
(o-tolyl)cyclohexan-1-one or 2-(Methylamino)-2-(m-tolyl)cyclohexan-1-one.
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The structure of compound 1 is further elucidated by NMR. The 1H NMR spectra
(Scheme S15) of this compound suggest that there are two substituents on the benzene
ring [ArH (δH 7.74, 1H, m), ArH (δH 7.45, 2H, m), ArH (δH 7.39, 1H, m)]. Moreover,
the ArH (δH 7.74), ArH (δH 7.45) and ArH (δH 7.39) in the 1H/1H-COSY (Scheme S16)
of this compound are correlated, indicating that the two substituents on the benzene
ring are located in adjacent positions. Therefore, compound 1 is 2-(Methylamino)-2-(o-
tolyl)cyclohexan-1-one.
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Table 3. Accurate mass numbers of the molecular ion, the protonated ion and predominant prod-
uct ions and their proposed chemical formulas obtained for the suspicious powder measured by
EI-QTOF/MS and ESI-Q-Orbitrap MS/MS.

EI-QTOF/MS

Compound Chemical Formula Exact Mass Accurate Mass Error (ppm)

1 C14H19NO+ 217.1461 217.1461 0.0
C13H19N+ 189.1512 189.1515 1.6
C12H16N+ 174.1277 174.1282 2.9
C11H14N+ 160.1121 160.1125 2.5
C10H12N+ 146.0964 146.0967 2.1
C9H10N+ 132.0808 132.0814 4.5
C10H11

+ 131.0855 131.0849 −4.6
C8H9

+ 105.0699 105.0702 2.9
C7H7

+ 91.0542 91.0546 4.4
C6H5

+ 77.0386 77.0389 3.9
ESI-Q-Orbitrap MS/MS

1 C14H20NO+ 218.15394 218.15405 0.5
C14H18N+ 200.14338 200.14354 0.8
C13H15O+ 187.11174 187.11191 0.9
C12H15

+ 159.11683 159.11697 0.9
C8H9

+ 105.06988 105.06996 4.7
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4. Materials and Methods
4.1. Materials

Methanol and acetonitrile (HPLC grade) were obtained from Merck Chemical (Darm-
stadt, Germany). The reference standards of 2-phenyl-2-(methylamino)cyclohexanone
(DCK), 2-(Ethylamino)-2-phenylcyclohexan-1-one (2-oxo-PCE), 2-(3-methoxyphenyl)-2-
(ethylamino)cyclohexanone (MXE), 2-(2-Chlorophenyl)-2-(methylamino) cyclohexanone
(Ketamine), 2-(2-Fluorophenyl)-2-(methylamino) cyclohexan-1-one (F-Ketamine), 2-(2-
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Bromophenyl)-2-(methylamino)cyclohexan-1-one (Br-Ketamine), 2-(2-Chlorophenyl)-2-
(ethylamino) cyclohexanone (NENK), 2-(Ethylamino)-2-(m-tolyl)cyclohexan-1-one (DMXE)
were obtained from Shanghai Yuansi Standard Science and Technology Co., Ltd. Sus-
picious powder was seized from drug cases. And water was purified by a Millipore
Milli-Q-Gradient purification system.

4.2. Instrument
4.2.1. GC-Q-TOF/MS Analysis

GC-Q-TOF/MS is a combination of an Agilent 8890 GC and an Agilent 7250
Q-TOF/MS (Agilent, Santa Clara, CA, USA). The conditions of GC were as follows: cap-
illary column is HP-5ms (30 m length, 250 µm i.d, 0.25 µm film thickness, Agilent, Santa
Clara, CA, USA). The carrier gas was high helium (purity 99.999%) with a constant flow
rate of 1.0 mL·min−1. The inlet temperature was 275 ◦C. The oven temperature program
was initiated at 60 ◦C and then raised to 280 ◦C at a rate of 20 ◦C·min−1 for 11 min. The
injection volume was 1 µL with an injection split ratio of 10:1. The conditions of MS are as
follows: ionization mode was EI (70 eV), and the acquisition range was 50 to 550 m/z in
full-scan mode. The temperature of the ion source and quadrupole were 150 ◦C and 230 ◦C,
respectively. GC-Q-TOF/MS control, peak integration (peak areas were integrated into
total ion chromatogram) and mass spectra evaluation were performed using Qualitative
Analysis Software 10.0 (Agilent, Santa Clara, CA, USA).

4.2.2. LC-Q-Orbitrap/MS Analysis

A Thermo Scientific Dionex Ultimate 3000 system (Thermo Fisher Scientific, Waltham,
MA, USA) with a Hypersil GOLD VANQUISH (100 × 2.1 mm, 1.9 µm) column was coupled
with a Thermo Scientific Q Exactive mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) with positive heated electrospray spraying ionization mode (HESI+). The mobile
phase, which was made up of acetonitrile (solvent A) and 1% formic acid in water (solvent
B), was run in gradients: 0–2 min, 95% B; 2–9.5 min, 95–5% B 9.5–12 min 5% B; 12.1 min,
95% B. The flow rate was 0.3 mL·min−1, and the injection volume was 2 µL.

The parameters of MS wereeas follows: collision gas: nitrogen; capillary temperature:
350 ◦C; spray voltage: 3800 V; auxiliary gas pressure: 15 arb; nebulizer pressure: 35 arb;
transmission capillary temperature: 350 ◦C. Mass resolution used was 14,000; maximum
infusion time (IT): 50 ms; automatic gain control (AGC) target: 3 × 106. Full MS-ddMS2 was
used with scan range: 160–600 amu; higher energy collision dissociation (HCD) was 25 NCE;
AGC target: 1 × 105; mass resolution: 35,000; isolation window: 4 amu; maximum IT: 50 ms.
Control of the instrument and data processing were carried out using XCalibur 4.0 software
(Thermo Scientific, Waltham, MA, USA). We simulated and studied the fragmentation
behavior of the described compounds using Mass Frontier 7.0 software (Thermo Finnigan,
Waltham, MA, USA).

4.3. Sample Preparation

Preparation of eight ketamine analogue reference substances solution for GC-Q-
TOF/MS and LC-Q-Orbitrap/MS: each of ketamine analogue reference substances were
dissolved in methanol at a concentration of 100 ng·L−1.

Preparation of sample solutions: we transferred 1 mg of powder into 10 mL centrifuge
tube and then added 10 mL methanol, ultrasoniced until mixed well and filtered through a
syringe filter (0.22 µm).

5. Conclusions

Eight ketamine analogues were systematically investigated by GC-Q-TOF/MS and LC-
Q-Orbitrap/MS with the positive mode of electrospray ionization. Since these substances
have the same skeleton and similar molecular structures, the fragmentation patterns and
fragments also have a high degree of similarity in EI-MS and ESI-MS/MS modes. The
mass spectrometry fragmentation patterns of ketamine analogues are deduced based on
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the high-resolution MS data. The fragment ions a (α-cleavage, loss of CO and formation of
a five-member ring, 28 Da), c (α-cleavage, H transfer and loss of a CO, 28 Da), d (loss of a
methyl radical, 15 Da), f (loss of an ethyl radical, 29 Da) and e (loss of a propyl radical, 43 Da)
in EI-MS mode and the fragment ions m (loss of a CO, 28 Da), n (loss of a C4H6, 54 Da) and
o (loss of an H2O, 18 Da) in ESI-MS/MS mode are characteristic ions of ketamine analogues.
The fragment ions a, c, d, e, f, k, o, m and n can be used for the rapid identification of the
basic structures of ketamine analogues. And fragment ions h, g, k and l can be applied
for confirmation of the substituents of ketamine analogue. In addition, the structure of
suspicious substances from drug cases is deduced based on the MS fragmentation patterns
and evolutionary rules of ketamine analogues and novel ketamine analogues. This study
could enable the rapid structure identification of ketamine analogues, which would be
useful to assist forensic laboratories in identifying such compounds.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28186510/s1, Scheme S1: (a) The EI-MS and
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fragmentation pathways of 2-oxo-PCE; Scheme S3: The EI-MS and ESI-MS/MS spectra of MXE;
Scheme S4: (a) The EI-MS and (b) ESI-MS/MS fragmentation pathways of MXE; Scheme S5: The
EI-MS and ESI-MS/MS spectra of ketamine; Scheme S6: (a) The EI-MS and (b) ESI-MS/MS fragmenta-
tion pathways of ketamine; Scheme S7: The EI-MS and ESI-MS/MS spectra of F-ketamine; Scheme S8:
(a) The EI-MS and (b) ESI-MS/MS fragmentation pathways of F-ketamine; Scheme S9: The EI-MS and
ESI-MS/MS spectra of Br-ketamine; Scheme S10: (a) The EI-MS and (b) ESI-MS/MS fragmentation
pathways of Br-ketamine; Scheme S11: The EI-MS and ESI-MS/MS spectra of NENK; Scheme S12:
(a) The EI-MS and (b) ESI-MS/MS fragmentation pathways of NENK; Scheme S13: The EI-MS and
ESI-MS/MS spectra of DMXE; Scheme S14: (a) The EI-MS and (b) ESI-MS/MS fragmentation path-
ways of DMXE; Scheme S15: The 1H NMR spectra of compound 1; Scheme S16: The 1H/1H COSY
spectra of compound 1.
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