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Abstract: Nowadays, for environmental remediation, photocatalytic process involving graphene-
based semiconductors is considered a very promising oxidation process for water treatment. In the
present study, nanocomposite (Cu/Ni/rGO) has been synthesized by Dypsis lutescens leaf extract.
Characterization of the sample was carried out by UV-visible spectroscopy, scanning electron mi-
croscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy
(FTIR), and X-ray diffraction (XRD). Different parameters like contact time, nanocatalyst amount,
dye concentration, effect of temperature. and pH factor were optimized to examine the maximum
removal efficiency for dyes rhodamine B and alizarine R with and without visible light source. In
both cases, i.e., with or without light, maximum removal was observed at 20 mg of nanocatalyst
for 5 ppm concentration of both dyes at 45 ◦C temperature and pH 10 for rhodamine B and pH 4
for alizarine R, respectively with a 20 min contact time. Maximum removal of dyes 93% rhodamine
B and 91% alizarine R were observed under a tungsten lamp as compared to without a tungsten
lamp, i.e., 78% of RhB and 75% of AR from mixture solution of these dyes. To assess the rate of
reaction, spontaneity, and nature of reaction thermodynamics, kinetics and adsorption isotherms were
studied. Thermodynamic values indicated that both dyes depicted endothermic and spontaneous
degradation processes. Isotherm data fitted best to a Freundlich isotherm, while results of kinetic
studies of both dyes followed the pseudo 2nd order kinetic equation. In the end, scavenging radical
studies concluded that hydroxyl radicals were the main active specie involved in the photocatalytic
degradation process, and regeneration experiments resulted that Cu/Ni/rGO nanocomposites were
re-utilized for about four times.

Keywords: Cu/Ni/rGO nanocomposites; rhodamine B; alizarine R; kinetics; adsorption isotherms;
thermodynamic; regeneration; scavenging

1. Introduction

Discharging industries effluent like paper, rubber, fabric, and leather is contributing
towards massive amounts of organic (dyes, pesticides, PCBs, VOCs) and inorganic (non-
metals, heavy metals, radionuclides) contaminants [1]. Most of these pollutants are the
colored substances, predominantly dyes. In textile industries, 103 tons dyes per year are
being consumed, and 10–15% of this amount is released into the effluent. Presence of dyes
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can be hazardous to aquatic life and humans as well. In case of human beings, dyes can act
as carcinogenic, mutagenic, or allergenic agent [2]. In aquatic systems, dyes prevent the
sunlight from penetrating and retard the photosynthesis process. Consequently, prior to
disposal of industrial effluent, it is necessary to eliminate or minimize the concentration of
dyes to a permissible concentration [3].

It is difficult for dyes to biodegrade because of their complex molecular structures [4–6].
Different techniques have been utilized for the treatment of effluent with dyes like ion
exchange, biodegradation, coagulation, chemical precipitation, membrane filtration, floc-
culation, adsorption, and so on [7–10]. Due to poor working efficiencies and extortionate
prices of all other methodologies, adsorption has been considered as economical and versa-
tile technique. According to literature reviews, different kinds of adsorbent materials have
been utilized for industrial waste water treatment. Among these materials, nanocomposites
were also considered as an efficient material due to their physical, thermal, and chemical
properties. They show higher surface area, diffusion rate, and porosity [11,12].

Porous material like graphene is considered the best support for metallic nanoparticles
and have excellent properties like large surface area, lower density, and volume of cavi-
ties [13]. Graphene is an excellent 2D, one atom thick layer material, and it is the thinnest
material in the world. Despite having excellent properties, graphene itself cannot be used
at large scale for light absorption experiments. Therefore, 3D structures were formed
when they are combined with nanoparticles [14,15]. Different metals, metal oxides, and
semiconductor materials can be added to graphene to attain a composite format. Recently,
metal reduced graphene oxide (GO) composites have attained more consideration due
to their extraordinary features. With the presence of inorganic elements, graphene can
constrain the aggregation of graphene sheets and maintain the high pore volume and
surface area, which is considered to be a pre-eminent factor in pollutant adsorption and
removal studies [16–18].

In this study, graphene-based metal nanocomposites (Cu/Ni/rGO) have been re-
ported. Leaves extract of golden cane palm (Dypsis lutescens) were used for the preparation
of the nanocomposite. Major phytochemical constituents in D. lutescens leaf extract are
flavonoids (apeginen, vicenin, vitexin, perchafuroside, violanthin, orientin, isoorientin, lute-
olin), and phenolic acids (p-hydroxybenzoic acid, gallic acid) [19,20]. These phytochemicals
act as reducing and capping agents in the preparation of the nanocatalyst. Diverse charac-
terization techniques like UV/Vis, FTIR, XRD, EDX, and SEM were utilized to characterize
the synthesized material. Initially, various parameters were analyzed on standard solutions
of dyes by using Cu/Ni/rGO material as a nanocatalyst. Then, kinetic, thermodynamic,
and different isotherm models were applied to evaluate the interaction mode.

2. Results and Discussion
2.1. Characterizations
2.1.1. SEM and EDX Analysis

To evaluate the morphology, SEM analysis was carried out at different scale level of
500 nm, 1 µm, 2 µm, and 5 µm. SEM images (Figure 1) showed the spherical shape and
agglomeration of Cu/Ni/rGO composite. Agglomeration occurs because of the polymeric
nature of nanoparticles, and thus clusters can be seen in the SEM results. Another reason
could be the presence of phytochemicals present in leaf extract that played a major role in
synthesizing and stabilizing the nanocomposites [21].

EDX analysis was used to detect the composition of synthesized nanocomposite. EDX
images (Figure 1b) showed the surface of rGO was occupied by copper and Ni nanoparticles.
The presence of C, O, Ni, and Cu peaks confirmed the successful synthesis of Cu/Ni/rGO
composite. It also showed that all predictable elements were available in the synthesized
nanocomposite [22].
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Figure 1. (a) SEM images of Cu/Ni/rGO composites at 500 nm, 1 µm, 2 µm, and 5 µm scale. (b) EDX
spectrum of synthesized Cu/Ni/rGO composites.

2.1.2. UV/Visible Spectroscopy

The UV-vis spectrum of nanocomposite is depicted in Figure 2. Broad adsorption peak
within the wavelength range of 220–280 nm can be seen in case of GO. Shifting of the peak
towards 180–200 nm confirmed the synthesis of Cu/Ni/rGO composite. Intensity and
presence of a single peak indicated the high yield and purity of the nanocomposite [23].
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2.1.3. FTIR

In the FTIR spectrum of the GO (Figure 3a) peak at 697 cm−1 attributed to C–O
stretching vibrations, two peaks at 1541.75 cm−1 and 1575.36 cm−1 are due to the stretching
vibrations of C=O, and one peak at 2988.03 cm−1 is attributed to OH stretching vibrations.
The presence of functional groups containing oxygen proved that the graphite was oxidized
to GO and presence of OH groups agreeing GO to quickly establish hydrogen bonds with
H2O, giving it a hydrophilic appearance [24,25].
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The FTIR spectrum of Cu/Ni/rGO (Figure 3b) composites showed different peaks at
3554 cm−1, 3501 cm−1, 334 cm−1, 2934 cm−1, 2088 cm−1, and 2016 cm−1 are due to vibra-
tions of OH functional groups. Peaks at 1987 cm−1, 1714 cm−1, 1642 cm−1, and 1338 cm−1

are due to C=O groups. Bands at 1050 cm−1, 878 cm−1, 721 cm−1, and 702 cm−1 showed
stretching and bending vibrations of C–O functional groups [26]. It is noted that after
reduction, peaks of GO either vanished or appeared with considerably reduced intensities.

2.1.4. XRD

Diffracted intensities were examined in the range of 0◦ to 120◦ diffracted angles
(Figure 3b). In the present study, six diffracted peaks were observed at 44.39◦ (110), 64.58◦

(200), 81.72◦ (211), 98.15◦ (220), 115.26◦ (310), and 135.42◦ (222). Absences of a characteristic
peak at 10◦ of GO indicated that a reduced form of GO hybrid composite has been formed.
Intensity of peaks in the XRD pattern confirmed the crystalline nature of Cu/Ni/rGO
composite. Size of composites was calculated by the Debye-Scherrer equation:

D = (kλ/β cos θ) (1)

Here, K is used as proportionality constant having 0.9, β denotes (FWHM) full width
at half maximum, and λ is the wavelength of the X-ray. Calculated size was found to be
6.5 nm which was consistent with the literature [27,28]. Crystallographic parameters were
also studied that confirmed the cubic nature of the crystal. Lattice parameters (a,b,c) are
shown in Table 1.

Table 1. Lattice parameters of Cu/Ni/rGO.

Lattice Parameters

a (Å): 2.8839

b (Å): 2.8839

c (Å): 2.8839

Alpha (◦): 90.0000

Beta (◦): 90.0000

Gamma (◦): 90.0000

Calculated density (g/cm3) 7.20

Volume of cell (106 pm3) 23.99

2.1.5. PZC (Point of Zero Charge)

Point of zero charge is an essential property of an adsorbent and it is directly linked
to the efficiency of the dye removal mechanism. In this experimental work to calculate
the pzc, the salt addition method was used. The point of zero charge (pzc) of synthesized
nanocomposite (Cu/Ni/rGO) was 6.5 as shown in Figure 4. When the pH of solution is
higher than pzc, the surface became negatively charged, and this surface of adsorbent is
more compatible for cationic dye removal from the dye mixtures, while at lower pH, the
value of solution surface of nanocatalyst became positively charged which is more suitable
for anionic dye removal.
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2.2. Degradation Studies of Dyes

The dye degradation process started when a natural or artificial source of light falls on
the catalyst. At the point when a catalytic material is irradiated with photons whose energy
is higher or equivalent to its band hole energy, movement of an electron from the valence
band (VB) to the conduction band (CB) happens with the corresponding generation of a
hole in the valence band (VB).

Working in a water-based system, oxygen adsorbed on the outer layer of the catalyst
acts as an electron acceptor, while the adsorbed water particles and hydroxyl anions act as
electron donors, prompting the development of extremely strong oxidizing •OH radicals.
Superoxide anions are produced when electrons interact with oxygen. When dye molecules
adsorbed on the catalyst surface, •OH reacts to form adducts and fragments of different
intermediates until the complete degradation of the dyes occurs [29].

The process is completed in the following steps.
NC + hv→ NC (e− + h+);
NC (h+) + H2O→ NC + •OH + H+;
NC (e−) + O2 → NC + O−2;
NC (h+) + dye→ NC + dye+;
OH + dye→ intermediate products→ CO2 + H2O;
Here NC is indicated the nanocomposites.

2.2.1. Effect of Photocatalyst Amount

Initial amount of photocatalyst is very important because a fixed amount of synthe-
sized composite can degrade a limited amount of pollutant. In order to check the effect of
Cu/Ni/rGO composite dosage on the binary system of dyes, a 25 mL of solution containing
the same and fixed concentration (5 ppm) of two dyes (i.e., rhodamine B and alizarin R)
with different photocatalyst dosage (5 mg, 10 mg, 20 mg, 40 mg, 60 mg) was kept at room
temperature (25 ◦C) under constant stirring conditions for 2 h in the absence and presence
of a visible light source as shown in Figure 5a,b. The optimal amount of photocatalyst was
recorded as 20 mg for 25 mL of dye solution. Without a tungsten lamp, the % age removal
of dyes was up to 78% of RhB and 75% of AR. But when the experiment was performed
under a tungsten lamp, the percentage dye removal was 93% of RhB and 91% of AR. This is
because the light source has facilitated the charge separation with decreased recombination
rates. This leads to improved percentage values of dye removal studies. Further, it was
observed that by increasing dosage amount, the percentage removal was increased up to a
certain level. The reason behind the increasing percentage removal was the accessibility to
more active sites of synthesized composites for the degradation of dye molecules [30,31].
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Figure 5. Effect of photocatalyst dosage (a) without tungsten lamp and (b) under tungsten lamp.
Effect of dye concentration (c) without tungsten lamp and (d) under tungsten lamp. Effect of
temperature (e) without tungsten lamp and (f) under tungsten lamp. Effect of pH (g) without
tungsten lamp and (h) under tungsten lamp. Effect of time (i) without tungsten lamp and (j) under
tungsten lamp.
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2.2.2. Effect of Dye Concentration

To study the impact of dye concentration, binary solutions of both dyes with different
concentrations of (5 mg/L, 10 mg/L, 25 mg/L, 75 mg/L, 100 mg/L) were prepared. The
optimal photocatalyst dosage, i.e., 20 mg, was added into the 25 mL binary system of dyes.
After constant stirring for 2 h, it was observed that the dye removal percentage decreases
with an increase in dye concentration as shown in Figure 5c,d. When the dye concentration
increases, active sites of adsorbent decreases due to monolayer formation and equilibrium
establishment [32]. Maximum dye removal was observed at lower dye concentration, i.e.,
5 mg/L. It was 56% for rhodamine and 51% for alizarine dye in the absence of tungsten
lamp. The same experiment was performed under tungsten lamp, and dye removal % was
increased up to a value of 92% for rhodamine and 90% for alizarine dye.

2.2.3. Effect of Temperature

Temperature is an important factor that impacts the structure of dye molecules and the
interaction of dye with the photocatalyst. Therefore, at different temperatures (25 ◦C, 35 ◦C,
4 ◦C, 55 ◦C, and 65 ◦C), the interaction of dyes with the photocatalyst was examined as
shown in Figure 5e,f. Initially, an increase in temperature up to 45 ◦C favors the percentage
removal value of both the dyes. The reason behind this phenomenon may be owed to the
increased mobility and decreased solubility of dye molecules [33]. Maximum dye removal
was 71% for rhodamine and 63% for alizarine without aid of the tungsten lamp. Under a
tungsten lamp, dye removal was 91% and 89% for rhodamine and alizarin dye, respectively.
Rhodamin B is stable up to 195 ◦C temperatures and alizarin R is stable at temperatures
greater than 100 ◦C, so these dyes will degrade at very high temperatures, which is not
possible in our climatic environment. Therefore, an adsorbent like the Cu/Ni/rGO catalyst
can degrade the dyes RhB and AR just at 45 ◦C.

2.2.4. Effect of pH

The interaction of dye molecules with a nanocatalyst depends upon the surface prop-
erties of composites, and the degree of ionization could be altered due to hydrogen ion
concentration present in the reaction mixture. Therefore, hydrogen ion concentration
should be optimized during the degradation study. To study the impact of pH, a pH range
of 2–12 was adjusted as shown in Figure 5g,h. Fixed nanocatalyst dosage (20 mg) with
constant volume of binary system (25 mL) and 5 ppm dye solution was used for the whole
process. Rhodamine is a cationic dye, and its attained maximum removal value of 62% at
10 pH without using tungsten lamp and 90% dye removal was examined under a tungsten
lamp. At higher pH values, the surface of the nanocatalyst was negatively charged, and it
attracts rhodamine dye molecules which are positively charged. Thus maximum removal
occurred at higher pH values. Alizarine is an anionic dye and it shows 57% maximum
removal at an acidic pH value of 4 without a tungsten lamp and 87% when the experiment
was performed under a tungsten lamp. The reason behind the dye removal at a lower
pH value was the interaction of the positively charged surface of nanocomposites and the
negative part of the dye molecule [34].

2.2.5. Effect of Contact Time

Time factor was optimized within the value of 10 to 100 min for 25 mL of a binary
system with a nanocatalyst dosage of 20 mg as shown in Figure 5i,j. The experiment was
performed under a tungsten lamp as well as without using a tungsten lamp. In both
cases, it was observed that initial removal percentage was enhanced, but with the passage
of time, the removal percentage moves towards constant values. Without the tungsten
lamp, rhodamine dye removal was up to 53%, while alizarin dye removal was 50%. But
under the tungsten lamp, the dye removal percentage was up to 91% for rhodamine, and
90% removal was observed for alizarin. The reason behind this trend of removal was
that initially there was more active sites of nanocatalysts available and more dye was
adsorbed on the adsorbate. However, with the passage of time when available sites had
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been occupied by dye molecules, there was no space for further dye molecules to be
adsorbed so an equilibrium condition was established [35].

2.3. Thermodynamics

At variable temperatures (298, 308, 318, 328, 338), K thermodynamic parameters were
examined as shown in Figure 6. Formulas that were used to study these parameters were

lnKC =
∆S◦

R
− ∆H◦

RT
(2)

KC =
Cad
Ce

(3)

∆G◦ = −RTlnKc (4)
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Figure 6. Van’t Hoff plot for RhB and AR dyes adsorption on Cu/Ni/rGO composites. (a) without a
tungsten lamp and (b) with a tungsten lamp.

Calculated values of parameters are shown in Tables 2 and 3. In both experiments, i.e.,
under a tungsten lamp and without a tungsten lamp, the positive value of ∆H represents the
endothermic nature of dye degradation on the nanocatalyst. The value of entropy change
(∆S) was also positive which indicated good affinity of dyes on the adsorbate. Negative
value of Gibbs free energy confirmed the spontaneity of dye adsorption. The value of ∆G
increases with increasing temperature that represented the feasibility of reaction [36].

Table 2. Thermodynamics parameter without the tungsten lamp.

Adsorbing
Material Dye Temp (K) KL

∆H◦

(KJ mol−1)
∆S◦

(J mol−1K−1)
∆G◦

(KJ mol−1) R2

Cu/Ni/rGO
composite Rhodamine B

298 1.31

34.35 120.03

−0.67

0.77

308 3.16 −2.95

318 6.36 −4.89

328 6.45 −5.08

338 6.92 −5.43

Cu/Ni/rGO
composite Alizarin Red

298 1.13

33.29 114.13

−0.31

0.84

308 2.02 −1.80

318 4.33 −3.87

328 5 −4.38

338 5.14 −4.60
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Table 3. Thermodynamic parameters under a tungsten lamp.

Adsorbing
Material Dye Temp (K) KL

∆H◦

(KJ mol−1)
∆S◦

(J mol−1K−1)
∆G◦

(KJ mol−1) R2

Cu/Ni/rGO
composite Rhodamine B

298 2.81

57.54 203.60

−2.56

0.87

308 7 −4.98

318 27.5 −8.76

328 30.45 −9.31

338 40.35 −10.39

Cu/Ni/rGO
composite Alizarine Red

298 2.29

37.71 137.13

−2.05

0.52

308 6.25 −4.69

318 20.11 −7.93

328 16.81 −7.69

338 12.5 −7.09

Comparison of Cu/Ni/rGO with other adsorbing material is shown in Table 4.

Table 4. Comparison of dyes removal efficiency of Cu/Ni/rGO with Cu/Ni nanoparticles.

Adsorbing
Catalyst

Synthesis
Methdology Light Source Dye Removal

Efficiency
Degradation

Time Reference

Cu/NiO
nanoparticles

Coprecipitaion
method Visible Methylene blue 89% 50 min [37]

Cu/NiO
nanopartciles

Coprecipitaion
method Visible Alizarin R 90% 60 min [38]

Cu/NiO
nanoparticles

Coprecipitaion
method Visible

Erichrome
black-T

Methylene blue
51% 90 min [39]

Cu/NiO
nanoparticles

Green synthesis
(Okra plant) UV-light Methylene blue 78% 105 min [40]

Cu/Ni
nanoparticles

Green systhesis
(Zingiber
officinale)

UV-light Crystal violet 95% 160 min [41]

Cu/Ni/rGO
Green synthesis
(Dypsislutescens

plant)
Tungsten lamp Rhodamin B 91% 20 min Present work

Cu/Ni/rGO
Green synthesis
(Dypsislutescens

plant)
Tungsten lamp Alizarin R 90% 20 min Present work

2.4. Adsorption Isotherms

To elaborate the interaction of dye molecules with the nanocatalyst, three adsorp-
tion isotherms were applied to the experimental data: Langmuir, Freundlich, and Temkin
isotherms as shown in Figures 7 and 8. These isotherms provide information about adsorp-
tion capacity of a synthesized composite and behavior of dye molecules on the catalyst
surface [42]. Calculated values of all these isotherms are represented in Tables 5 and 6.
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Table 5. Calculated values of constants of adsorption isotherms without a tungsten lamp.

Dyes Constants Isotherms

Rhodamin Alizarin

Langmuir

0.42 1.32 Intercept

0.32 0.21 Slope

2.35 0.75 KL (L/g)

7.16 6.20 qm (mg/g)

0.38 0.75 RL
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0.19 −0.11 Intercept
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1.56 0.77 Kf
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1.40 0.69 Intercept
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0.53 0.16 Slope
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13.49 58.81 Kr (L mg−1)

0.95 0.85 R2
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Figure 8. Isotherms for alizarine red dye (1) without a tungsten lamp; (1a) Langmuir (1b), Freundlich
(1c), Temkin (2) with a tungsten lamp; (2a) Langmuir, (2b) Freundlich, (2c) Temkin.

Table 6. Calculated values of constants of adsorption isotherms under a tungsten lamp.

Dyes Constants Isotherms

Rhodamin Alizarin

Langmuir

0.33 0.84 Intercept

0.02 0.02 Slope

2.95 1.18 KL (L/g)

99.04 37.74 qm (mg/g)

0.34 0.65 RL

0.94 0.88 R2

0.73 0.26 Intercept

Freundlich

0.58 0.31 Slope

0.58 0.31 1/n

5.39 1.86 Kf

0.97 0.96 R2

3.47 1.52 Intercept

Temkin

0.77 0.26 Slope

0.77 0.26 BT (J mol−1)

88.05 349.70 Kr (L mg−1)

0.94 0.94 R2
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For the Langmuir isotherm, the following equation was used

1
qe

=
1

KLqm
× 1

Ce
+

1
qm

(5)

According to the Langmuir isotherm, the adsorbate surface is homogeneous and
monolayer adsorption occurs on it. During both experimental conditions, i.e., without a
tungsten lamp and under a tungsten lamp, it can be seen that the value of R2 is near unity
for both dyes. In order to find if either adsorption process is favorable or unfavorable, the
separation factor (RL) is used and calculated by the following equation:

RL =
1

1 + KlCi
(6)

where Kl is the Langmuir constant (L/mg) and Ci is initial concentration (mg/L).
RL = 0 is irreversible, RL = 1 is linear, RL > 1 is unfavorable, and 0 < RL < 1 is favorable,

The value of RL for both dyes, i.e., rhodamin and alizarin, is less than 1, which indicated
that adsorption of both dyes are favorable.

The Freundlich isotherm was also applied to analyze the heterogeneous distribution
on an adsorbent surface. The following equation was used

log qe =logKf +
1
n

log Ce (7)

Here n represents the heterogeneity factor and is also employed to check the linearity
of adsorption. If the value of n = 1, it confirms that adsorption is linear, while n > 1 gives
information about the chemical nature of the adsorption process, and n < 1 represents
the physical nature. In both experimental conditions for both dyes, the value of n is less
than 1 confirms the physical nature of the adsorption process. The value of the correlation
coefficient R2 is higher than the Langmuir isotherm value for both dyes and is a better fit of
experimental data than the other isotherm equation.

The Temkin isotherm provides information that during the sorption process, the
free energy of dye molecules decreases linearly. The following equation for the Temkin
adsorption isotherm was used

qe =
RT

B ln(kT)
+

RT
B ln(Ce)

(8)

where qe is amount of adsorbate adsorbed at equilibrium, T is temperature (K), B is constant
associated to heat of sorption, R is gas constant. Values of constants were calculated from
the plot Figure 8(2c) and given in Tables 6 and 7 for both with and without a tungsten lamp.

Table 7. Calculated parameters of kinetic adsorption of RhB and AR dyes on Cu/Ni/rGO composite.

Without a Tungsten Lamp With a Tungsten Lamp

Kinetics Models Constants
Values

Dyes Dyes

RhB AR RhB AR

Pseudo 1st order

R2 0.46 0.91 0.27 0.94

qe 0.01 0.024 0.013 0.006

K1 (min−1) 0.00009 0.0001 0.0003 0.0001

Pseudo 2nd order

R2 0.996 0.998 0.993 0.999

qe 0.07 0.26 0.12 0.57

K2 (min−1) 0.006 0.005 0.007 0.178
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2.5. Adsorption Kinetics

To obtain information about the rate of reaction and rate constants, kinetic studies were
carried out. It is also important to investigate the time factor on the adsorption capacity of
synthesized material. The following mathematical formula was used for the Pseudo 1st
order model;

ln
(
qe − qt

)
= lnqe − k1t (9)

The Pseudo 2nd order model was applied with following equation;

t
qt

=
1

k2qe2
+

t
qe

(10)

Here, k2 (min−1) represents the rate constant of Pseudo 2nd order, and the graph was
plotted between t/qe versus time t (Figure 9c,d).
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Figure 9. Pseudo 1st order for rhodamine B and alizarin R dye (a) without a tungsten lamp, (b) with
a tungsten lamp and Pseudo 2nd order (c) without a tungsten lamp, (d) with a tungsten lamp.

Calculated values from intercept and slope of straight-line graphs are shown in Table 6.
The value of R2 for both dyes is very close to 1 for pseudo 2nd order. Therefore, it is
concluded that, in both cases, adsorption of dyes on composites followed the pseudo 2nd
order reactions [43].

2.6. Ionic Interferences

In industries, different types of additives like salts and surfactants are utilized. These
additives can enhance or depress the interaction of dye molecules with nanocomposites.
Therefore, it is essential to consider the impact of electrolytes in the degradation study [44].
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To investigate the interaction of a catalyst with dye molecules, 0.1 M salt solutions of NaCl,
NaNO3, and Na2CO3 were prepared. A fixed amount of adsorbent, i.e., 0.02 g, was added
into three beakers (100 mL) containing prepared salt solutions and dye solutions (25 mL).
The reaction mixture was placed on an orbital shaker for about 1 h. After examining the
results, it was concluded that the presence of these interfering ions has not any marked
differences on the adsorption capacity of synthesized Cu/Ni/rGO composites Figure 10a.
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2.7. Recyclability of Cu/Ni/rGO Nanocomposites

Regeneration studies play an important role in understanding the mechanism of
degradation. As in the degradation experiments, acidic pH (4) and alkaline pH (10) are
important for the maximum interaction of cationic and anionic dyes on the synthesized
composite. Therefore, both acidic and basic solutions were used for the desorption of
dyes from the adsorbent. For desorption of adsorbed cationic dye, rhodamine 0.01 M HCl
solution was used, and 0.01 M NaOH solution was used for desorption of anionic dye, i.e.,
alizarin. In the 1st cycle, 95% to 98% of rhodamine and alizarin dyes were recovered from
the adsorbent. The loss of adsorption capacity of synthesized Cu/Ni/rGO nanocomposites
was 2–3% for both dyes. It was concluded that Cu/Ni/rGO nanocomposites can be re
utilized about four times, as shown in Figure 10b,c [45].

2.8. Effect of Scavengers on Photocatalytic Degradation Mechanism

To investigate the effect of the reactive specie involved in the degradation of dyes
by Cu/Ni/rGO composite, three scavengers were used. Hydroxyl radicals, superoxide,
and holes scavengers were added to the photocatalytic degradation experiments by taking
isopropyl alcohol (IPA), ascorbic (AA) acid, and oxalic acid (OA), respectively. The %
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removal efficiency of dyes without adding any scavengers and with three scavengers were
performed and compared, and results are shown in Figure 10d. It was concluded that
91% removal efficiency was observed without any scavenger for both dyes, while 87%
and 85%removal efficiency was observed with AA and OA. It means that both scavengers’
ascorbic acid and oxalic acid play very little role in the photocatalytic mechanism. When the
experiment was performed with an IPA scavenger, a very clear reduction with an efficiency
of 52% was observed. Hence it was concluded that hydroxyl radicals were the main active
specie involved in the photocatalytic degradation experiments [46].

3. Experimental
3.1. Chemicals

Copper chloride (CuCl2), nickel chloride (NiCl2), potassium permanganate (KMnO4),
graphite powder, hydrogen peroxide (H2O2), sulfuric acid (H2SO4), alizarin dye, and
rhodamine B dye were of analytical grade and purchased from Sigma Aldrich Chemical
Company, Burlington, MA, USA.

3.2. Preparation of Leaf Extract

Initially plant leaves were washed and shade dried. Then, these were crushed to a fine
powder. We placed 3 g of leaf powder in distilled water (100 mL) and boiled for 45 min
at 70 ◦C. Aqueous extract was filtered with Whatman filter paper. Collected filtrate was
stored at room temperature for further experiments [44].

3.3. Fabrication of Graphene Oxide (GO)

GO was synthesized from graphite powder by a modified Hummer’s method. We
added 1 g of graphite powder to 25 mL conc. H2SO4 in a 500 mL beaker under vigorous
stirring in an ice bath. Then, 3 g KMnO4 was added into the reaction mixture. After 3 h,
50 mL of distilled water was added drop wise, and temperature was maintained ≤50 ◦C.
Next, 100 mL of distilled water was poured instantly into the reaction medium. In order
to stop the reaction, 5 mL of H2O2 was added to precipitate unreacted MnO4

− ions into
MnO2. Excess acid was removed from the resulting mixture by repetitive washing with
distilled water and centrifuged to obtain residual product [47].

3.4. Preparation of Cu/Ni/rGO Composites

In order to prepare Cu/Ni/rGO composite, 50 mL of plant extract was added to 1.0 g
of GO under constant stirring for 10 min. Then, 20 mL of CuCl2 (0.08 M) and NiCl2 (0.05 M)
solution was added to the above reaction. The reaction mixture was kept for 8 h at 80 ◦C
under vigorous stirring. The obtained mixture was centrifuged at 3000 rpm, and as a result,
Cu/Ni/rGO composite settled down and then washed several times with distilled water.
After washing, consistent material was shifted into a china dish and oven dried at 60 ◦C for
about 24 h.

3.5. Characterization Techniques

SEM with EDX analysis was performed at a scale level of 5 µm, 2 µm, 1 µm, and
500 nm at a magnification of 5000×, 10,000×, 25,000×, and 50,000×. UV-vis analysis
(Specord Plus 200, Analytica Jena, Jena, Germany) was performed at range of 180 nm to
320 nm. FTIR spectra of GO and nanocomposite was recorded from 4000 cm−1 to 500 cm−1

using a Nicolet 6700 FTIR spectrophotometer (Thermo Fischer Scientific, Waltham, MA,
USA). Crystalline nature of prepared material was assessed by XRD spectrum analysis
using an X-ray powder diffractometer (Malvern Panalytical, Malvern, UK) in the range of
0–90◦ with CuKα radiation having 0.15406 nm wavelength.

3.6. Dyes Removal Studies

In order to perform batch dye removal experiments, two dyes, i.e., rhodamine and
alizarine were considered. We prepared 1000 mg/L of stock solution for each dye. Different
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concentrations, i.e., 5 mg/L, 25 mg/L, 75 mg/L, and 100 mg/L were prepared from the
stock solution. Equal concentrations and volumes of both dye solutions were mixed to
form a binary system. Prepared binary solution of dyes was further used in the whole
experimental work. In order to analyze the maximum dye removal capacity of synthesized
nanocomposite, different factors were optimized.

3.7. Point of Zero Charge

To calculate point of zero charge (pzc) 8.49 g of NaNO3 was dissolved in 1000 mL of
H2O. Initial pH value of prepared (0.1 M) NaNO3 solution was adjusted separately in the
range of 2 to 12 using 0.1 M hydrochloric acid or 0.1 M sodium hydroxide solution. We
added 10 mg of adsorbent to each system, and each system was placed on an orbital shaker
for about 24 h. After 24 h, the final pH (pHf) was calculated. In order to find out the point
of zero charge, a straight-line graph was plotted between pHi and ∆pH (pHi − pHf) [48].

4. Conclusions

The adsorbing material Cu/Ni/rGO nanocomposite was successfully synthesized by
a green route. The phyto constituents from an aqueous extract of Dypsis lutescens were
considered helpful to reduce and stabilize the synthesizing nanocomposites. This plant
has never been utilized before this composites formation, and the synthesized composite
was used as an adsorbent to remove more than one dye in a single step. UV-vis, FTIR,
XRD, EDX, and SEM characterization analysis were performed to examine the Cu/Ni/rGO
composites. The synthesized nanocomposites as an adsorbent material showed excellent
removal efficiency of rhodamine B and alizarine R dye from a mixed solution of these
dyes. Different factors like contact time, dye concentration, amount of adsorbent, effect of
temperature, and pH factor were observed, and optimal conditions for maximum removal
of dyes were concluded. Thermodynamics parameters revealed the spontaneity of reaction,
endothermic nature, and good affinity of dye molecules with the adsorbent. Kinetic studies
proved that the reaction of dye molecules with adsorbent followed Pseudo 2nd order.
Various isotherms were used, and it was observed that the Freundlich isotherm was the
best fit for both dyes’ adsorption.
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