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Abstract: Human soluble epoxide hydrolase (sEH), a dual-functioning homodimeric enzyme with
hydrolase and phosphatase activities, is known for its pivotal role in the hydrolysis of epoxye-
icosatrienoic acids. Inhibitors targeting sEH have shown promising potential in the treatment of
various life-threatening diseases. In this study, we employed a range of in silico modeling approaches
to investigate a diverse dataset of structurally distinct sEH inhibitors. Our primary aim was to develop
predictive and validated models while gaining insights into the structural requirements necessary for
achieving higher inhibitory potential. To accomplish this, we initially calculated molecular descriptors
using nine different descriptor-calculating tools, coupled with stochastic and non-stochastic feature
selection strategies, to identify the most statistically significant linear 2D-QSAR model. The resulting
model highlighted the critical roles played by topological characteristics, 2D pharmacophore features,
and specific physicochemical properties in enhancing inhibitory potential. In addition to conventional
2D-QSAR modeling, we implemented the Transformer-CNN methodology to develop QSAR models,
enabling us to obtain structural interpretations based on the Layer-wise Relevance Propagation (LRP)
algorithm. Moreover, a comprehensive 3D-QSAR analysis provided additional insights into the
structural requirements of these compounds as potent sEH inhibitors. To validate the findings from
the QSAR modeling studies, we performed molecular dynamics (MD) simulations using selected
compounds from the dataset. The simulation results offered crucial insights into receptor–ligand in-
teractions, supporting the predictions obtained from the QSAR models. Collectively, our work serves
as an essential guideline for the rational design of novel sEH inhibitors with enhanced therapeutic
potential. Importantly, all the in silico studies were performed using open-access tools to ensure
reproducibility and accessibility.

Keywords: soluble epoxide hydrolase; QSAR; feature selection; pharmacophore; molecular dynamics;
Transformer-CNN

1. Introduction

Epoxide hydrolases are a family of widely distributed enzymes responsible for the
rapid hydrolysis of epoxides into corresponding vicinal diols. The soluble epoxide hydro-
lase (sEH) is found in all lower and upper vertebrates, but only the mammalian sEH is
associated with phosphatase activity [1,2]. Human soluble epoxide hydrolase (sEH) is a
dual-functioning homodimeric enzyme and a member of the epoxide hydrolase family. It
is involved in the hydrolysis of epoxyeicosatrienoic acids (EETs) [3,4]. Human sEHs are
present in both cytosol and peroxisomes and exhibit hydrolase and phosphatase activities.
In the presence of this enzyme, the biological effects of EETs are diminished. EETs are
involved in various biological processes, including vasodilation of coronary arterioles,
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vascular smooth muscle relaxation, renal excretion of sodium, reduction of the expres-
sion of cytokine-induced endothelial cell adhesion molecules, and lipid and carbohydrate
metabolism, as well as insulin resistance [5–8]. Additionally, EETs may contribute to neovas-
cularization by promoting angiogenesis [8]. Consequently, sEH is responsible for degrading
EETs into inactive products, thereby diminishing several protective mechanisms elicited by
EETs. Inhibitors of sEH may then have implications in the treatment of various diseases
such as diabetes, fibrosis, chronic pain, cardiovascular diseases, and neurodegenerative
diseases [9]. These inhibitors are also claimed to be useful in the treatment of disorders
related to smooth muscles, such as erectile dysfunction, hyperactive bladder, uterine con-
tractions, irritable bowel syndrome (IBS), rheumatoid arthritis, and nephropathy [5,10]. Yet,
the role of sEH mentioned above is primarily regulated through catalysis that occurs at
the C-terminal hydrolase domain of the enzyme. The role of the N-terminal phosphatase
domain has been comparatively less investigated, but there is strong evidence that the
phosphatase activity of this domain is capable of hydrolyzing diverse lipid phosphates,
including farnesyl pyrophosphate, sphingosine-1-phosphate, and lysophosphatidic acid.
Recent studies have reported that inhibiting the phosphatase activity of sEH may prevent
obesity and cardiac ischemic injury [11–13]. Several compounds inhibiting sEH functionali-
ties have been reported, and some of these (e.g., SMTP-7, an investigational thrombolytic
drug for the treatment of ischemic stroke; and ebselen, an anti-inflammatory, antioxidant,
and cytoprotective drug) may simultaneously block both hydrolase and phosphatase activ-
ities [14]. Recently, it was discovered that sEH inhibition leads to a reduction in hepatic
fat accumulation and inflammation, also suggesting a promising role in the treatment of
Nonalcoholic Steatohepatitis (NASH) [15,16].

Researchers from the Goethe University, Germany, have been involved in the design
and development of sEH inhibitors with a range of structural scaffolds [4,10,14]. The objec-
tive of this work is to perform a ligand-based in silico study utilizing receptor-independent
Quantitative Structure-Activity Relationship (QSAR) modeling. The aim is to gain an
understanding of the structural requirements of 184 compounds that have been reported by
the researchers involved in such a study. QSAR, which is one of the oldest but most reliable
in silico techniques, provides a viable option to minimize experimental work and screen
novel molecules during drug design and development [17,18]. Whole molecular descriptor-
based QSAR is particularly helpful in estimating the structural requirements for a diverse
set of ligands with multiple mechanisms of action [19–21]. In recent years, QSAR method-
ologies have advanced with the discovery of various novel descriptors, and model-building
strategies have also improved with the progress in feature selection methodologies and
machine learning techniques coupled with computational efficiency [21,22]. As mentioned
earlier, compounds inhibiting sEH may have multiple binding sites (hydrolase catalytic
site and phosphatase catalytic site). Therefore, in this study, we primarily relied on QSAR
regression methods to determine if validated predictive models can be generated with a
dataset containing diverse sEH inhibitors that likely possess multiple binding mechanisms.

2. Results
2.1. 2D-QSAR Model

Following the strategy mentioned in Materials and Methods, we systematically sought
the best linear 2D-QSAR MLR models. As mentioned, this involved using nine types of
descriptors and two feature selection strategies, resulting in a total of 81 models. The
outcomes of the 81 models are summarized in Table S3 of the Supplementary Materials. It
was observed that each set of descriptors was capable of producing at least one model with
acceptable Q2

LOO (>0.65) and R2
Pred (>0.50) values [23,24]. However, the primary objective

was to identify the most predictive model in terms of statistical quality. It was found that
the AlvaDesc descriptors along with the GA feature selection approach yielded the most
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successful model (Q2
LOO = 0.784 and R2

Pred = 0.792). The resulting model (an eight-variable
equation) is given below together with the statistical parameters of the regression.

pIC50 (M) = +1.255(±0.296) + 1.542(±0.227) ATS6m − 0.43(±0.056) F09[N-O]
− 0.48(±0.043) CATS2D_05_AA + 0.44(±0.07)*SM14_AEA(dm)
− 0.495(±0.061) CATS2D_03_NL − 0.091(±0.036) RDF140v
− 0.577(±0.097) CATS2D_07_AA grama + 1.255(±0.296) J_Dz(p)

(1)

Ntraining = 147, R2 = 0.811, R2
adj = 0.800, Q2

LOO = 0.784, MAE = 0.402, rm
2

LOO = 0.701,
∆rm

2
LOO = 0.147, KXX = 0.371, ∆K = 0.03. Ntest = 37, R2

Pred/Q2
(F1) = 0.792, Q2

(F2) = 0.769,
Q2

(F3) = 0.763, RMSEP = 0.558, rm
2

test = 0.685, ∆rm
2

test = 0.167

The observed vs. predicted activity plot of the 2D-QSAR model is shown in Figure 1.
However, as noticed by Gramatica et al. [25], it is also important to consider the dif-
ference between R2 and Q2

LOO in assessing internal predictivity. In this model, the
R2 − Q2

LOO difference was found to be small (0.027), indicating good internal predictivity.
Furthermore, the model achieved satisfactory values for the metrics rm

2
LOO (=0.701) and

∆rm
2

LOO (= 0.147), which are considered more stringent parameters than Q2
LOO. For these

parameters, acceptable values are greater than 0.50 and less than 0.20, respectively. Ad-
ditionally, the low value obtained for MAE indicates that the model achieves sufficient
internal predictivity.
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Subsequently, to assess external predictivity, a test set of 37 compounds was used. The
model demonstrated a relatively high value of 0.792 for predicting the biological activity
of the test set compounds. The Q2

F2 and rm
2

test values further confirmed the model’s
satisfactory performance on the test set. The low values obtained for RMSEP and ∆rm

2
test

also support the model’s external predictivity.
The maximum intercorrelation (R2) between any two descriptors in the model was

found to be 0.557, indicating that the descriptors used in the model are independent. The
intercorrelation matrix can be found in Table S4 of the Supplementary Materials. The
variance inflation factor (VIF) was calculated for each descriptor, and none of the values
exceeded 5.0, indicating the absence of multi-collinearity in the model. Moreover, the
model exhibited acceptable Kxx and ∆K values, further supporting its robustness. The
Y-randomization test with 1000 runs yielded a cRp

2 value of 0.784, indicating that the model
is not a result of chance but rather a unique and meaningful model.

The Williams plot of this 2D-QSAR model is presented in Figure 1. Only one training
set compound was found to be a structural outlier and two compounds appeared as
response outliers. Nonetheless, given the good predictivity of the structural outlier, we
decided to retain it in the model.

In Table 1, the eight descriptors of this 2D-QSAR model are listed along with their
meaning, and their relative significance, determined by the standardized coefficients, is
depicted in Figure 2. As can be noticed, save for RDF140v, all these descriptors belong to
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the category of 2D descriptors [26]. For example, ATS6m, J_Dz(p) and SM14_AEA(dm) are
2D topological descriptors, which provide information about the structural characteristics
and connectivity patterns within the compounds.

Table 1. List of descriptors of the 2D-QSAR model with their descriptions.

Name Definition Class

ATS6m Broto-Moreau autocorrelation of lag 6 (log function) weighted by
mass 2D Autocorrelation

J_Dz(p) Balaban-like index from Barysz matrix weighted by polarizability 2D Matrix-based
CATS2D_07_AA CATS2D Acceptor-Acceptor at lag 07 2D Pharmacophore
CATS2D_03_NL CATS2D Negative-Lipophilic at lag 03 2D Pharmacophore
CATS2D_05_AA CATS2D Acceptor-Acceptor at lag 05 2D Pharmacophore

SM14_AEA(dm) Spectral moment of order 14 from augmented edge adjacency
matrix weighted by the dipole moment Edge adjacency indices

F09[N-O] Frequency of N–O at topological distance 9 2D atom-pairs

RDF140v Radial Distribution Function at a distance of 14.0 Å weighted by
van der Waals volume

3D (RDF)
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Among the descriptors, ATS6m was identified as the most significant descriptor in
the model, showing a positive correlation with pIC50(M). ATS6m is a 2D autocorrelation
descriptor that encodes the distribution of atomic mass within a molecule, considering
atom pair distances up to a 2D topological distance of 6 [27]. The analysis of the ATS6m
descriptor values revealed that compounds with higher molecular weights and higher
values of ATS6m tend to have a higher affinity towards the sEH enzyme. This indicates
that both molecular weight and specific 2D topology, as encoded by the ATS6m descriptor,
play important roles in determining the activity of the compounds as potent inhibitors of
the enzyme.

The next most significant descriptor in the model is J_Dz(p), which is a 2D matrix-
based descriptor representing the Balaban-like index from the Barysz matrix weighted by
polarizability [26]. Similarly, a higher value of J_Dz(p) was found to be associated with
higher biological activity. This suggests that, apart from molecular mass and topology, the
polarizability of compounds may also play a crucial role in influencing their inhibitory
activity against sEH.

The third, fourth, and fifth most significant descriptors of the model belong to the
category of CATS2D or 2D pharmacophore descriptors, specifically CATS2D_07_AA,
CATS2D_03_NL, and CATS2D_05_AA. Chemically advanced template search (CATS)
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descriptors are particularly useful in elucidating the structural requirements for higher ac-
tivity. These descriptors encode the topological distances between specific pharmacophore
features within the molecules [28]. For example, the descriptor CATS2D_07_AA indicates
the presence of hydrogen bond acceptors (A) at a topological distance of 7. In the context of
the 2D-QSAR model, this descriptor was found to negatively impact the endpoint response.
This suggests that compounds with fewer hydrogen bond acceptors located at such a topo-
logical distance have higher biological activity. The following most significant descriptor of
the model is F09[N-O]. This is a simple 2D atom-pair descriptor that specifically captures
the frequency of nitrogen (N) and oxygen (O) atoms located at a topological distance of
9 within the compounds. It is interesting to note that, similar to CATS2D_07_AA, the
F09[N-O] descriptor also exhibits a negative correlation with the endpoint response. This
means that compounds with higher values of this descriptor tend to be less active, while
most of the highly active compounds tend to have lower values of this descriptor. Indeed,
as illustrated in Figures 3 and 4, the observed correlation between higher descriptor values
and lower activity for some compounds reinforces the importance of these descriptors in
capturing the relevant structural features influencing the biological activity in the context
of the 2D-QSAR model.
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The last two descriptors, i.e., SM14_AEA(dm) and RDF140v, further contribute to the
understanding of the compounds’ biological activity against sEH. SM14_AEA(dm) is a 2D
graph-based descriptor weighted by the dipole moment (dm). The positive correlation
between SM14_AEA(dm) and the biological activity suggests that compounds with higher
dipole moments tend to exhibit higher inhibitory activity against sEH. This indicates that
electrostatic interactions, mediated by the dipole moment, play a significant role in the
binding of compounds to the target enzyme. On the other hand, RDF140v is a 3D descriptor
(RDF) weighted by van der Waals volume (v). It captures the steric effects and the spatial
distribution of atoms in the molecule. The negative correlation between RDF140v and the
biological activity indicates that steric interactions, mainly governed by van der Waals
volume, influence the binding and activity of compounds against sEH.
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Interestingly, both J_Dz(p) and SM14_AEA(dm) exhibit a positive correlation with the
biological activity, whereas, contrary to ATS6m, RDF140v shows a negative correlation. The
contrasting correlations of these four descriptors (ATS6m, J_Dz(p), SM14_AEA(dm), and
RDF140v) indicate the complex interplay of molecular topology, electrostatic interactions,
and steric effects in shaping the biological activity of the compounds. Understanding these
relationships can help in the design of compounds with optimized structural features to
enhance their inhibitory activity against the target enzyme sEH.

In order to check whether non-linear models may be developed with better statistical
predictivity, we attempted to develop some non-linear models using three distinct machine
learning techniques, namely, MLP, RF, and SVM. A concise overview of the statistical
outcomes derived from these models is shown in Table 2.

Table 2. Summary of the results obtained from non-linear models.

Descriptors ML Q2
LOO (5-fold) R2

Pred Average Selected Parameters *

Linear model MLP 0.767 0.797 0.780 activation = Identity, solver = Lbfgs, hidden layer Sizes = (5)
Linear model RF 0.673 0.741 0.707 max_depth = 10, max features = Sqrt, min samples leaf = 2
Linear model SVM 0.757 0.805 0.781 gamma = 1.0, kernel = Linear

dSe MLP 0.391 0.632 0.442 activation = Identity, solver = lbfgs, hidden layer Sizes = (5)
dSe RF 0.531 0.601 0.566 criterion: MAE, maximum depth = 30, max_features = Sqrt,

n_estimators = 200
dSe SVM 0.405 0.626 0.516 C = 100.0, gamma = 1.0, kernel = Linear

* If not mentioned, the default parameters were selected from the following links: kNN: https://scikit-learn.org/
stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html accessed on 1 May 2023; MLP: https:
//scikit-learn.org/stable/modules/generated/ sklearn.neural_network.MLPRegressor.html accessed on 1 May
2023; RF: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random ForestRegressor.html
accessed on 1 May 2023; SVM: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html ac-
cessed on 1 May 2023. Whenever applicable, the models were generated using a random_state = 42.

Clearly, none of the non-linear models managed to outperform the previously dis-
cussed linear 2D-QSAR model. Moreover, the non-linear models with the highest statistical

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/modules/generated/
https://scikit-learn.org/stable/modules/generated/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Random
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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significance were established using descriptors from the most predictive linear model
(Equation (2)), through the utilization of MLP and SVM techniques. Remarkably, this SVM
model was developed using a linear kernel. In contrast, descriptors chosen via differen-
tial Shannon entropy (dSe) proved insufficient to yield any models exhibiting statistical
significance surpassing either the non-linear models or the proposed linear model.

2.2. Transformer-CNN-Based QSAR Model

The Transformer-CNN-based model yielded promising results in terms of its predictive
performance and interpretability. The model attained a 5-fold cross-validated Q2 value
of 0.713, coupled with an RMSE (CV) of 0.628, which underscore its ability to precisely
forecast compound activity. This assertion is reinforced when the model is evaluated with
a separate test set comprising 37 data points, yielding an R2

Pred of 0.731. This outcome thus
further confirms its predictive power. This model was produced with 200 epochs and a
batch size of 4. It is notable that increasing the batch size to 16, 32, or 64 compromised the
predictivity of the model. Similarly, reducing the number of epochs to 100 or increasing it
to 300 also resulted in reduced predictivity.

In addition to predictive performance, the focus was also on the interpretability of
the Transformer-CNN model. The LRP (Layer-wise Relevance Propagation) algorithm
implemented in the Transformer-CNN repository was employed to obtain structural inter-
pretations from the model. The interpretations for selected highly active and less active
compounds from the dataset are depicted in Figure 5.
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The insights extracted from the Transformer-CNN model offer valuable understand-
ings into the structural characteristics influencing the activity against sEH. These interpre-
tations align with the findings from the conventional 2D-QSAR model, which identified
molecular mass and polarizability as important factors in governing higher activity. For
example, compounds D1_01 and D2_37 are structurally similar, but the presence of a chlo-
rine atom and sulfonamide (which contain heavy atoms and polar atoms) make a major
difference to their activities. This observation is also consistent with the predictions of
the conventional 2D-QSAR model, which highlighted the unfavorable effect of negative
ionizable carboxylate for higher biological properties (see Figure 3). In the comparison
of compounds D5_27 and D5_32, despite their structural similarities, the contributions
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of oxazole atoms varied considerably. Similarly, the contributions of the methylbenzene
scaffold also varied to a considerable extent in D1_01 and D2_37. This reinforces the notion
that it is the overall topology of the compounds that shapes their activity. The examples of
compounds D4_02 and D4_06 also demonstrate the impact of specific structural features
on activity. The contributions of the carboxamide group varied considerably between these
compounds, indicating that this feature plays a significant role in their differential activities.
The sulfonamide residues were generally found to be partially favorable, while only the
oxygen atoms of the carboxamide contributed positively to higher biological properties.
To corroborate these interpretations, we also contrasted the results of MD simulations for
compounds D4_02 and D2_37 with the insights derived from the Transformer-CNN model.
This comparison likely lends additional support to the relationship between identified
structural features and their impact on the compounds’ activity against sEH.

The color codes depicted in Figure 5 hold varying significance based on the LRP
algorithm. For compounds D1_01 and D2_37, which are structurally akin, the relevance of
each atom concerning favorable and unfavorable activity is shown in the Supplementary
Materials. It is evident that D2_37 exhibits maximum negative influence primarily from
its fluorine atom and the oxygen atom of the carboxylate. On the contrary, the chlorine
atom in D1_01 contributes significantly and positively to its higher potency. Notably, the
negative influence of the carboxamide fragment is markedly more pronounced in D1_01
than in D2_37.

2.3. 3D-QSAR Analysis

The current 2D-QSAR model illustrates the significance of steric and electrostatic
interactions, as well as specific fragments and pharmacophores, in determining the activity
against sEH. To gain a better understanding of the structural requirements, we resorted
to 3D-QSAR modeling and analysis using the Open3DQSAR software. Similar to the
2D-QSAR modeling approach, the dataset was randomly divided into a training set and a
test set. Atom-based rigid body alignment was performed to align the structures, which
were then used to calculate steric and electrostatic fields. Two different feature selection
techniques, FFD-SEL and UVE-PLS, were employed for PLS model development. Both
techniques yielded the most predictive models with three components. Figure 6 presents
the aligned structures and contour maps, while Table 3 showcases the statistical results of
the models.
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The UVE-PLS technique yielded superior statistical results in the 3D-QSAR analysis
conducted with a training set of 148 compounds and a test set of 36 compounds. The model
achieved satisfactory Q2

LOO (=0.643) and R2
Pred (=0.657), considering the inclusion of a

relatively large and structurally diverse dataset, potentially involving multiple binding
mechanisms. The UVE-PLS model indicated that electrostatic interactions (34%) and steric
contributions (66%) played a significant role in determining the binding affinity of the
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ligands towards sEH, with the steric component being dominant. Unlike 2D-QSAR models,
assessing the applicability domain of 3D-QSAR models is challenging. However, leverage
values of the training set compounds were determined using the Open3DQSAR tool, and
it was observed that the leverage values (range: 0.983–0.849) did not vary considerably.
Hence, it can be assumed that the compounds analyzed in this study were well within the
AD of the model.

Table 3. Results for the 3D-QSAR models with three components.

Parameter FFD-SEL UVE-PLS

Ntraining 148 148
R2 0.756 0.778
F 148.89 168.68

Q2
LOO 0.615 0.643

Q2
LTO 0.614 0.643

Q2
LMO 0.603 0.631

Ntest 36 36
R2

Pred 0.631 0.657

Figure 7 displays the most potent compound (D4_02) and the least potent compound
(D5_32) from the dataset, along with their respective contour maps. An analysis revealed
that the bulky aromatic moiety of D4_02 is positioned near the steric favorable field,
whereas such bulky groups are absent in D5_32. This indicates that steric interactions
play a significant role in the potency of D4_02, which is consistent with our findings in the
2D-QSAR models, where descriptors such as ATS6m and RDF140v emerged as important
factors. Additionally, electropositive (electron-deficient) fields were more prevalent than
electronegative (electron-rich) fields. In the case of D4_02, the presence of the trifluo-
romethyl group in the benzene ring created an electropositive environment, which was
absent in D5_32. Furthermore, D4_02 featured an indole ring fully inserted into another
electropositive field, whereas the cyanobenzene residue of D5_32 (with an electron-deficient
benzene residue) was not fully inserted into this field. Please note that this information
may not be visible in Figure 8, and an additional figure from a different angle is provided
in the Supplementary Materials (Figure S3).
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Figure 8. 3D-QSAR contour maps for one of the most potent compounds (D1_24) and one of the least
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yellow (steric unfavorable), blue (electropositive favorable), and red (electronegative favorable).

It is evident that, in addition to the presence of polar groups, the specific topology of
the compounds plays a crucial role in governing their biological activity, as also suggested
by the 2D-QSAR analysis. Interestingly, two sulphonyl residues of D4_02 were found to be
in proximity to the electronegative favorable contour maps, which could further enhance
the biological activity of this molecule. Conversely, no electron-rich group was observed
near these contours. Similar observations were made when examining the contour maps of
higher active compounds D1_24 and D2_37, as depicted in Figure 8.

2.4. Molecular Dynamics Simulations

The compounds D4_02 and D2_37, which represent one of the most potent and one of
the least potent compounds, respectively, were subjected to 50 ns molecular dynamics (MD)
simulations. These compounds were docked into the active site of the sEH protein (PDB:
4X6X). Similarly, the complex 4X6X with a bound ligand (S74: 3-{4-[(1-{[(1s,2R,3S)-2,3-
diphenylcyclopropyl]carbamoyl}-piperidin-4-yl)oxy]phenyl}-pro-panoic acid) was used as
a reference protein complex for MD simulations. However, prior to conducting molecular
docking on the dataset compounds, a self-docking analysis was performed using S74 in
the 4X6X configuration. This step aimed to validate the docking methodology, resulting in
an RMSD of 1.54 Å between the docked pose of S74 and its bound pose.

Figure 9 shows the RMSD plots of the protein backbones and ligands, along with the
RMSF and RG plots. From the ligand RMSD plots, it is apparent that the highly active
compound D4_02 exhibits lower fluctuations compared to the less active compound D2_37,
primarily due to the lower fluctuations of D4_02 in residues 140–160 and 260–280. However,
D4_02 displays higher fluctuations in residues 180–220 when compared to both S74 and
D2_37. When assessing the compactness of the complexes using the radius of gyration (RG)
plots, it was observed that the D4_02-4X6X complex remained more compact throughout
the MD simulation compared to the D2_37-4X6X complex.
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Figure 9. Results from the trajectory analysis for the MD simulations of D4_02 and D2_37 as well as
of S74 (bound ligand of PDB 4X6X).

We also calculated the MM-GBSA binding energies for these complexes, which are
presented in Table 4. The results clearly indicate that the highly active compound D4_02
exhibits a higher binding affinity towards sEH compared to the less active compound
D2_37, consistent with the ligand RMSD plots of these two compounds. Compound
D4_02 showed higher electrostatic and van der Waals interactions, and notably, there were
significant differences in electrostatic interactions (∆Eelec) between D4_02 and D2_37. This
finding aligns with our 3D-QSAR analyses, which suggested that electrostatic interactions
play a substantial role in determining the inhibitory potentials of the compounds in the
dataset. The lower entropy of D4_02 contributed to its higher theoretical binding energy.
Given these findings, it was essential to examine the final binding poses obtained for these
two compounds in the analysis.

Table 4. MM-GBSA binding free energies (in kcal/mol) calculated for S74, D4_02, and D2_37.

Compound ∆EvdW ∆Eelec ∆Gpolar ∆Gnonpolar T∆S ∆Gbind(T) a

S74 −65.26 21.92 −0.43 −8.33 −28.43 −23.67
D4_02 −64.85 −27.18 71.00 −8.25 −12.43 −16.85
D2_37 −42.49 53.17 −32.44 −5.07 −27 0.17

a ∆Gbind(T): theoretical binding free energy (=∆EvdW + ∆Eele + ∆Gpolar + ∆Gnonpolar − T∆S) and its components.
∆EvdW: van der Waals interaction energy; ∆Eele: electrostatic interaction energy; ∆Gpolar: polar solvation free
energy; ∆Gnonpolar: nonpolar solvation free energy; T∆S: entropy.

Figure 10 displays the final binding poses of compounds D4_02 and D2_37. The 3D-
QSAR analysis correctly predicted the involvement of π-π and π-alkyl interactions between
the indole moiety of D4_02 and amino acid residues such as Tyr154, as well as Val269 (due
to its insertion into an electropositive favorable field). Similarly, the π-alkyl interactions
of the trifluoromethylbenzene moiety were well predicted by the 3D-QSAR model. While
both aromatic rings of D2_37 exhibited π-π interactions with the amino acid residues, the
overall van der Waals and electrostatic interactions of this ligand were significantly lower
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than those of D4_02. It should be noted that our 3D-QSAR analysis accurately predicted
a large number of van der Waals interactions surrounding the trifluoromethylbenzene
moiety of D4_02 (cf. the steric favorable field). In contrast, fewer van der Waals interactions
were observed in D2_37 due to its lower molecular mass, which was also indicated by the
2D-QSAR model where ATS6m was identified as the most influential descriptor.
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Furthermore, D4_02 exhibited hydrogen bond interactions with Thr131, whereas
D2_37 depicted hydrogen bond interactions with Tyr237 and Asp106. It is worth noting
that these interactions were not predicted by the 3D-QSAR model, likely because most of
the compounds in the dataset had amide moieties that were aligned, and these specific
interactions were not found to have a significant influence in the 3D-QSAR analysis.

Finally, it is important to compare the interpretation results from the Transformer-
CNN with the interactions obtained from the MD simulations. The Transformer-CNN
accurately predicted the interactions of the carboxamide, trifluoromethyl, and aromatic
rings. Notably, the carboxylate group of D2_37 was solvent-exposed and did not show
polar interactions with amino acid residues. This lack of polar interactions contributed
to the unfavorable ∆Eelec of this compound, thereby reducing its overall binding affinity.
This observation may explain the negative influence of carboxylate residues in both the
2D-QSAR and Transformer-CNN models. Additionally, one of the sulphonyl groups of
D4_02 formed a hydrogen bond interaction with Gln155 (not shown in Discovery Studio
Visualizer but detected by the PoseView software of https://proteins.plus/, (accessed on
3 June 2023) and presented in Figure S2 of Supplementary Materials).

3. Materials and Methods
3.1. Conventional 2D-QSAR Modeling
3.1.1. Dataset Collection and Preparation

The dataset utilized in this study consists of 184 structurally diverse human soluble
epoxide hydrolase (sEH) inhibitors, which were sourced from articles published by re-
search groups affiliated with the Goethe University, Germany [4,10,14,16,29]. A complete
listing of the SMILES of the dataset compounds, along with the corresponding experi-
mental data, can be found in Table S1 of the Supplementary Materials. The chemical
structures of the inhibitors were obtained either from the provided SMILES notations in
the original publications or drawn using ChemSketch [30]. These canonical SMILES were
subsequently converted to .sdf format and protonated at pH 7.4 using the Openbabel
software-2.4.1 [31]. To ensure consistency, the structures were converted back to canonical
SMILES notation using the sdftosmi.py program from the tanimoto_similarities pack-
age (https://github.com/MunibaFaiza/tanimoto_similarities, accessed on 10 June 2023),
and any duplicate structures were removed. Further processing of the .sdf structures
was performed using Chemaxon in the OCHEM platform, involving the following steps:

https://proteins.plus/
https://github.com/MunibaFaiza/tanimoto_similarities


Molecules 2023, 28, 6379 13 of 22

(a) standardization, (b) neutralization, (c) removal of salts, and (d) cleaning of structures [32].
Furthermore, geometrical optimization of the structures for the calculation of 3D descriptors
was conducted using Corina under the OCHEM platform [33].

To assess the structural diversity of the dataset compounds, we generated their
MACCS Keys structural fingerprints [34]. These fingerprints were employed to compute
a distance matrix using Tanimoto Similarity analysis. Subsequently, the distance matrix
underwent t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis, producing a
structural diversity plot with two components [35]. Following this, a k-means cluster
analysis was performed using 6 clusters determined by the Silhouette score, resulting in a
plotted representation (refer to Figure S1). Such representation clearly depicts that these
structures cover a considerably large chemical space that can easily be clustered.

The biological activity of interest here is the measured inhibitory potential of the
compounds against human sEH, expressed as IC50 (in µM). The latter, as is usual, was log-
converted (pIC50 (M) = −log10(IC50/106)) and taken as the response variable for practical
use in the subsequent 2D-QSAR modeling.

3.1.2. Calculation of Descriptors

Various descriptor-calculating tools were employed in this study to calculate the
descriptors for the compounds. These tools include: (a) AlvaDesc v.2.0.4 [36]; (b) CDK
2.7.1 [37]; (c) GSFragments plus ISIDA fragments [38]; (d) MORDRED [39]; (e) Multilevel
Neighborhoods of Atoms (MNA) [40]; (f) Simplex representation of molecular structure—
SIRMS (https://github.com/DrrDom/sirms, accessed on 10 April 2023);
(g) MERA + MERSY [41]; (h) RDKit (https://www.rdkit.org/, accessed on 10 April 2023);
and (i) PyDescriptors [42].

All these descriptors were calculated using the OCHEM web platform [32]. Each set of
descriptors was employed separately to develop QSAR linear interpretable models. These
models will be specifically referred to as 2D-QSAR models to distinguish them from the
other QSAR modeling approach applied in this study.

3.1.3. Dataset Division and Feature Selection

The dataset was divided into a training set and a test set using the open-access Python-
based SFS-QSAR tool (available at https://github.com/ncordeirfcup/SFS-QSAR-tool_v2,
accessed on 11 April 2023) [43]. The SFS-QSAR tool implements the train_test_split function
from Scikit-learn [44], and a seed value of 3 was set to ensure reproducibility for each
descriptor set. Two distinct feature selection techniques were employed to generate the
linear 2D-QSAR models by adopting a multiple linear regression (MLR)-based procedure,
namely: (i) Sequential Forward Selection (SFS) [43], and (ii) Genetic Algorithm (GA) [45].

Feature selection is an important step in developing linear QSAR models as it iden-
tifies the most significant descriptors for determining the structural requirements of the
compounds. SFS is a non-stochastic feature selection method that consistently produces
the same model given the same descriptors, data distribution, and parameter settings. In
this study, the SFS-MLR models were developed using the open-access SFS-QSAR-tool,
which implements the Mlxtend tool (http://rasbt.github.io/mlxtend/, accessed on 5 April
2023). Four scoring functions, i.e., determination coefficient (R2), negative mean absolute
error (NMAE), negative mean Poisson deviance (NMPD), and negative mean gamma de-
viance (NMGD), were chosen one by one in this tool, with the option of no cross-validation
(No CV) or 5-fold cross-validation (5-fold CV). As a result, eight SFS-MLR models were
generated for each descriptor set, as shown in Figure 11.

https://github.com/DrrDom/sirms
https://www.rdkit.org/
https://github.com/ncordeirfcup/SFS-QSAR-tool_v2
http://rasbt.github.io/mlxtend/
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Conversely, GA is a stochastic method. The GA-MLR models were created us-
ing the GeneticAlgorithm v.4.1_2 open-access tool [45] with default settings, including
100 iterations/generation, a crossover probability of 1, a mutation probability of 0.3, an
initial number of 100 generated equations, and the selection of 30 equations in each genera-
tion. GA involves the random selection of descriptors, estimation of fitting scores for these
random models, and the application of crossover and mutation schemes to improve the
fitting scores and establish the final models [45]. To account for the stochastic nature of GA,
at least 20 different runs were performed for each dataset, and the best model was selected
based on its overall predictivity.

Before model development, a pre-treatment step was performed in both tools. This in-
volved setting a correlation cutoff of 0.99 and a variance cutoff of 0.0001 to eliminate highly
correlated descriptors and constant/near-constant descriptors. For all linear interpretable
2D-QSAR models, a maximum of eight descriptors was allowed.

3.1.4. Model Evaluation

In order to compare the statistical quality of the developed models and determine the
most reliable one, two well-known validation parameters were utilized, namely Q2

LOO
(leave-one-out cross-validated determination coefficient R2) [23] and R2

Pred (predicted R2

or Q2
F1) [24]. The former is known for evaluating the internal predictivity of the model,

whereas the latter estimates its external predictivity. The average value of these parameters
was considered to select the most statistically reliable model.

To further assess the final models, additional statistical parameters were employed, i.e.,
the adjusted R2 (R2

Adj), the Fisher statistic (F-test), the mean absolute error (MAE), and the
metrics rm2

LOO and ∆rm2
LOO were computed for the training set, whereas Q2

(F2), Q2
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the root mean square error of prediction (RMSEP), and the metrics rm2test and ∆rm2test
were computed for the test set. These parameters provide a more critical evaluation of the
final models, both in terms of internal performance and external predictivity. A detailed
description of these statistical parameters can be found elsewhere [25,46,47].

Likewise, to ensure the robustness and reliability of the proposed 2D-QSAR models,
additional tests were carried out. To begin with, the maximum inter-collinearity among
the descriptors of the final models was estimated from the cross-correlation matrix using
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the SFS-QSAR-tool. Then, the multi-collinearity of the final models was assessed using the
variance inflation factor (VIF) [48], defined as follows:

VIF =
1(

1− R2
i
) (2)

where R2
i is the coefficient of determination (R2) obtained from regressing the ith descriptor

on the other descriptors [48].
The multi-collinearity of the 2D-QSAR models was also checked using the parameters

Kxx and ∆K calculated by the software QSARINS v2.2.4 [49]. The Kxx parameter represents
the overall correlation among descriptors, while ∆K is the difference between the correlation
among descriptors (Kx) and the correlation between descriptors and responses (Kxy) [50].

To further ensure the statistical robustness of the models, a Y-randomization test was
performed. This involved randomizing the response variables while keeping the descriptors
unchanged and then calculating the cRp

2 value using the following formula [51]:

cRp
2 = R

√
(R2 − Rr

2) (3)

where Rr denotes the average R2 obtained from the randomized models. A value of cRp
2

greater than 0.5 generally suggests that the model was not developed by chance [51].

3.1.5. Applicability Domain of the Models

The applicability domain of a QSAR model refers to the region in the response and
chemical structure space in which the model can make reliable predictions for new or
unseen compounds [46]. In this work, to determine the applicability domain (AD) of
the 2D-QSAR models, a leverage estimation approach was followed, and the Williams
plot generated. The Williams plot displays the leverage, which measures the influence of
individual data points, against the standardized residuals [46,52–54]. This plot helps in
identifying structural and response outliers in the linear 2D-QSAR models. It is important
to note that, according to the Organization for Economic Cooperation and Development
(OECD) guidelines, QSAR models should be reported along with their applicability domain.
This ensures that the reliability and validity of the models can be assessed based on their
performance within the defined applicability domain [22].

3.1.6. Machine Learning Techniques and Partial Least Square (PLS)

Non-linear models were set up using selected features via three distinct techniques:
(a) multilayer perception (MLP) [55], (b) support vector machines (SVM) [56], and
(c) random forests (RFs) [57]. These models were developed using the open-source software
“Non-linear-Regression-tools” (available at https://github.com/ncordeirfcup/Non-linear-
Regression-tools, accessed on 15 May 2023), which leverages Scikit-learn-based programs
for model creation while incorporating hyperparameter optimization. Within this tool,
users can specify the necessary parameters by means of a .csv file. These parameters are
then tuned to create optimal models based on 5-fold cross-validation on the training set.
The optimized parameters for this study are detailed in Table S2 of the Supplementary
Materials. The performance of the final models is subsequently gauged against external pre-
dictivity with the test set. Two distinct feature selection algorithms were employed during
the development of the non-linear models. Firstly, descriptors from the most predictive lin-
ear model were utilized for setting up the model. As an alternative, we identified the eight
most significant descriptors using differential Shannon entropy, a process implemented
through the open-access tool IMMAN [58].

Additionally, the partial least squares (PLS) method was also employed using the
selected features. This procedure was facilitated by another open-access tool named PLS-
QSAR (accessible at https://github.com/ncordeirfcup/PLS-QSAR, accessed on 15 May
2023), resourcing to the following settings: maximum number of components: 5, condition:
“CVLOO” (cross-validation leave-one-out), and increment: 5. Therefore, the tool would

https://github.com/ncordeirfcup/Non-linear-Regression-tools
https://github.com/ncordeirfcup/Non-linear-Regression-tools
https://github.com/ncordeirfcup/PLS-QSAR
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cease further component addition if the inclusion of an extra component fails to improve
the Q2

LOO value for the training set by at least 5%.

3.1.7. Consensus Modeling

We utilized the “Intelligent Consensus Prediction” (ICP) technique where multiple pre-
dictive models are coupled to check if their combinations improve the external predictivity.
A more in-depth description of the ICP methodology applied in the current investigation
can be found elsewhere [59,60]. In summary, this technique encompasses four consensus
prediction approaches: (a) CM0: an ordinary consensus formed by calculating the arith-
metic average of predicted values from all individual models; (b) CM1: the average predic-
tions derived from all qualified models; (c) CM2: weighted average predictions computed
from all qualified models; and (d) compound-wise best selection of predictions from indi-
vidual models. All consensus models were generated using the open-access Java-based “In-
telligent Consensus Predictor” tool, available at https://sites.google.com/site/dtclabicp/,
(accessed on 20 July 2023).

3.2. Transformer-CNN Based QSAR Modeling

Transformer-CNN (Convolutional Neural Network) is a powerful machine learning
architecture for QSAR modeling and interpretation recently introduced by Karpov et al.
(available at https://github.com/bigchem/transformer-cnn, accessed on 22 May 2023) [61].
A detailed and in-depth description of its methodology and related code can be found
in the author’s original work. Briefly, the dataset consists of compounds represented as
SMILES strings, and the process begins with SMILES-embedding following an encoder
approach, similar to a machine translation problem. To do so, a convolution neural network
is employed to perform SMILES canonicalization in a Sequence-to-Sequence (Seq2Seq)
manner, in which the left side consists of non-canonical SMILES and the right side includes
their corresponding canonical counterparts. After encoding, the extracted latent variables
effectively represent relevant features that can be applied to QSAR modeling.

Specifically, the SMILES strings are transformed into dynamic SMILES embedding
of size 64, with variable lengths, which are then subjected to 1D convolutional filters. The
convolutional filters have different kernel sizes ranging from 1 to 20, with corresponding
numbers of filters assigned to each size [61]. Next, a global max-pooling operation is
performed, and the pooling results are concatenated. The data then go through Dropout
(rate = 0.1), Dense (N = 512 neurons and using the activation function “Relu”), and Highway
NN layers (N = 512 neurons and using the activation function “Sigmoid”), before reaching
the output layer. Typically, the weights of the Transformer’s part are kept frozen, and
the regression models are built by applying the Adam optimizer and checking the Mean
Squared Error (MSE).

In this work, following the authors’ suggestions [61], 10 non-canonical SMILES were
generated for each data-point using RDKit (https://www.rdkit.org, accessed on 20 May 2023),
which were processed by one-hot encoding (using 66 symbols) for setting up the Seq2Seq
inputs. The training of the Transformer-CNN model involved variable learning rates for
a specified number of epochs (n = 100) and a batch size of 4. Early stopping was applied
using 10% randomly selected SMILES to identify the optimal model. To mitigate overfitting,
cross-validation techniques were employed.

While Transformer-CNN is available on the OCHEM web platform, in this work,
the models were built using the Python-based tool provided on the GitHub repository.
However, the tool codes were slightly modified to accommodate the upgraded version of
TensorFlow (https://www.tensorflow.org/, accessed on 22 May 2023). The model was
initially built using the same training set as that used while developing the final 2D-QSAR
model, with the help of the transformer-cnn.py script. A configuration file (config.cfg)
was used to specify input data, canonization option, seed value, number of epochs, batch
size, and output data file name. A 5-fold cross-validation of the generated model was
performed using the cv5.sh bash script with the configuration file (config-cv.cfg). Finally, the

https://sites.google.com/site/dtclabicp/
https://github.com/bigchem/transformer-cnn
https://www.rdkit.org
https://www.tensorflow.org/
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test dataset was employed to estimate the external predictivity of the generated models
using a different configuration file (config_val.cfg). The input configuration files for these
steps are provided in the Supplementary Information for reproducibility.

To interpret the models and assess the significance of individual input features,
the “standalone” Transformer-CNN tool was applied (available at https://github.com/
bigchem/transformer-cnn, accessed on 22 May 2023). This tool utilizes the Layer-wise
Relevance Propagation (LRP) algorithm, which splits the overall predicted result into a sum
of contributions coming from the individual neurons. The relevance is propagated from
the last layer to the input layer, allowing the evaluation of contributions from specific input
variables and the identification of significant features for the training set or the explanation
of individual neural network predictions [61].

3.3. 3D-QSAR Modeling
3.3.1. Alignment Techniques

For the development of the 3D-QSAR models, the compounds in the dataset were
aligned using an atom-based alignment method or unsupervised rigid body molecu-
lar alignment. Initially, the 3D structures of the ligands in the dataset were minimized
using the “obminimize” function of OpenBabel. The minimization process involved
employing the steepest descent technique and the MMFF94 forcefield [31]. After the
minimization, the ligand structures were used to generate 100 conformations using the
rdMolAlign.GetCrippenO3A code of Rdkit. The Python script “alignment.py” written
and used for the atom-based alignment can be found in the GitHub repository: https:
//github.com/ncordeirfcup/InsilicoModeling_RdRp, (accessed on 25 May 2023) [52].

3.3.2. Model Development

The 3D-QSAR models were generated using the aligned conformations with the open-
source software called Open3DQSAR-2.24. The methodology for this software has been
described in detail in earlier works by Tosco and Balle [62,63]. Open3DQSAR utilizes
a carbon and a volume-less positively charged probe to estimate steric and electrostatic
domains, respectively. In its data pre-treatment stage, a smart region definition (SRD) cut-
off level (here equal to 2.0) is employed, and N-level variables are removed. Open3DQSAR
deploys SRD for grouping variables. Two different variable selection algorithms are utilized
for such a purpose, namely, Fractional Factorial Design-based variable SELection (FFD-SEL),
and Uninformative Variable Elimination-based Partial Least Square (UVE-PLS).

To evaluate the predictive performance of the 3D-QSAR-oriented PLS models, several
metrics were used, including the determination coefficient (R2), F-test result, leave-one-out
Q2 (Q2

LOO), leave-two-out Q2 (Q2
LTO), leave-many-out Q2 (Q2

LMO with 5 groups and
20 runs), and, finally, R2

Pred. The contour maps were examined using isocontour values at
PLS coefficients of +0.002 (green) and −0.002 (yellow) for steric fields, and +0.001 (blue)
and −0.001 (red) for electrostatic fields.

3.3.3. Molecular Docking and Molecular Dynamics Simulations

The X-ray crystal structure of sEH hydrolase (PDB: 4X6X) [64] was downloaded and
utilized for molecular docking of the selected compounds from the dataset. The docking
was performed using the AutoDock 4.2 package [65]. A grid box with a spacing of 0.375
and dimensions of 50 Å × 50 Å × 50 Å was defined at the coordinates X = 2.98, Y = 4.39,
and Z = 35.20. The detailed methodology for the docking procedure can be found in our
previous work [66].

The best poses of the compounds obtained from the docking experiment were selected,
and the resulting ligand–receptor complexes underwent 50 ns molecular dynamics (MD)
simulations using Amber 20. The specific steps of the MD simulations were described in
detail in our previous investigations [66,67]. Trajectory analysis was performed using the
cpptraj function of Python. Various properties, such as the root mean square deviation
(RMSD) of the complexes and ligands, the root mean square fluctuations (RMSF), and

https://github.com/bigchem/transformer-cnn
https://github.com/bigchem/transformer-cnn
https://github.com/ncordeirfcup/InsilicoModeling_RdRp
https://github.com/ncordeirfcup/InsilicoModeling_RdRp
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their radius of gyration (Rg), were calculated. To estimate the binding free energies of the
complexes, the molecular mechanics generalized born surface area (MM-GBSA) approach
was applied. The MM-PBSA.py tool was used to calculate the binding free energies,
considering 100 snapshots taken from the last 10 ns of the MD production run. Additionally,
the entropy contributions (−T∆S) to the binding free energies were determined using
normal mode analysis, collecting 100 snapshots from the last 10 ns [67,68].

4. Conclusions

The sEH (soluble epoxide hydrolase) enzyme is indeed a significant biological target
for various diseases. It has been identified that the binding affinity of sEH inhibitors can be
influenced by the binding sites present in the enzyme’s C-terminal region, responsible for
hydrolase activity, as well as the N-terminal region, associated with phosphatase activity.
These distinct binding sites offer potential opportunities for designing and developing sEH
inhibitors as single-target or multi-target agents, aiming to modulate the enzyme’s activity
and provide therapeutic benefits in the context of different diseases. The understanding
of these binding sites and their contributions to the inhibitory potency of compounds is
crucial for the rational design of effective sEH inhibitors.

In the present work, a large and diverse series of sEH inhibitors were investigated
using receptor-independent 2D-QSAR and 3D-QSAR analyses. The aim was to generate
validated and predictive models that can provide insights into the structural requirements
of these inhibitors. The most predictive linear 2D-QSAR regression model found achieved
high predictive power, explaining 80% of the variances in the training set compounds
and predicting 78.4% of their variances. More importantly, external validation on the test
set compounds yielded a prediction of 79.4% for their variances. The model highlighted
the importance of 2D pharmacophoric information, as indicated by its CATS2D descrip-
tors, and emphasized the significance of topological characteristics and properties such
as molecular mass, van der Waals volume, dipole moment, and polarizability in deter-
mining the biological activity against sEH. The transformer CNN-based model provided
a clear pictorial understanding of favorable and unfavorable fragments responsible for
biological potency. The 3D-QSAR analyses also demonstrated satisfactory statistical pre-
dictivity and supported the interpretations from the 2D-QSAR models. These analyses
provided valuable information about the structural requirements of potent sEH inhibitors.
Furthermore, the MD simulations conducted with highly active and less active compounds
revealed important receptor–ligand interactions, which were consistent with the predic-
tions from the QSAR models. This comprehensive investigation serves as an important
guideline for the design of novel sEH inhibitors. For instance, the generated 2D-QSAR
models can serve as a means to obtain average predicted values for novel compounds to
be synthesized. To set up the 2D-QSAR linear models, along with generating plots and
values, one can refer to the files “2DQSAR_train.csv” and “2DQSAR_test.csv” (accessible
at https://github.com/amitporto/soluble-epoxide-hydrolase-inhibitors, accessed 2 Au-
gust 2023) and process them either through the Flask-based web application accessible at
https://amit-mlr.onrender.com, (accessed 2 August 2023) (note that when using this appli-
cation, file names should remain unchanged) or simply by employing the SFS-MLR-tool,
which is available at https://github.com/ncordeirfcup/SFS-QSAR-tool_v2, (last accessed
on 5 August 2023). Both these tools are suitable for predicting outcomes for new compounds.
In addition, the Transformer-CNN can be leveraged for predictions using the “sEH.pickle”
object file (located at https://github.com/amitporto/soluble-epoxide-hydrolase-inhibitors,
accessed on 2 August 2023) and the “ochem.py” script (accessible at https://github.com/
bigchem/transformer-cnn/tree/master/standalone, accessed on 22 May 2023). Concern-
ing the 3D-QSAR models, these offer a means to further predict activity as well as to
check the proximity of molecular scaffolds along with favorable contour maps (steric
and electrostatic contours can be found in files “uvepls_coefficients_fld-01_y-01.grd” and
“uve-pls_coefficients_fld-02_y-01.grd” at https://github.com/amitporto/soluble-epoxide-
hydrolase-inhibitors, accessed on 2 August 2023). Regarding the results of the MD simula-
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tions, these clearly demonstrated reduced fluctuations in amino acid residues 260–280 for
both active complexes, pertaining to the dataset compound D4_02 and bound ligand S74.
This observation implies that stronger interactions with these amino acid residues could
contribute to enhanced inhibitory potential. Substantial differences were observed in steric
and electrostatic interaction energies between D04_02 and D2_37. These factors should be
monitored preliminarily while predicting the potency of the new compounds against the
sEH enzyme.

Finally, and of paramount significance, the entirety of this study was undertaken using non-
commercial open-access tools and web platforms to ensure fast reproducibility and accessibility.
In the updated version of the SFS-QSAR-tool (available at https://github.com/ncordeirfcup/
SFS-QSAR-tool_v2, accessed on 5 August 2023), we have incorporated two Jupyter note-
book files, specifically, multiSFSQSAR_random.ipynb and multiSFSQSAR_random.ipynb. These
notebooks were designed to assist users in generating multiple SFS-MLR models in a sin-
gle run, as we performed in this study. Furthermore, we report here, for the first time,
two automated Python-based tools, namely, Non-linear-Regression-tools (accessible at https:
//github.com/ncordeirfcup/Non-linear-Regression-tools, accessed on 15 May 2023) and PLS-
QSAR (available at https://github.com/ncordeirfcup/PLS-QSAR, accessed on 15 May 2023).
These tools are intended to assist the scientific community in developing machine-learning-based
regression models and PLS models, respectively.
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each atom of D1_01 (left) and D2_37 (right) as per the Layer-wise Relevance Propagation (LRP)
algorithm as implemented in Transformer-CNN. Figure S3. Electrostatic maps of (A) D5_32 and
(B) D4_02. Figure S4. PoseView (https://proteins.plus/; accessed on 3 June 2023) 2D diagram of
the pose obtained from the final trajectory of the MD simulations for D4_02; Table S1: Details of
the dataset used in this work; Table S2: Hyperparameters that were optimized in the development
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