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Abstract: G-protein-coupled receptors (GPCRs) are ubiquitous sensors and regulators of cellular
functions. Each GPCR exists in complex aggregates with multiple resting and active conformations.
Designed to detect weak stimuli, GPCRs can also activate spontaneously, resulting in basal ligand-free
signaling. Agonists trigger a cascade of events leading to an activated agonist-receptor G-protein
complex with high agonist affinity. However, the ensuing signaling process can further remodel the
receptor complex to reduce agonist affinity, causing rapid ligand dissociation. The acutely activated
ligand-free receptor can continue signaling, as proposed for rhodopsin and µ opioid receptors,
resulting in robust receptor activation at low agonist occupancy with enhanced agonist potency.
Continued receptor stimulation can further modify the receptor complex, regulating sustained ligand-
free signaling—proposed to play a role in opioid dependence. Basal, acutely agonist-triggered, and
sustained elevated ligand-free signaling could each have distinct functions, reflecting multi-state
conformations of GPCRs. This review addresses basal and stimulus-activated ligand-free signaling,
its regulation, genetic factors, and pharmacological implications, focusing on opioid and serotonin
receptors, and the growth hormone secretagogue receptor (GHSR). The hypothesis is proposed that
ligand-free signaling of 5-HT2A receptors mediate therapeutic effects of psychedelic drugs. Research
avenues are suggested to close the gaps in our knowledge of ligand-free GPCR signaling.

Keywords: GPCRs; ligand-free receptor signaling; inverse agonist; neutral antagonist; µ opioid
receptor; opioid dependence; 6β-naltrexol; psychedelics; LSD; 5-HT2A; GHSR

1. Introduction
Survey of the GPCR Superfamily

The superfamily of G-protein-coupled receptors (GPCRs) comprises ~800 gene encod-
ing proteins with seven transmembrane domains [1], with over half dedicated to sensory
functions, mediating olfaction (~400), taste (33), light perception (10), and pheromone
signaling. Divided into six classes (A–F), the remaining 380 receptors have evolved as
sensors detecting diverse and often minute stimuli, such as photons, pH, mechanical stress,
metal ions, lipids, organic acids and bases, peptides and proteins, and more. These GPCRs
account for a majority of clinically used drugs targets, across a broad range of applica-
tions [1,2]. Expressed in all cells, GPCRs regulate diverse physiological functions, maintain
cellular homeostasis, and control cell growth. Similar to the range of activating stimuli,
GPCRs also signal along multiple pathways [3–6], including heterotrimeric G proteins,
arrestins, and more [7]. Upon stimulation, the canonical G-protein pathway progresses by
exchange of GDP for GTP at the α subunit, followed by separate downstream signaling
of active α subunits and βγ subunits, a multistep process with interconverting receptor
conformations, modulated by allosteric interactions between ligands, components of the re-
ceptor complex, and the membrane environment [3,4,8,9]. Thus, GPCRs represent dynamic
signaling complexes with multiple functional states, critical to understanding basal activity,
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ligand effects, and functional bias [5,10,11]. GPCRs can further exist in distinct oligomeric
states, with higher order oligomers appearing in nanoclusters [4,12].

Because receptors are tuned to respond to minute triggers, one can expect spontaneous
receptor activation to occur resulting in ligand-free signaling, common to most receptor
types, including growth factor receptors that regulate cell proliferation [13]. Many GPCRs
display detectable spontaneous signaling in ligand-free form. This review focuses on the
following questions. Which GPCRs have been shown to exhibit ligand-free signaling?
How does ligand-free signaling fit into existing GPCR signaling models? What are the
physiological functions of ligand-free GPCR signaling? What are the implications of ligand-
free signaling regarding pharmacological properties of drug ligands and for developing
novel therapies? Lastly, what can we learn from genetic mutations about the role of
ligand-free GPCR signaling?

2. GPCRs Displaying Documented Ligand-Free Signaling

Ligand-free signaling, also referred to as spontaneous, constitutive, or basal signaling,
has been reported for diverse GPCRs [14–21], including virally encoded receptors support-
ing viral infections and cellular remodeling [22–24]. Several GPCRs feature masked or
open tethered ligands. Protease-activated receptors (PAR1-4) are permanently activated by
proteolytic cleavage of the extracellular N-terminus, which reveals a tethered N-terminal
activating sequence [25,26]. Nevertheless, PARs can signal along various pathways through
dimerization, activation by biased peptide ligands, allosteric interactions and cellular lo-
cation including caveoli [25]. Whether the tethered ligand is permanently docked into
the active site or rapidly dissociates and rebinds remains to be determined, which could
enable an inverse agonist to block signaling. Adhesion GPCRs also display constitutive
activity owing to a tethered peptide agonist [27]. In a similar fashion, the extracellular
loop 2 of orphan receptor GPCR52 binds to the orthosteric site and maintains a high level
of G-protein signaling but also features a separate pocket for ligand binding [28]. These
examples highlight the broad spectrum of GPCR activation and ligand-free signaling.

Referred to as shape-shifters [16], GPCRs exist in multiple silent and active confor-
mations signaling along diverse pathways. Ligands can interact preferentially with each
of these states, leading to design of biased agonists and antagonists with favorable phar-
macological properties [6,7,29]. Receptor states are stabilized by allosteric interactions
with other membrane components such as cholesterol and proteins, generating receptor
ensembles poised for ligand activation or already basally active in a ligand-free form.
Conditions leading to ligand-free signaling include high receptor density [30] either by
high expression or confinement in receptor clusters within cellular membrane compart-
ments such as caveoli, shown with the neuropeptide Y2 receptor (Y2R) [31]. Also, GPCRs
tend to dimerize or oligomerize with each other (homo-oligomers) or with other GPCR
members (hetero-oligomers), forming higher order arrays that can account for biphasic
and bell-shaped dose–response curves [3,4,25,30–32]. Activation of one receptor, either in
ligand-free form or agonist stimulated, can allosterically interact with its neighbors, leading
to a range of ligand-free signaling modes [3,4,30,33–35] Demonstrated for metabotropic
glutamate receptors (mGluRs), a variable region within transmembrane helix 4 (TM4)
contributes to homo- and heterodimerization and modulates orthosteric, allosteric, and
ligand-free activation [36]. Similarly, a region at the interface of transmembrane domains
of the obligatory heterodimer GABAB2 receptor confers cross-talk between the receptor
monomers and controls its constitutive activity [17]. GHSR displays high basal activity,
which conveys enhanced basal activity to other GPCRs it can bind to in a heterodimer
complex [34,37,38].

While receptor internalization is typically viewed as a sequel to activating signaling,
ligand-free internalization can occur spontaneously or after agonist dissociation [39,40].
If receptor internalization occurs after agonist dissociation, polar extracellular agonists
such as serotonin or glutamate cannot readily enter the cell. Colocalization of ligands with
internalized receptors indicates internalization with the bound agonist, as demonstrated
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with fluorescently labeled ligands for the parathyroid hormone receptor (PTHR) and the
thyroid stimulating hormone receptor (TSHR) [41]. Alternatively, co-expression of cell
membrane transporters of polar GPCR ligands can enable these ligands to reach internalized
receptors (examples: OCT3 and β1AR1 [42]; EAAT3 and mGluR5 [43]).

Cellular compartmentation further affects GPCR signaling owing to distinct allosteric
interactions, termed ‘cell location bias’ in signaling [41–45]. Sustained GPCR signaling after
an initial stimulation can occur at the plasma membrane or in intracellular compartments.
PTHR, TSHR, and mGluR5 signaling from endosomes, Golgi, and nuclear membranes
is associated with prolonged cAMP or calcium signaling compared to those observed
for plasma membrane signaling of these receptors, with intracellular mGluR5 signaling
sufficient to regulate neuronal plasticity [41]. The activation of intracellular mGluR5 is
sufficient to mediate long-term depression in hippocampal slices [43]. While the under-
lying mechanisms and consequences of prolonged signaling are poorly understood, one
could hypothesize that enhanced ligand-free signaling plays a role; however, the role and
regulation of ligand-free intracellular GPCR signaling have not yet been studied in any
detail. Taken together, ligand-free signaling is a pervasive feature of GPCRs with broad
physiological and pharmacological relevance.

3. Dynamics of GPCR Activation

The dynamics of receptor activation and interconverting ligand-bound and ligand-free
receptor states are under intense study. The concept of multiple conformational and func-
tional states of GPCRs [3,6,16,46] has led to increasingly complex receptor signaling models,
with a focus on an active ternary agonist ligand-receptor G-protein complex [11,47] thought
to transition between distinct conformations, as shown with the β-adrenergic receptor [48].
Orthosteric ligands typically bind to the canonical seven transmembrane helices (7TM)
binding pocket, while allosteric components of the receptor aggregate stabilize specific
receptor conformations and facilitate interconversions between them, activating switches
between functional states [49]. These processes determine the signaling response [50] ac-
counting for distinct effects of biased agonists and antagonists [3,4,6,29]. Powerful methods
probing conformational states reveal dynamics and cellular location of signaling recep-
tor aggregates [10,51–54]. Spatial confinement in nanodomains at the cell membrane or
intracellular compartments confers additional signaling specificity [44,51,54].

Two hypotheses beyond the accepted basal ligand-free GPCR signaling could have
general applicability and relevance for GPCRs: First, upon formation of the ternary agonist-
receptor G-protein complex, activation of the G protein and downstream signaling processes
could diminish agonist affinity, resulting in rapid agonist dissociation, while the ligand-free
receptor complex continues to signal. Second, ongoing receptor signaling and other cellular
processes regulate ligand-free signaling, thereby setting a new basal activity that can last for
an extended time beyond the acute stimulus effect. The resulting receptor model illustrated
in Figure 1 has been presented previously in similar form [55]. Upon engaging an agonist,
the receptor ground state RO adopts a preactivated conformation (ago-RO) followed by
conversion to the accepted ternary ligand-receptor G-protein active-signaling complex
(ago-R*). Ligand-free signaling can occur in three ways. First, many GPCRs spontaneously
signal under normal physiological conditions, termed here basal ligand-free signaling
(RO*). Second, ligand-free signaling can continue after agonist activation when the ligand
dissociates from the receptor, potentially accounting for part of most of the signaling process
with the agonist serving as a trigger—termed here acute activated ligand-free signaling
(R*). Third, repeated agonist receptor activation or other physiological stimuli can result
in sustained changes in receptor signaling long after the agonist is removed, termed
here sustained ligand-free signaling (R**). Continued independent downstream signaling
processes are not considered here. All receptor states are proposed to be interconvertible,
modulated by ligands or physiological conditions. One can further assume that the receptor
exists in more than one conformation or aggregate under each condition, resulting in
various signaling cascades, not included in the model in Figure 1. Agonist-activated acute
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ligand-free signaling (R*) and sustained regulated ligand-free signaling (R** distinct from
RO*) are not broadly recognized. Evidence supporting these proposed forms of ligand-free
signaling will be discussed next, providing a guide for experiments to test the GPCR model
in Figure 1.
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Figure 1. Proposed model of a GPCR with multiple interconverting conformational and functional
states. The model includes both ligand-receptor (green) and ligand-free receptor (blue) signaling.
Each receptor state could exist in varying complexes and subcellular locations with distinct signaling
cascades. Both neutral antagonists and inverse agonists can block RO activation in competition
with agonists, whereas only inverse agonists can non-competitively block the ligand-free states RO*,
R*, and R**. The extent to which acutely activated ligand-free R* accounts for overall signaling
of an agonist depends on the rate constants k1, k2, and k3. The R** state is defined by altered
ligand-free signaling after drug pretreatments and washout, or after physiological stimuli. The model
has profound implications for potency and efficacy of agonists and antagonists, and it poses the
hypothesis that ligands can accelerate interconversions between ligand-free signaling receptor states
and the ground state RO.

4. Agonist and Antagonist Interactions with GPCRs Displaying Ligand-Free Signaling

4.1. Dissociation of Agonist Ligand from the Activated Receptor with Continuing Signaling

Agonists are proposed to stabilize the receptor in an ‘active’ conformation promoting
G-protein coupling, which is thought to allosterically cause increased binding affinity
for agonists and decreased antagonist affinity [46], thereby initiating signaling (activated
ago-R*, Figure 1). This view is consistent with the observation that the four GPCRs
tested (AR2A, GABAB, CB1R, and DRD2) are not pre-assembled with G proteins without
agonist activation (except for basally active ligand-free CB1R) [50]. However, engaging
the signaling pathway with subsequent dissociation of the G heterotrimer into Gα and
Gβγ induces further remodeling of the active receptor complex [8,56], which could reduce
agonist affinity. Experimental estimates of agonist residence time at the receptor, efficacy,
and potency strongly depend on the experimental conditions, resulting in estimated values
ranging over four orders of magnitude [57]. Both Na+ and GTP are needed for activating the
G-protein signaling pathway [57,58], and both reduce receptor affinity in in vitro binding
studies for agonists but not antagonists [58], facilitating agonist dissociation. To what extent
the generated ligand-free R* contributes to the overall effect size and duration depends
mainly on three rate constants: agonist-R* dissociation (k2) and reassociation (k3), and
reversion of active ligand-free R* back to a silent ground state (k4) (Figure 1). Experimental
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evidence for this model comes from studies on rhodopsin [47] and opioid receptors [58];
however, direct evidence for a pervasive role of ligand-free R* among GPCRs is sparse.

The model depicted in Figure 1 further raises the question of whether the complete
ternary ligand-receptor G-protein complex (ago-R*) and the acutely activated ligand-free
R* are functionally distinct. The activation of GPCRs often results in a rapid first signal
followed by prolonged signaling along distinct pathways, observed with TRH-R1, ADRB2,
and NK2 receptors, suggesting an initial ‘induced fit’ followed by distinct subsequent
events [59,60]. Also, morphine causes rapid Ca++ influx in µ opioid receptor (MOR)
transfected HEK293 cells over the first 10 sec, followed by sustained intracellular Ca++

release [61]. GPCR activation commonly leads to clustering into nano-domains, a process
that modulates signaling, as shown with the DRD2 receptor [54]. Pre-coupling with a non-
canonical G protein followed by agonist activation resulted in enhanced agonist stimulated
coupling to the canonical G protein [48], suggesting a priming effect that could occur
during the ago-R* or the ligand-free R* states. In the absence of an agonist ligand, R*
could be more susceptible to allosteric effects by other cellular components, facilitating
a switch in receptor functions involving different G proteins and arrestins, and receptor
forms that internalize and signal intracellularly. Biased agonists cause G-protein activation
with or without subsequent internalization, as shown for morphine and DAMGO at the µ
opioid receptor (MOR) [62]. Ligand-free R* could undergo further regulatory processes that
establish long lasting signaling by ligand-free R**. These hypotheses require further testing.

4.2. Ligand-Free Signaling of Rhodopsin

The dim-light receptor rhodopsin (class A GPCR) has served as a premier experimental
model, displaying structural features common to all GPCRs, such as multiple activation
states and biased signaling [5,63,64]. Kept in an “off” state by a covalently bound inverse
agonist, 11-cis retinal (11CR), rhodopsin is activated by photons via conversion of 11CR to
the agonist all-trans retinal (ATR), activating the G protein transducin to yield the active
state metarhodopsin II [47]. Metarhodopsin II is thought to continue signaling until the
ATR-receptor link is hydrolyzed and ATR is released, causing conversion of MII into
inactive opsin that can rebind 11CR.

Schafer et al. [47] have modified this rhodopsin model by including sustained ligand-
free signaling after ATR dissociation, testing conformational dynamics with the use of
time-resolved, fluorescence labeling experiments. They concluded that “an active-like, yet
empty, receptor conformation can transiently persist after retinal release, followed by ATR
rebinding, before the receptor ultimately collapses into an inactive conformation.” These
observations support the receptor model with an agonist-R*—R* equilibrium (Figure 1).
Their results further indicate that congenital blindness caused by constitutively active
rhodopsin [64] might be treatable with inverse agonist drugs that disrupt the rebinding
of ATR to active rhodopsin. Schafer et al. [47] further comment that continued ligand-free
signaling after agonist dissociation could play an unappreciated role with other GPCRs
as well.

4.3. Etorphine—An Ultra-Potent µ Opioid Receptor (MOR) Agonist

Further evidence in support of accelerated agonist-receptor dissociation after acti-
vation comes from experiments with the opioid agonist etorphine (antinociceptive EC50
~0.0002 mg/kg in rats) ([58], and references therein). At this EC50 dose, the total amount of
etorphine reaching the brain is far less than available MOR sites, leading to a MOR occu-
pancy of only 2% [58]. Sufentanil causes antinociception in rats at a similar low fractional
receptor occupancy [65]. A combination of three mechanisms can account for such extreme
potencies. First, the agonist must have high affinity to the receptor, with association rates
limited only by diffusion rate. A second mechanism key to extreme potency can result from
continued ligand-free signaling after rapid agonist-receptor dissociation caused by reduced
affinity to the active signaling receptor aggregate R*. Measured in vitro, etorphine’s disso-
ciation half-life from MOR is ~30 min, partially accelerated by Na+ and GTP [58]. However,
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when injected in trace amounts in rats, followed by a chase with a saturating dose of an
antagonist, the 3H-etorphine in vivo off rate from MOR in brain tissues is much shorter
(t1/2 = 50 sec) (Figure 2A) [58], demonstrating greatly reduced affinity to the actively signal-
ing MOR. One can reproduce this fast off-rate with in vivo labeling, followed by sacrifice,
immediate brain tissue homogenization and incubation in vitro with a saturating etorphine
chase dose in the presence of Na+ and GTP (Figure 2B) [58]. In the absence of NaCl and
GTP, the dissociation is slow, matching that commonly observed in vitro (Figure 2B).
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Figure 2. Rapid etorphine receptor dissociation in rat brain (adapted from Perry et al., 1982 [58]).
A tracer dose of 3H-etorphine was injected s.c., labeling preferentially MOR sites, with ~50% of
3H-etorphine in the brain specifically bound at 17 min (time 0). At this time, a saturating chase
dose of diprenorphine was injected, with sacrifice at the indicated time points, rapid brain homoge-
nization, and analysis of bound 3H-etorphine (A). In panel (B), the animals are sacrificed at 17 min
and saturating chase concentrations of etorphine are added in vitro (B). The in vitro chase exper-
iment was performed in Tris buffer alone and with addition of 100 mM NaCl or 100 mM NaCl +
GPP(NH)P (stable GTP analog) [58]. These results demonstrate rapid etorphine dissociation from
MOR only under physiological conditions in vivo or immediately after sacrifice in the presence of
NaCl + GPP(NH)P.

These observations demonstrate rapid agonist-R* dissociation and indicate contin-
ued signaling by ligand-free R** in vivo. Third, assuming a diffusion barrier around the
receptor sites (such as the synaptic cleft) and rapid rebinding, ligands at sub-saturating
concentrations can rebind several times before diffusing away (modeled with a receptor
micro-domain (Figure 3) [66]). Taken together, these processes can account for the extreme
potency of etorphine and sufentanil, with the agonist serving as a repetitive trigger for
generating active ligand-free MOR*. The same dynamics appear to apply to less potent
MOR agonists including morphine. Both etorphine and morphine have antinociceptive
EC50 values 2–3 orders of magnitude lower than the ID50 dose required to saturate 50% of
3H-etorphine sites in vivo (etorphine EC50 0.0001 mg/kg versus ID50 0.057 mg/kg, and
morphine EC50 1 mg/kg versus ID50 180 mg/kg) [58,67]. Both ID50 values are far above
lethal doses in rats. Similar receptor activation dynamics might also apply to the highly
potent psychedelic lysergic acid diethylamide (LSD) acting at 5-HT2A receptors, and to a
potent agonist of GHSR, both discussed further below.
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Figure 3. Retention of ligands at neurotransmitter receptors (GPCRs) in a receptor micro-domain in
brain. This in vivo model with a diffusion-limited receptor micro-domain leads to retention of tracer
doses at receptor sites (adapted from Perry et al., 1980 [66]), enabling selective receptor imaging in
the brain. If kout is smaller than kon, ligand rebinding occurs before diffusion away into brain tissues.
For example, the opioid antagonist diprenorphine given in tracer amounts appears to rebind 7 times
before exiting the micro-compartment, increasing its apparent t1/2 of dissociation from 18 min at
MOR to ~2 h in vivo, longer than the elimination t1/2 from the circulation (45 min) in rats. As a
result, >80% of a tracer dose in the brain is receptor bound [66]. Diprenorphine binds to all opioid
receptors with high affinity.

4.4. Lysergic Acid Diethylamide (LSD)—An Ultra-Potent Agonist at 5-HT2A

LSD is one of the most potent 5-HT2A agonists, eliciting hallucinations with an oral
dose at or above 0.025 mg in humans [68]. As discussed with etorphine, the amount of
LSD reaching the brain is considerably below available 5-HT2A receptor sites assuming
<1% of the dose reaches the brain. The acute effect peaks after ~3 h and lasts for 6–8 h,
and up to 12 h after a high LSD dose (0.2 mg) [69]. The high 0.2 mg LSD dose results in
peak blood levels of ~4 nM after 2 h, with 30% unbound LSD, leading to an estimated peak
concentration of 0.7 nM in cerebrospinal fluid. This concentration is in the range of LSD’s
in vitro binding affinity to 5-HT2A (Ki = 0.4–1.2) but below the EC50 for in vitro receptor
stimulation (EC50 7 nM) [70,71]. Given the high level of 5-HT2A receptors in target tissues
(~25 nM in rat brain frontal cortex [72]), LSD in vivo receptor occupancy is predicted to
be low with LSD doses causing acute effects. After an early rapid distribution phase, the
peripheral elimination half-life is 3–4 h, increasing to ~9 h in the terminal elimination
phase, with LSD blood levels dropping far below the initial peak doses [70]. The drug
level-effect relationship over time reveals negative hysteresis (the effect outlasting the blood
level curve) [70,71]. Such extended effect has been interpreted to result from slow drug
receptor binding equilibration, supported by the finding that LSD–5-HT2A dissociation
studied in vitro is exceedingly slow (t1/2 ~3 h) [73,74]. However, such dissociation studies
do not reproduce the in vivo conditions allowing active signaling, as demonstrated for
etorphine (Figure 2). Assuming the LSD levels peak at <1 nM in the brain, only a small
portion of 5-HT2A receptor sites can be occupied. Administration of labeled LSD to mice
revealed early peak levels in the blood and brain and a relatively rapid removal from
both compartments [75], incompatible with long selective LSD receptor retention in the
brain. A parsimonious explanation for the potent pharmacological LSD effect is to invoke
high affinity binding to 5-HT2A, followed by activation of receptor signaling, accelerated
dissociation with continued ligand-free 5-HT2A* signaling, and multiple rebinding steps
before diffusing away. Serving mainly as a trigger, LSD could generate robust acute effects
at low receptor occupancy, as proposed for etorphine at MOR. While consistent with
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pharmacological observations, these predictions need to be directly tested experimentally.
The implications of this hypothesis will be discussed in the section on psychedelic drugs.

5. Pharmacological Significance of Activated Ligand-Free Receptor Signaling
5.1. Involvement in Agonist Effects

Continuing signaling of ligand-free R* after agonist stimulation could be generally
applicable to many GPCRs. If ligand-free R* accounts for a main portion of the agonist’s
overall effect, agonists such as etorphine and LSD can reach extreme potencies as only a
small fraction of the receptor population needs to be occupied. Partial agonists such as
buprenorphine would need to occupy a larger portion of available receptor sites before
sufficient activated agonist-R* and ligands-free R* is generated for analgesic effects [67].
The half-life of R* will determine effect duration when the agonist’s elimination half-life is
shorter, resulting in counterclockwise hysteresis of concentration-effect–time curves (the
effect outlasts the duration of agonist levels, for example, lisdexamfetamine [76]). While
counterclockwise hysteresis (e.g., for morphine [77] and midazolam [78]) is modeled as
a delay of equilibrium in a deep ‘receptor compartment’ [79] or slow receptor dissocia-
tion [80], continued ligand-free R* signaling provides a novel parsimonious mechanism, as
discussed above with LSD. The extent and role of ligand-free R* signaling still has to be
tested for most GPCRs. Given the large variety of agonist ligands, activation mechanisms
are likely to differ between GPCRs.

5.2. Pharmacological Significance of Neutral Antagonism and Inverse Agonism

Inverse agonists are defined by their ability to suppress ligand-free basal activated RO*
signaling whereas neutral antagonists can bind but do not block RO* signaling (Figure 4).
Efficacy levels at ligand-free R* and R** are mostly unknown. Ligand efficacies can vary
between ligand-free signaling states of the same receptor depending on cellular conditions
and pretreatments [81]. For example, naloxone and naltrexone are neutral antagonists at
basal activated MORO* but inverse agonists at MOR* or MOR** [82]. Similarly, pretreatment
of DOR-transfected cells with an agonist and inverse agonist followed by washout changes
ligand-free signaling and efficacies [83].
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can turn into a partial agonist or inverse agonist, depending on its efficacy at each of the receptor
states (adapted from [29]).
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When ligand-free signaling contributes to pathophysiology, inverse agonists promise
increased efficacy to correct pathophysiological conditions [84]. As both neutral antagonists
and inverse agonists competitively block RO activation by an agonist, one would expect
equal antagonist potency with equal receptor affinity. However, in cases where ligand-
free activated R* plays a main role in agonist stimulated signaling, potencies of neutral
antagonists and inverse agonists diverge [29,55,85]. By definition, one would expect
only the inverse agonist to block signaling of ligand-free R* in a non-competitive fashion,
regardless of the agonist level present. Indeed, naloxone and naltrexone appear to be
inverse agonists at ligand-free MOR* showing ~100-fold higher potency in blocking opioid
antinociception and respiratory depression, or causing withdrawal in rhesus monkeys,
than the neutral antagonist 6β-naltrexol even though receptor binding potencies are nearly
equal [86]. The lower potency of 6β-naltrexol compared to naltrexone cannot be accounted
for by the relatively slow access to the brain (as reported in rodents [87]), since we have
found brain entry to be unimpeded in rhesus monkeys (unpublished data). In addition,
naltrexone is highly potent (IC50 0.007 mg/kg) in blocking antinociception in mice caused
by large doses of morphine (10–30 mg/kg) [88], acting dose-independently of morphine in a
non-competitive fashion. Similarly, the high potency of naloxone and naltrexone in causing
withdrawal symptoms, regardless of the opioid agonist load in the body, is consistent
with a non-competitive mechanism involving inverse agonism at MOR* and MOR** [89].
Discrepancies between antagonist in vivo potency and in vitro receptor affinity of inverse
agonists and neutral antagonists are predicted by the model in Figure 1 and need to be
tested for other GPCRs as an indicator of prevalent ligand-free R* signaling.

Inverse agonists or neutral antagonists can be the drug of choice at ligand-free signal-
ing GPCRs. For example, basal activity of β-adrenoceptors has led to the development of
neutral and inverse agonists with distinct pharmacological effects [81]. For treatment of
heart failure, a neutral β1-blocker such as carvedilol may lead to better survival outcomes
than inverse agonist [21]. Modulation of 5-HT6R activity including its ligand-free signaling
could serve to alleviate depression [90].

Antagonists can differ in their property as inverse agonist or neutral antagonist at
the same GPCR as a function of the signaling pathway [4] or pretreatment with agonists
or antagonists—demonstrated for opioid receptors [83,91] and serotonin receptors [92].
One can exploit these differences for designing biased agonists [6] and antagonists [4,30]
that selectively activate or block one pathway over the other, not only through affinity
differences between receptor conformations but also via inverse and neutral mechanisms.

Partial agonists are proposed to be less efficient than full agonists in generating
agonist-R*, which can further convert into ligand-free R* (Figure 1). The partial ago-
nist buprenorphine is used in opioid maintenance therapy but still can be diverted to
illicit or recreational use, having sufficient agonist efficacy for non-medical use [93]. To
avoid a diversion, a small amount of naloxone is co-formulated with buprenorphine in
SuboxoneR, in a ratio of 1:4 (e.g., 0.5 mg naloxone plus 2 mg buprenorphine) [94]. Upon
oral administration, naloxone is largely metabolized in the liver during the first pass after
absorption. However, when diverted for systemic use, this small amount of naloxone
is sufficient to cause withdrawal even though buprenorphine’s in vitro receptor binding
affinity at MOR is exceptionally high, with slow dissociation rates, suggesting that naloxone
act non-competitively as inverse agonist at ligand-free MOR* in vivo. In animal studies,
buprenorphine displays bell-shaped dose–response curves inhibiting its own action at high
doses, above those administered to humans [95]. We had proposed the hypothesis that
buprenorphine—with chemical features similar to the antagonist diprenorphine and an
antagonist at κ opioid receptors—could rebind to the generated ligand-free MOR* at higher
doses with reduced affinity, suppressing its signaling activity as an inverse agonist, and
accounting for its bell-shaped dose–response curve [29]. Further studies are needed to
understand the mechanism of action of buprenorphine and analogs, and applicability to
other GPCRs.
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6. Relevance of Ligand-Free R* Signaling to In Vivo Receptor Imaging Studies

For the interpretation of imaging studies of GPCRs with potent labeled ligands [96],
the receptor model can serve to dissect agonist and antagonist binding profiles in vivo.
For accurate positron emission tomography (PET) imaging of neurotransmitter receptors,
for example serotonin receptors [97], a large portion of high affinity tracers present in the
brain must reside at receptor sites to attain clear images. This phenomenon can result
from selective retention in a receptor domain because of a diffusion boundary (for example
the synaptic cleft) that slows ligand dispersal (Figure 3) [66]. As a result, the apparent
dissociation rate at low receptor occupancy can be substantially higher than measured
in vitro, resulting in selective long retention at receptor sites [66]. This retention is critical
to in vivo receptor imaging in the brain.

Antagonists appear to bind to both silent and active receptors with high affinity,
thereby labeling a large pool of receptor sites. On the other hand, agonist tracers label the
same receptor with at least two distinct affinities thought to reflect low affinity binding to
the uncoupled receptor and high affinity binding to the active agonist-receptor G-protein
complex, as discussed with serotonin receptors [96,98]. Yet, an agonist tracer such as
3H-etorphine binds with high affinity to the receptor, but upon activation of signaling,
appears to lose affinity at the agonist-R* state and dissociates more rapidly than shown
in vitro [58]. Opioid agonists are considerably more potent in displacing a labeled agonist
than antagonist tracers in vivo [65]. These dynamic differences between agonist and
antagonist binding in vivo result in distinct displacement and saturation binding curves
with increasing doses of agonists or antagonists [96]. As a result, saturation curves with
opioid agonists tend to yield lower estimates of total receptor sites compared to those
obtained with antagonists [96]. Similarly, agonists at the 5-HT2A receptor seem to label
fewer binding sites than antagonists in transfected cells and are more potent in displacing
agonist tracers than antagonist tracers at 5-HT2A [98], consistent with the receptor model
in Figure 1. In addition, only agonist but not antagonist tracers can be detectably affected
by competing levels of endogenous agonist ligands, demonstrated with serotonin in vivo
load and 5-HT2A imaging with an agonist and antagonist tracer [97]. Distinct binding
properties of agonists and antagonists are consistent with ligand-free R* signaling, yielding
distinct in vivo labeling patterns as indicators of ligand-free R* signaling.

7. Physiological Significance of Sustained Ligand-Free Signaling (R** in Figure 1)

As ligand-free signaling of many GPCRs has physiological effects, one can assume
that it is regulated by mechanisms similar to those applicable to agonist activated signaling,
involving interactions with kinases, arrestins, and other regulatory factors. For example,
MC4R displays basal ligand-free signaling and is involved in regulating appetite and
metabolism. Its endogenous agonist α-melanocyte-stimulating hormone (α-MSH) causes
anorexigenic effects, whereas its endogenous inverse agonist agouti-related peptide (AgRP)
blocks MC4R ligand-free signaling with orexigenic effects [15], one example of endogenous
inverse agonists regulating ligand-free receptor signaling. Receptor desensitization and
internalization and subsequent degradation in lysosomes are thought to be the main
mechanism by which permanently activated GPCRs can be switched off, as proposed for
protease activated receptors (PARs) with an N-terminal tail that is cleaved to generate a
tethered agonist peptide; yet, PARs continue to signal from endosomes with recruitment
of β-arrestin [26]. Hence, PARs can display biased signaling even though the internal
ligand is fixed, suggesting that the active receptor is responsive to allosteric factors [25] and
potentially orthosteric ligands if the tethered agonist frequently dissociates and rebinds
while the ligand-free PAR continues signaling, as demonstrated with rhodopsin [47]. If
correct, inverse PAR agonists can be effective regulators of PAR signaling.

Subcellular location is critical to defining the signaling pathway [99,100]. For example,
MOR and DOR residing in the Golgi apparatus couple to Gαi/o but not β-arrestin, unlike
receptors in the plasma membrane [100]. GPCRs residing in intracellular organelles as well
as newly internalized receptors can display ligand-free signaling that may proceed along
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pathways distinct for those occurring at the cell membrane. While receptor internaliza-
tion has been linked to arrestin coupling, intracellular agonist-stimulated signaling can
proceed via G-protein coupling, arrestin mediated signaling, and other mechanisms [100].
It remains to be determined for each GPCR whether receptor internalization occurs with-
out a bound ligand, as shown with constitutively internalizing GPCRs [39,40]. When the
agonist ligand is polar and does not penetrate the cell membrane (e.g., serotonin), intracel-
lular agonist levels can be minimal unless gaining access via membrane transporters (e.g.,
glutamate and epinephrine) [42–44]. Whether intracellular GPCRs display a substantial
degree of ligand-free signaling has yet to be studied broadly. Upon agonist stimulation,
GPCRs tend to aggregate in cellular membrane compartments, assuming a punctate pattern
when stained with fluorescent antibodies; such aggregation alone can activate ligand-free
signaling by R** [31]. It is hence conceivable that repeated agonist stimulation results
in sustained, enhanced ligand-free signaling in various cellular compartments (R** in
Figure 1). However, while the activation status of GPCRs can be assessed with molecular
probes [11,44,52,53,101,102], these methods typically address agonist activated pathways
while little is known about intracellular ligand-free signaling and induced changes thereof
for most GPCRs. If sustained ligand-free R** signaling were to play a physiological role, one
must also address the question whether ligands, such as neutral antagonist, binding to R**
can alter the equilibrium between receptor states, for example, resetting R** to the resting
state RO (Figure 1). While few studies address these issues, experiments with opioid and
serotonin receptors reveal or suggest a role for regulated sustained R** signaling and ligand-
mediated modulation of R**. Given the extraordinary diversity of GPCR activation and
signaling mechanisms, it is difficult to project signaling models across all GPCRs. Rather,
I will focus on opioid and serotonin receptors, and on the growth hormone secretagogue
receptor GHSR, which displays high ligand-free signaling.

8. Opioid Dependence and Elevated Lasting Ligand-Free MOR** Signaling

The receptor model shown in Figure 1 has emerged largely from results obtained
with molecular studies of MOR, combined with pharmacological data for interpreting
in vivo ligand binding. Our work on receptor binding in live animals has revealed differ-
ent properties than observed in vitro [29]. Repeated agonist stimulation causes sustained
elevated ligand-free MOR** signaling, proposed to play a role in opioid analgesia and
dependence [55,103–105]. The mechanisms of MOR** signaling are unknown but could
involve β-arrestin-2 and c-Src signaling [106]. Agonist efficacy correlates with generated
ligand-free MOR** signaling, as treatment of MOR transfected cells with the full agonist
DAMGO caused a greater level of ligand-free MOR** signaling than the less efficacious
morphine [107]. Elevated ligand-free MOR** signaling is revealed with inverse agonists
such as naloxone and naltrexone that block R* and R** signaling and cause withdrawal
symptoms long after agonist elimination from the body [89]. Basal ligand-free MORO*
differs from ligand-free R* and sustained R** because naltrexone and naloxone are neutral
antagonists at basal ligand-free MORO* but inverse agonists at both R* and elevated R** [82].
Delta and kappa opioid receptors (DOR and KOR) appear to have similar characteristics,
with continued ligand-free signaling after agonist dissociation and altered states of sus-
tained signaling as a function of agonist pretreatments [83,91,108]. Intracellular receptors
could contribute to the cell’s ligand-free MOR signaling [45,53]. Dependence associated
with elevated sustained MOR** could involve activation of tyrosine kinase signaling via
arrestins [100] or via a calmodulin dependent pathway activating EGFR [109].

In contrast to naloxone, 6β-naltrexol does not cause withdrawal in an acute model of
dependence (4 h after a single dose morphine) but blocks the effect of naloxone, indicating
that endogenous opioids do not play a main role [89]. With chronic morphine pretreatment,
6β-naltrexol initially also causes withdrawal for several hours after the last morphine dose,
but only with high 6β-naltrexol doses, while it no longer causes withdrawal symptoms
24 h after the last morphine dose, in contrast to naloxone [89]. These results could stem
from distinct MOR** interactions of 6β-naltrexol compared to naloxone and naltrexone.
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Co-administration of guinea pigs with methadone and low 6β-naltrexol doses potently
prevents the development of dependence in adult guinea pigs (IC50 ~0.01 mg/kg, measured
24 h after the last methadone dose with a naloxone challenge) at 6β-naltrexol doses far
below its antinociceptive dose (IC50 ~1 mg/kg) [110]. 6β-Naltrexol also potently prevented
morphine dependence in juvenile mice [111]. We hypothesize that 6β-naltrexol binds
non-competitively to ligand-free MOR** and gradually accelerates conversion of elevated
MOR** back to the ground state RO. As 6β-naltrexol is retained over long time periods in the
brain (t1/2 ~5 h) after administration of small doses in mice and guinea pigs (unpublished
data), low fractional MOR occupancy appears to be sufficient gradually to reverse the
dependent state. Low-dose 6β-naltrexol also prevents neonatal withdrawal behavior in
guinea pig pups born to dams exposed to methadone (IC50 ~0.025 mg/kg) [110].

The proposed reversal of ligand-free MOR signaling had been tested previously in mice
with use of afferent nociceptors that express silent MOR sites [112]. Inflammatory signals
alone (e.g., bradykinin release) are sufficient to generate ligand-free MOR** signaling—an
example of physiological regulation of ligand-free signaling, which is acutely suppressed
by naltrexone [112]. Naltrexone pretreatment alone generates ligand-free MOR signaling,
detectable after naltrexone washout. In contrast, 6β-naltrexol reverses active ligand-free
MOR** to the silent state and even blocks naltrexone’s activating effect [112]. This finding
supports the hypothesis that ligands can affect interconversion between MOR** and silent
MORO, as depicted in Figure 1. The molecular properties of these proposed MOR states
and interconversions remain to be experimentally tested.

The unique pharmacological properties of 6β-naltrexol led us to the hypothesis that 6β-
naltrexol or its analogs could serve in the design of safer opioid analgesic co-formulations,
weaning protocols, and prevention of neonatal abstinence syndrome [29,55,110]. How
these concepts apply to other GPCRs remains to be determined.

9. Ligand-Free Signaling of Serotonin Receptor 5HT2A
9.1. Physiological and Pharmacological Relevance

A key neurotransmitter, serotonin has broad physiological functions interacting with
serotonin receptors encoded by 12 genes. Among these, the 5-HT2A receptor serves as
a common drug target in the treatment of schizophrenia and of depression indirectly by
blocking serotonin transporters (SERT and SLC6A4). Drugs targeting 5-HT2A typically
interact with multiple neurotransmitter receptors of high sequence homology, confounding
a clear understanding of the underlying mechanisms responsible for clinical outcomes. In
addition, 5-HT2A can form heterodimers with DRD2 [113] and the metabotropic mGlu2
receptor [114,115], conveying distinct functional properties in cells where they are co-
expressed, involving three neurotransmitter pathways relevant to schizophrenia. Constitu-
tive ligand-free activity of both 5-HT2A and 5-HT2C has been implicated in the etiology
and treatment of affective disorders [116]. Inverse 5-HT2A agonists appear to have superior
efficacy as antipsychotics compared to neutral antagonist [117,118], demonstrating the
relevance of ligand-free signaling. Some antipsychotics such as pimavanserin are inverse
agonists at the Gαi1 pathway but neutral antagonists at the Gαq/11 pathway. The Gαi1
pathway is also considered the hallucinogenic effector pathway [92,119]. In view of the
large in vivo potency differences between neutral antagonists and inverse agonists at MOR,
the interpretation of these results remains unclear and raises several questions. Could
5-HT2A inverse agonists be merely more potent in vivo than neutral antagonist at the target
signaling pathway? Does acutely activated 5-HT2A* play a role in response to agonists?
Can ligands facilitate interconversion between 5-HT2A*/** states and the resting 5-HT2AO

state? Critical analysis of psychedelic drugs can help address some of these questions.

9.2. Psychedelic Drugs and 5-HT2A Signaling—Acute and Long-Term Effects

5-HT2A receptors are main targets for psychedelic drugs such as psilocybin, mescalin,
and LSD [120]. Acting via heterodimeric receptor combinations, for example 5-HT2A-
DRD2, psychedelics can further activate dopaminergic signaling [113]. Psychedelic assisted
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therapies have been tested in the treatment of intractable depression, post-traumatic stress
disorder, addiction, chronic pain, and neurological disorders [121–123]—with the underly-
ing mechanism remaining uncertain. Transient exposure to psychedelic drugs can result
in long-lasting physiological and therapeutic effects [124] attributed to increased synapto-
genesis and cortical dendritic spine size [122,125]. Low affinity 5-HT2A agonists such as
dimethyltryptamine can also display psychedelic and long-lasting effects [126,127]. Empiri-
cal use of psychedelics is now followed by detailed basic and clinical studies, hampered by
a patchwork of regulations at regional and central governmental levels [121].

Interactions between psychedelics with 5-HT2A receptors appear to be similar to those
with opioid receptors. Structural analyses have determined the shape of ligand binding
pockets and structures of the receptor with and without agonist ligands coupled to Gαi1,
Gq/11, or β-arrestin-1 [74,92,119]. In addition, 5-HT2A signaling occurs intracellularly upon
activation by lipophilic agonists including the endogenous serotonin metabolite dimethyl-
tryptamine [102,128,129]. Serotonin cannot readily cross the plasma membrane and may
not be the endogenous ligand for intracellular 5HT2A, while dimethyltryptamine is sug-
gested to serve as internal ligand, an example of location bias in 5-HT2A signaling [102].
This hypothesis is consistent with the notion that serotonin does not internalize when
bound to the receptor after activation at the cell membrane. However, dimethyltryptamine
levels in the brain are rather low (~1 nM in pineal glands) [128] whereas binding affinity
and agonist potency at 5-HT2A are moderate (in 5-HT2A-transfected cells: binding Ki 240
nM against 3H-ketanserine, EC50 76 nM in a Ca++ assay [120]). Therefore, endogenous
dimethyltryptamine could occupy only a small fraction of 5-HT2A sites.

9.3. Long Lasting Effects of Psychedelics—Possible Role of Ligand-Free 5-HT2A Signaling

Single doses of psychedelics cause hallucinations over several hours, and extended
mood changes for 1–2 days [70,124,130,131]. Single doses also lead to long lasting effects
stimulating neuronal growth [102,125,131], exploited in various therapies, for example, in
the treatment of depression and drug use disorders [123]. Conventional neuropsychiatric
drugs also require days to weeks to begin working [122]. Ly et al. [125] assert that psilocybin-
induced cortical neuron growth proceeds via initial 5-HT2A stimulation leading to TrkB
activation and sustained neurite growth involving mTOR and AMPA receptor activation,
which was heralded as a novel therapeutic target for the treatment of depression [102].
I propose the hypothesis that repetitive small incremental activation steps of 5-HT2A
lead to cumulative increases in ligand-free 5-HT2A* and long lasting 5-HT2A** signaling,
which can be maintained with low agonist receptor occupancy. Ligand-free signaling
of neurotransmitter GPCRs has previously been proposed to provide tonic support for
neuronal activity [132]. These hypotheses require more studies to be performed.

An alternative mechanism proposed to account for the antidepressant effects of
psychedelics and antidepressants involves direct binding to TRKB receptors resulting
in enhanced binding of neurotrophins to TRKB (e.g., BDNF) [133,134], the downstream
target of 5-HT2A signaling [135]. However, the TRKB binding affinity of antidepressants
appears to be too low to play a significant role in vivo. In contrast, LSD binds with a Kd of
0.6 nM to murine TrkB [133]. Moreover, a 0.1 mg/kg dose of LSD every 72 h in mice resulted
in both a psychedelic-like response (head twitches) and antidepressant-like effects (blocking
freezing response in cold water). Co-administration of a 5-HT2A antagonist blocked the
psychedelic but not the antidepressant effect of LSD. Moliner et al. [133] concluded that
LSD analogs could serve as novel antidepressants. However, it remains an open question as
to whether direct activation of TRKB mediates or contributes to the antidepressant effects of
LSD as the single dose of 0.1 mg/kg LSD used in mice is much higher than a hallucinogenic
dose of LSD in humans (~0.001 mg/kg). This discrepancy is further highlighted by the
lasting effects of psychedelic drug micro-dosing discussed below.
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9.4. Micro-Dosing with Psychedelics—Attempts to Separate Hallucinogenic from
Therapeutic Effects

Micro-dosing of psychedelics, at levels 5–10% of those causing hallucination, ap-
pears to suffice for attaining long-lasting effects as a potential therapy with broad appli-
cations [136,137]. The evidence is mostly empirical but gradually begins to meet rigorous
standards. Clinical results raise the hypothesis that very low levels of psychedelics suf-
ficiently activate 5-HT2A receptors, possibly involving intracellular 5-HT2A. Repeated
receptor activation at low receptor occupancy could suffice to elevate 5-HT2A signaling
in the form of ligand-free 5HT2A* or 5-HT2A**. Similarly, fluctuations of endogenous
ligands such as dimethyltryptamine could regulate 5-HT2A receptor signaling. By this
mechanism, dimethyltryptamine could indeed serve as a relevant endogenous 5-HT2A
ligand [102], despite its low levels in the brain. Rather minute doses of psychedelics given
over a prolonged time period could elicit the desired beneficial therapeutic effects without
causing hallucinations, separating acute from chronic effects. This hypothesis has yet to be
tested but could have relevance to drug development and treatment strategies.

10. Growth Hormone Secretagogue Receptor GHSR: High Ligand-Free Signaling

GHSR, and specifically its active splice-variant GHSR1a, is the receptor for the orex-
igenic peptides ghrelin and acetyl-ghrelin with a broad spectrum of physiological ef-
fects, such as stimulating growth hormone release, increasing hunger, modulating energy
metabolism, and regulating immune function [138]. Expressed largely in the gastrointesti-
nal tract, ghrelin mediates communication with the CNS via GHSR1a, highly expressed in
the hypothalamus and pituitary, promoting the sensation of hunger [139] and regulating
incentive value of artificial reward in substance abuse such as alcohol [140]. GHSR1a is
of interest here because of its high level of ligand-free signaling [140,141]. Among several
GHSR mutations, the Ala204Glu GSHR variant (rs121917883) selectively impairs ligand-
free signaling [142,143]. The mutant receptor still responds to ghrelin activation [144],
but in attenuated fashion, possibly in part because continued ligand-free signaling after
agonist dissociation from the receptor is reduced. The Ala204Glu variant is associated
with idiopathic short stature and growth hormone deficiency, demonstrating physiological
relevance of ligand-free signaling. Internalized GHSR1a appears also to trigger signaling,
possibly independent of ghrelin, by a pathway involving cAMP [138].

Signaling by GHSR1a is regulated on many levels, including by endogenous ligands,
the potent agonist ghrelin/acyl-ghrelin and the inverse agonist LEAP2, both affecting
eating behavior in opposing directions [145]. Similar to the role of agouti-related peptide as
an inverse agonist of MCR4 [15], expression of an endogenous inverse agonist highlights
the relevance of ligand-free GHSR1a signaling. Human plasma levels of ghrelin are approx-
imately 170 pM, with the active acylated form of ghrelin still lower, fluctuating during the
day and before taking a meal or during fasting [146]. The amount of acyl-ghrelin reaching
hypothalamic-pituitary GHSR1a receptors likely occupies only a fraction of available recep-
tors. Yet, acyl-ghrelin is extremely potent in further stimulation of GSHR1a activity, possibly
causing enhanced ligand-free GHRS1a* signaling, as discussed for etorphine and LSD. The
extracellular loop of GHSR1a may maintain enhanced ligand-free signaling functioning
as an internal tethered ligand [15]. The hypothesis needs to be tested whether the agonist
binds with a high affinity while active signaling causes agonist dissociation and enhanced
ligand-free GHSR1a signaling, which is critical to understanding the extent and duration
of action after dosing and guiding clinical trial design.

GHSR1a is a prolific partner, forming heterodimers with other GPCRs, including
DRD1, DRD2, MC3R, and 5-HT2C, thereby allosterically modulating ligand-free signaling
of its partner receptor [20,37,38]. Ligand-free signaling of GHSR itself is sufficient to
enhance signaling of its partner [20]. Such interactions broaden the physiological influence
of GRHS1a across multiple functions [38]. The regulation of ligand-free GHSR still remains
to be studied in detail.
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11. Genetic Variants That Affect Ligand-Free Signaling

Genetic variants can change ligand-free signaling of GPCRs in multiple ways. En-
hanced or reduced expression will alter ligand-free signaling while enhanced receptor
clustering could further promote ligand-free signaling. Changes in expression of receptor
protein can result from genetic effects on transcription, RNA processing, translation, pro-
tein turnover and modifications, and cellular trafficking. Genetic variants altering protein
structure and function can impact the degree of ligand-free signaling and efficacy of ligands
including inverse agonists. A detailed study of genetic variants across populations has the
potential to reveal insight on ligand-free signaling; yet, published studies fail to cover this
spectrum of mechanisms, rather focusing on a limited set of functional assays related to
basal ligand-free signaling (RO*).

The NaVa database lists natural GPCR variants [147], while the GPCRdb provides
comprehensive information of all GPCRs [148], including native genetic variants and a
majority of variants obtained by mutagenesis (65,536 missense variants) (https://gpcrdb.
org, accessed on 1 March 2023). For example, the database lists 157, 102, and 105 missense
variants for OPRM1, 5HT2A, and GHSR, respectively, including information on mutations
that stabilize inactive/active states. GPCRs showing high ligand-free signaling—either
natively or as a result of mutations—have been used for drug discovery [149] and ligand
characterization distinguishing between neutral antagonists and inverse agonists [19].
Naturally occurring variants that alter ligand-free and agonist-stimulated GPCR signaling
can reveal pathophysiological and pharmacological consequences [26,60,132,150]. For
example, the basally active melanocortin MC4R harbors several loss-of-function mutants
associated with obesity whereas gain-of-function mutants protect against obesity [151].
Constitutively active mutants have been detected for a number of GPCRs, including bitter
taste receptors, chemokine receptor CXCR4 [18], adhesion GPCRs [152], angiotensin II
type 1 receptor [153], thromboxane A2 receptor [154], and more.

Naturally occurring mutants of CXCR4 that promote enhanced signaling are linked to
WHIM syndrome, a rare immunodeficiency disorder [18,155]. Ligand-free signaling ap-
pears to be enhanced by mutations at a dimerization interface that lead to monomerization
to the active entity of CXCR4 [155]. Mutations can alter differential activation of various
G proteins and G-protein-independent effects (biased agonism), dimerization-dependent
effects, and interaction with allosteric modulators [156].

Loss or gain of function of endocrine receptors with functionally important ligand-
free signaling has been associated with various endocrine disorders [156]. Inappropriate
mutational activation of the thyroid stimulating hormone receptor (TSHR) beyond its native
basal activity can lead to Grave’s disease [157]. Activating variants of rhodopsin cause
blindness, a monogenetic disorder that might be treatable with inverse agonists [47,64,158].
As GHSR mutations have been shown also to result in stunted growth, GHSR is a drug
target for the therapy of delayed growth in pediatric patients [159].

GPCRs play a key role in cancer by regulating tumor angiogenesis, immune evasion,
metastasis, and drug resistance [160] and can serve as cancer drivers [161,162]. Large-
scale surveys of the 1000 genomes projects [163] and the Cancer Genome Atlas [164],
and other multi-omics approaches [165], have identified numerous GPCRs with aberrant
regulation and mutations potentially driving cancers, but most remain to be studied
in detail. Overexpression and activating oncogenic mutations have been reported for
specific GPCRs in multiple studies [166–169]. For example, abnormal hedgehog pathway
activation is a major driver of basal cell carcinomas and medulloblastoma [170], and drug
resistance [171], offering drug targets in melanoma [172].

This brief synopsis highlights the importance of ligand-free signaling revealed by
genetic variants.

12. Summary

This review offers new concepts and hypotheses about a pervasive role for ligand-free
signaling of GPCRs and highlights gaps in our knowledge that require further studies. Three

https://gpcrdb.org
https://gpcrdb.org
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distinct receptor states are proposed for ligand-free GPCR signaling: basal/spontaneous
signaling (RO*) observed for many GPCRs, acutely activated ligand-free signaling (R*),
and sustained signaling of regulated ligand-free R** (Figure 1). Robust evidence supports
substantial ligand-free R* and R** signaling for some receptors but is lacking for most
GPCRs—a gap that needs to be filled in view of profound pharmacological and physiologi-
cal consequences. Also proposed is the hypothesis that ligands binding to R* and R**, such
as neutral antagonists and inverse agonists, can influence the equilibrium between these
receptor states and the resting ground state RO (Figure 1). 6β-Naltrexol is one such agent
that prevents the developmenrt of opioid dependence possibly by reversing the elevated
MOR** state back to the ground state RO [55].

Several criteria can serve to test GPCRs for a substantive or dominant role of continued
ligand-free R* signaling after agonist dissociation: agonists are effective at low receptor
occupancy in vivo; agonist-receptor dissociation is accelerated in vivo during active signal-
ing; agonist effects outlast receptor occupancy; agonists have a reduced ability to displace
antagonist receptor binding in vivo; distinct pharmacological potencies between neutral an-
tagonists and inverse agonists despite equal receptor affinities; and direct physicochemical
demonstration of ligand-free signaling as demonstrated with rhodopsin [47]. While each
criterion alone could have alternative explanations, taken together these criteria provide
solid evidence.

The physiological relevance of regulated ligand-free receptor states (R**) is emphasized
across several GPCRs, affording new avenues to manipulate ligand-free signaling. In
particular, compounds changing lasting ligand-free signaling are potential drug candidates
when given at doses below those affecting the acute pharmacological response. Such
slow acting, low-dose regimen can result in novel therapies exploiting the physiological
relevance of ligand-free GPCR signaling.

13. Patents

The following granted patents pertain to 6β-naltrexol and congeners: US8,883,817;
8,748,448; 9,061,024; and 10,925,870.
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