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Abstract: This research aims to biosynthesize Barium oxide nanoparticles (BaONPs) for biomedical
applications, using Spirogyra hyalina as a stabilizing and reducing agent. UV–visible spectroscopy,
Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray, X-ray diffraction (XRD),
and scanning electron microscopy (SEM) were used to physiochemically characterize the barium
oxide nanoparticles, while antibacterial, minimum inhibitory concentration, antifungal, free radicle
scavenging, and anti-inflammatory assay were performed to assess the therapeutic potential of the
synthesized BaONPs. Fourier transform infrared spectroscopy revealed bands at 615 and 692 cm−1

that corresponded to the formation of BaONPs. Scanning electron microscopy revealed the spherical
and flower-shaped morphology of BaONPs having an average diameter of 64.01 ± 2.0 nm. Both Gram-
positive and Gram-negative bacterial growth was halted by the barium nanoparticles, demonstrating
their efficacy up to 19.12 ± 0.31 mm against E. coli, 18.83 ± 0.44 mm against Klebsiella pneumoniae,
17.31 ± 0.59 mm against P. aeruginosa, 16.56 ± 0.37 mm against S. aureus, and 15.75 ± 0.38 mm against
S. epidermidis, respectively. The minimum inhibitory concentration was 9.0, 6.3, 5.5, 4.5, and 2.0 µg/mL
for S. aureus, Klebsiella pneumoniae, S. epidermidis, P. aeruginosa, and E. coli, respectively. BaONPs
were not that effective against fungal strains such as Rhizoctonia solani, Fusarium solani, and Fusarium
proliferatum. The BaONPs exhibited potent anti-inflammatory and antioxidant activity through
inhibiting cyclooxygenases type 1 (43.12 ± 1.21%) and 2 (41.23 ± 1.56%), and DPPH free radicles up
to 43.52 ± 0.29% at 400 µg/mL. In conclusion, the biomolecules derived from Spirogyra hyalina have
demonstrated remarkable ability to generate stable nanoparticles, offering promising prospects for
their utilization as therapeutic agents and coating materials in various biomedical applications.

Keywords: Spirogyra hyalina; nanoparticles; barium oxide; green synthesis; antioxidant; anti-inflammatory;
antimicrobial

1. Introduction

Synthesis of nanoparticles from biological sources such as algae is a new field of
biotechnology known as “green synthesis”. A key step in the synthesis of nanoparticles is
the reduction of metal ions, which may be accomplished by algae. Barium nanoparticles
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are renowned for their inhibitory effect on a wide range of bacteria and fungi [1–4]. Among
these, BaONPs find diverse medical applications, including their integration into topical
ointments and lotions as ionized compounds to combat infections [5]. Moreover, medical
devices and implants are fortified against infections through the utilization of barium-
coated polymers [6]. In the textile industry, innovative auxiliary equipment is emerging,
encompassing barium sulfate-embedded polymers [7]. The synthesis of these nanoparticles
can be achieved through diverse methods, encompassing both chemical and biological
routes [8–10]. Notably, biological synthesis presents an eco-friendly avenue for generating
barium oxide nanoparticles [1–10].

The utilization of biological molecules offers a substantial advantage in nanoparti-
cle manufacturing, primarily due to their absence of hazardous chemically synthesized
compounds. Moreover, they interact synergistically with naturally occurring capping
agents [11]. The biological synthesis methodology has undergone meticulous refinement,
with previous instances involving Penicillium spp., Fusarium oxysporum, and select bac-
terial strains [12–14]. Phytoextracts stand as a rich reservoir of metabolites essential for
the stabilization and reduction of nanoparticles. Their widespread availability, ease of
manipulation, and reliability have rendered them the preferred strategy for producing
environmentally friendly, cost-effective nanoparticles [15]. This approach capitalizes on
the efficient synthesis facilitated by the organisms’ abundant metabolite sources, making
significant strides toward the production of steadfast nanomaterials by effectively reducing
and capping metallic ions. A noteworthy example in this context is the green macroalga
Spirogyra sp., characterized by its abundant presence of carbonyls, amino acids, and polyols.
During the nanoparticle synthesis process, the biomolecules within Spirogyra hyalina’s
extract serve as both reducing and stabilizing agents [16,17], attributed to the presence of
alkaloids and flavonoids [11–17].

Given this backdrop, the prospect of synthesizing BaONPs from the extract of Spirogyra
hyalina emerges as an intriguing proposition. The overarching objective of this study was
to explore the potential of Spirogyra-hyalina-mediated biosynthesis, encompassing the
comprehensive characterization and evaluation of barium oxide nanoparticles for their
antibacterial, antifungal, anti-inflammatory, and antioxidant properties.

2. Results and Discussion
2.1. Extract Preparation and Nanoparticles Synthesis

Spirogyra hyalina is ubiquitously found across various environments, spanning rivers,
streams, and even small stagnant water bodies. Particularly thriving in limpid waters,
Spirogyra hyalina thrives in the form of filamentous green masses that exude a slimy texture.
A Spirogyra cell encompasses integral components such as a cell wall, nucleus, pyrenoid,
and spiral chloroplasts. This species is distinctly rich in bioactive compounds including
flavonoids, alkaloids, saponins, terpenoids, and amines [18–20]. Thus, the extract derived
from Spirogyra hyalina emerges as a compelling biotemplate for the reduction of metal
ions into nanoparticles. The preparation involved the amalgamation of algal extract and
barium salt in a 1:1 ratio while maintaining temperatures conducive to preserving the
structural integrity of algal biomolecules. A discernible shift in color from light to dark
brown served as an early indicator of the successful production of nanoparticles. To ensure
the proper reduction of barium ions into barium nanoparticles, the solution exhibiting
the color change was left within a fume hood for a duration of 24 h [17]. Subsequent
verification of the nanoparticles was accomplished through the utilization of a UV–vis
spectrophotometer (UV-1602). This instrument facilitated an in-depth examination of the
optical attributes of the synthesized barium oxide nanoparticles (BaONPs), with spectrum
measurements spanning a range of 200 to 800 nanometers [17–21]. Surface plasmon
resonance of barium nanoparticles peaked at around 330 nm, a characteristic signature
consistent with BaONPs denoting successful synthesis of barium nanoparticles through this
method [21], as shown in Figure 1. An alternate strategy for synthesizing BaONPs involves
introducing a solution containing barium ions to Spirogyra hyalina. Algae inherently possess
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the ability to assimilate these ions from their environment. Upon internalization, these
barium ions might undergo biomineralization processes within the algal cells, leading to
the reduction of barium ions into nanoparticles. It is noteworthy that the distinct conditions
and microenvironment within the cell could exert an influence on the resulting size and
characteristics of the nanoparticles.
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Figure 1. UV–visible spectroscopic analysis of BaONPs.

Subsequent to their generation, the BaONPs may potentially be released from the algal
cells and diffuse into the surrounding liquid medium. However, this particular approach is
still shrouded in limited understanding, and its effectiveness may yield a relatively scant
quantity of nanoparticles. Furthermore, the intricate synthesis process demands specific
temperature and environmental conditions, which might be challenging to sustain within
the confines of an algal cell. Consequently, an in-depth and comprehensive investigation is
imperative to ascertain the feasibility of successfully synthesizing nanoparticles through
this approach [20,21].

2.2. FTIR and XRD Analysis of BaONPs

The FTIR technique was employed to investigate the chemical makeup and possi-
ble involvement of algal biomolecules in the reduction of barium to BaONPs through-
out the wavenumber range of 4000–400 cm−1 [22], and the findings obtained are shown
in Figure 2a,b. As a consequence of the surface adsorption of moisture and hydroxyl
molecules, barium oxide nanoparticles may exhibit a wide absorption band between 3200
and 3600 cm−1. This band’s presence indicates the presence of hydroxyl groups (OH),
which in turn leads to the existence of barium oxide nanoparticles. Vibrations and stretch-
ing in the metal–oxygen (Ba–O) bond may be the cause of an extra range of absorption that
falls between 400 and 700 cm−1.

The synthesis of BaONPs was confirmed by the appeared band at 615 cm−1 that
corresponds to strong stretching of the Ba–O bond [21]. At 692 cm−1, another band
appeared for Ba–O. These bands confirmed the successful synthesis of barium oxide
nanoparticles [21]. The bands at 1015, 1455, 1642, 2360, 2840, 2942, and 3300 cm−1 were
assigned to stretching in C-N stretching in amines, medium C-H bending in alkanes, C=O
stretching in amides, O=C=O stretching in atmospheric carbon dioxide [23]; alkanes exhibit
C-H stretching, while carboxylic acids exhibit O-H stretching, as shown in Figure 2a,b.
These functional groups might be due to the involvement of algal biomolecules in the
formation of BaONPs [18]. It is essential to keep in mind that the unique FTIR spectrum of
barium oxide nanoparticles may change based on a number of parameters, including the
nanoparticles’ size, shape, surface functionalization, and the process used to synthesize
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them. When interpreting the FTIR spectrum, these factors need to be taken into account,
and it is possible that a comparison with relevant reference materials is necessary.
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Biosynthesized BaONPs’ crystalline structure was analyzed by X-ray diffraction. The
XRD spectra of the biosynthetically made BaONPs are shown in Figure 3. There are a few
possible crystal structures for barium oxide, the most common of which are the cubic and
hexagonal forms. In order to identify the crystal phase of the nanoparticles, the peaks
from the XRD analysis may have their matched peaks compared to reference data for
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already-established crystal structures. Different planes of BaONPs, such as (211), (201),
(102), (212), and (310), are reflected in the XRD pattern as distinct peaks. All these peaks
line up perfectly with the tetragonal phase of BaONPs, and they are in perfect agreement
with card No. 26-0178 from the “JCPDS” database. The outcomes that were found are also
corroborated by the literature that was provided [21,24,25]. The fact that the manufactured
nanoparticles have sharp and strong peaks is evidence that they are extremely crystalline
in their natural state [26]. The average crystallite size (D) was calculated using the formula
devised by Debye and Scherrer: D = kλ/βCosθ [27]. The average crystallized size of the
samples was approximately ~40 ± 3.0 nm. By evaluating the strength of the diffraction
peaks, it is feasible to gain some insight into the crystallinity of the nanoparticles. Peak
intensities that are lower than average suggest the presence of amorphous aggregates,
while peak intensities that are higher than average suggest that the sample has a greater
degree of crystallinity. If there are impurities or secondary phases present in the sample,
the XRD pattern may display additional diffraction peaks. These peaks may also be seen in
the pattern after 50 degrees.
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2.3. SEM and EDX Analysis

Scanning electron microscopy was used to examine the morphology, and the elemental
composition of the biosynthesized barium oxide nanoparticles was determined using
energy-dispersive X-ray analysis in conjunction with scanning electron microscopy (SEM).
As can be observed in Figure 4b, the form of the clusters is like amorphous aggregates [21],
but at higher magnification, it seems more or less spherical, as shown in Figure 4c. A
picture using a high-resolution SEM verified that the nanomaterials that were produced
grew in a highly crystalline form. The SEM pictures also make it possible to observe that
certain NPs are arranged in structures resembling nanosheets and are connected to one
another by aggregation on top of one another having a size of more or less a micron, as
shown in Figure 4a. According to ImageJ analysis, the average particle size was 64.01 ± 2.0;
size distribution Figure 4d demonstrates that the particles were disrupted between 30 and
100 nm. The minimum particle size was found to be 36.65 ± 1.0, while the maximum
was 93.84 ± 2.0. Chen et al. [28] researched the potential of extracts from four distinct
produce items as building blocks for BaONPs. The synthesized BaSO4 NPs using kiwi fruits
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extract were spherical in shape, having a diameter of 2–4 µm, while those from tomatoes,
oranges, and carrots were around 100 nm in size and rodlike or quasi-spherical in form.
The formation mechanism of BaONPs showed that these four types of extracts containing
organic compounds, proteins, vitamins, and carbohydrates were responsible for various
morphologies of NPs.
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Figure 5 displays the results of an EDX study showing distinct peaks for barium at
4.2, 4.4, and 4.6 KeV, with a weight percentage of 58.95. Oxygen, nitrogen, and carbon
all showed up as separate peaks, and the weight percentages were 19.63, 16.13, and 5.29,
respectively. The additional peaks indicated that algal biomolecules took part in the
reduction [17,29] of barium ions to BaONPs.
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2.4. Antibacterial Analysis

The biosynthesized BaONPs showed antibacterial activity of 19.12 ± 0.31, 18.83 ± 0.44,
17.31 ± 0.59, 16.56 ± 0.37, and 15.75 ± 0.38 mm against E. coli, P. aeruginosa, Klebsiella pneumoniae,
S. aureus, and S. epidermidis, respectively, as shown in Figure 6a. Antibacterial efficacy was
greatest against Escherichia coli and lowest against Staphylococcus epidermidis; the minimum
inhibitory concentration was observed for S. aureus while the least for E. coli, and almost
similar results were found by [30]. The minimum Inhibitory concentration was 9.0, 6.3,
5.5, 4.5, and 2.0 µg/mL for S. aureus, Klebsiella pneumoniae, S. epidermidis, P. aeruginosa, and
E. coli, respectively, as shown in Table 1. Similar results were found by [31]; P. aeruginosa
and S. aureus exhibited significant sensitivity against BaONPs. The identification of cell
membrane proteins in the extracellular matrix has previously shown that most nanoparti-
cles target the cell membrane of the bacterium [17]. Sivakumar et al. [32] conducted a study
in which they synthesized barium nanoparticles using the chemical precipitation method.
The antibacterial activity suggests that the particles may interfere with Gram-positive and
Gram-negative bacterial transporter, dehydrogenase, and periplasmic enzymatic activities.
Sooch et al. designed a study to synthesize barium nanoparticles using gelatin as a capping
agent. They doped the NPs with four metals to boost their physicochemical and antibac-
terial capabilities. These doped NPs have shown enhanced structural characteristics and
antibacterial efficacy when compared to their bulk counterparts [33]. There have been a few
experiments with barium nanoparticles (NPs) production in pharmaceutical and biological
settings [34]. Upon adhering to the outer covering of bacteria, barium nanoparticles reduce
metabolic pathways by obstructing cell wall permeability [35]. Biogenic NPs go deep into
the cells, react with protein and DNA, and harbor biological harm to bacterial cells. NPs
bactericidal activities are due to a large influx of ions from metallic particles that are known
to have antibacterial characteristics [36–43]. Similarly, the size of NPs influences the degree
of antibacterial effects. As a result, since smaller and minor particles are filled with the
plentiful and even barium mass material, they demonstrate stronger antibacterial activities.

Table 1. Antibacterial and MIC of BaONPs.

Bacteria
BaONPs (20 µg/mL)

Zone of Inhibition MIC (ug/mL)

E. coli 19.12 ± 0.31 2.0
S. aureus 16.56 ± 0.37 9.0

P. aeruginosa 18.83 ± 0.44 4.5
S. epidermidis 15.75 ± 0.38 5.5

Klebsiella pneumoniae 17.31 ± 0.59 6.3

2.5. Antifungal Activity

The antifungal potential of biosynthesized nanoparticles was investigated by dissolv-
ing 1 mg of barium oxide nanoparticles in 1 mL of dimethyl sulfoxide (DMSO). The volume
of 100 µL of nanoparticles was supplied to the wells that had previously been formed on ster-
ile PDA plates that had been inoculated with fungal strains. As shown in Figure 6b, zones
of inhibition were seen against (8.4 ± 0.7 mm against Fusarium solani), (6.30 ± 0.63 mm
against Rhizoctonia solani), and (5.21 ± 0.72 mm against Fusarium proliferatum). The activity
was performed three times, and the averages of the results were used to determine the real
inhibitory zones. The barium nanoparticles did not show any significant activity against
these fungal strains.
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2.6. Anti-Inflammatory Assay

Substances or agents capable of reducing inflammation are considered anti-inflamm
atory [44]. Anti-inflammatory agents relieve severe inflammatory symptoms without
affecting the CNS. Prostaglandin is produced by the enzyme’s cyclooxygenase types 1
and 2 [45]. At the location of an infection, inflammation is caused by the production of
prostaglandins, which cause swelling, pain, redness, and fever. When these symptoms
become more severe, they have the potential to disrupt the regular operations of the body.
Because of this, inhibiting cyclooxygenases may bring about a reduction in inflammation.
Significant results were observed for BaONPs by inhibiting the activity of COX-1 up to
43.12 ± 1.21% at 400 µg/mL, 37.42 ± 1.10% at 200 µg/mL, 14.36 ± 1.51% at 100 µg/mL,
7.91 ± 1.13% at 50 µg/mL, and 4.21 ± 1.37% at 25 µg/mL. BaONPs inhibited COX-
2 up to 41.23 ± 1.56% at 400 µg/mL, 23.13 ± 1.11% at 200 µg/mL, 15.97 ± 1.81% at
100 µg/mL, 7.11 ± 1.19% at 50 µg/mL, and 3.91 ± 1.62% at 25 µg/mL, as shown in
Figure 6c. On the other hand, the inhibition was found to be proportional to the dose,
and it grew more pronounced as the number of NPs present in the solution increased [46].
In a previously reported study, Majumdar et al. observed that barium-doped bioactive
glass (BaBG) within the nanoscale range has potent biocatalytic activity and inflammatory
activity. BaBG was found effective in increasing IL-10, and as a result, it demonstrated
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anti-inflammatory properties [47]. Interleukin-10 is an anti-inflammatory cytokine that
plays an important part in the prevention of autoimmune disorders as well as inflammatory
diseases. Polymer-doped barium titanate nanoparticles have significant anti-inflammatory
activity in bone regeneration [48]. The coating of barium nanoparticles with polymers and
calcium magnesium ions can improve their anti-inflammatory activity.

2.7. Antioxidant Assay

The reactive oxygen species superoxide radicals, hydrogen peroxide, and hydroxyl
radicals may all be scavenged by nanoparticles. This effect is brought about by the presence
of functional groups on the NPs’ surface [49,50]. For the purpose of determining whether
barium nanoparticles have an antioxidant effect, DPPH free radicals were subjected to test
samples of varied quantities. BaONPs scavenged DPPH free radicles up to 43.52 ± 0.29%
at 400 µg/mL, 33.37 ± 0.85% at 200 µg/mL, 21.41 ± 0.48% at 100 µg/mL, 14.21 ± 0.85% at
50 µg/mL, and 4.19 ± 0.61% at 25 µg/mL, as shown in Figure 6d. The amount of barium
NPs proven to have an antioxidant effect was shown to be dosage-dependent. According
to the findings, increasing the concentration of the nanoparticles led to a rise in the level of
activity. The antioxidative activity of barium titanate (BaTiO3) nanoparticles did not have
any effect on the generation of ROS in PC12 neural cell line [51]. Due to the presence of
many components, including alkaloids, flavonoids, and others, barium oxide nanoparticles
synthesized from Linum usitatissimum were able to boost the antioxidant activities [52].
These results suggested that biological biomolecules can improve the antioxidant activities
of nanoparticles.

The green synthesis of BaONPs-mediated Spirogyra hyalina offers an efficient avenue
for potential applications across various sectors. This approach underscores the innovative
potential of metallic nanoparticle production, paving the way for the advancement of
unique technologies [53]. The present study ventures into exploring alternative avenues
for combating infectious diseases, shedding light on the utilization of biologically derived
agents for the reduction and capping of nanomaterials. By doing so, we aim to spotlight the
burgeoning trend of using nanomaterials for therapeutic purposes and to encourage the
exploration of diverse natural sources for nanomaterial synthesis. This study contributes
to the broader field of nanotechnology, an interdisciplinary pursuit focused on biochem-
istry applications, which seeks to develop nanoparticles with heightened antioxidant and
antibacterial properties targeting degenerative diseases, cancer, and tumors [50,53].

This bioinspired method of nanoparticle green synthesis offers several advantages,
including mild reaction conditions, eco-friendly fabrication, and the ability to generate
nanoparticles with distinct characteristics. Through rigorous investigation, these nanoparti-
cles can potentially evolve into impactful therapeutic agents with a wide array of applica-
tions, contributing significantly to the advancement of medical science and technology.

3. Experimental
3.1. Spirogyra Hyaline Extract Preparation and Nanoparticles Synthesis

Spirogyra hyalina was collected from a local pond situated in Peshawar, Pakistan, and
confirmed by the experts in the Department of Life Sciences, Abasyn University Peshawar,
Pakistan. To prepare the extract, the algae was shade-dried and ground into powder, then
we boiled 50 g of dry powder in 100 mL of dH2O for 30 min at 60 ◦C [17]. Once the liquid
had cooled to room temperature after boiling, ultrafiltering was performed using Whatman
filter paper No. 1. To obtain an extract that was both consistent and devoid of particles, the
filtrate was centrifuged at 12,000 rpm. The supernatant of a greenish hue was separated
from the pellet and placed in its own tubes. The extract was kept at 7 ◦C until it was time
to make the NPs.

For the preparation of barium oxide nanoparticles, 50 mL of algal extract was mixed
with 50 mL of 1.0 mM stock solution of barium nitrate (Ba(NO3)2) (Sigma Aldrich, Frankfurt,
Germany, 99%) at room temperature and neutral pH, the mixing ratio was 1:1. The mixture
was subjected to heat on a hot plate for 1 h at a temperature of 60 ◦C with continuous
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stirring. The solution was centrifuged at 12,000 rpm for 20 min and then dried in an oven
at 80 ◦C to achieve pure nanoparticles [54]. After grinding, the nanoparticles were kept at
7 ◦C for further use.

3.2. Characterization of BaONPs

Spectral measurements between 200 nm and 800 nm were taken using a UV–vis spec-
trophotometer (UV-1602) to assess the BaONPs’ optical characteristics. Using a scanning
electron microscope (JSM-JAPAN), we analyzed the morphological features of the synthetic
BaONPs. An FTIR spectrometer (II), manufactured by Perkin Elmer, was used to examine
the BaONPs’ chemical composition between the wavelengths of 400 and 4000 cm−1. The
crystalline structure of BaONPs was verified by obtaining XRD data using a PANalyti-
cal X’Pert X-ray diffractometer. The elemental makeup of biosynthesized BaONPs was
determined with the use of an EDS X Sight Oxford EDX analyzer [55–57].

3.3. Collection and Preparation of Bacterial Inoculum

All the biological activities were performed at Microbiology Research Laboratory
Abasyn University, Peshawar, Pakistan. Gram-positive (Staphylococcus aureus, and Staphylo-
coccus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Klebsiella
pneumoniae) bacteria were included in the sample set. These bacteria were collected from
the Hayatabad Medical Complex, Peshawar, and the Abasyn Microbiology Research Labo-
ratory microorganism collection. These species were preidentified. Bacterial inocula were
prepared by taking a visible colony of selected bacteria from a nutrient agar plate and
transferred into screw-cap glass tubes containing Lysogeny. After inoculation, the tubes
spent 24 h in a 37 ◦C incubator. Inoculated tubes showed bacterial growth after being
incubated. Turbidity of the overnight cultures was adjusted to the No. 0.5 McFarland
Standard [58,59], according to CLSI (Clinical Laboratory and Standard Institute) guidelines.

3.4. Antibacterial Activity

The Kirby–Bauer well diffusion technique was used to test the NPs’ antibacterial
efficacy against bacteria [60–62]. A bacterial lawn was made on a nutrient agar (Merck,
Germany) plate. Using a sterile cork borer, we drilled a well into the medium and then
added NPs from a stock solution of 100 µg/mL of DMSO (1%). The positive control was
ciprofloxacin (10 µg), while the negative control was DMSO. For 24 h, the plates were kept
at 37 ◦C. The inhibitory zone was then measured in millimeters.

3.5. Minimum Inhibitory Concentration (MIC)

After 24 h of incubation, the minimum inhibitory concentration of an antimicrobial
agent is the concentration at which no further bacterial growth is detectable [63–65]. The
concentration of nanoparticles used for MICs’ determination ranged from 0.5 to 20 µg/mL.
MICs were performed in a 96-well flat-bottom polystyrene plate, and each well of the plate
was loaded with 80 µL of bacterial inoculum and 20 µL of NPs. After inoculation, the plates
spent 24 h at 37 ◦C; after incubation, the optical density of each well was checked by a plate
reader at 600 nm to determine MIC using Equation (1).

MIC% =
ODCotrolled well − ODtreated well
ODcontrolled well − ODblank well

× 100 (1)

3.6. Antifungal Activity

The antifungal potential of biosynthesized nanoparticles was investigated against
plant pathogens Rhizoctonita solani, Fusarium solani, and Fusarium proliferatum. Stock solu-
tions of NPs were prepared at 1.0 mg/mL of DMSO (1%). According to the well diffusion
method [60], media plates with wells of 5–6 mm in diameter were drilled, inoculated with
fungi, and 100 µL of nanoparticles was added to each well. We incubated the plates at
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28 ◦C for a whole day. Zones of inhibition were calculated after incubation. Positive and
negative controls were amphotericin B and DMSO, respectively.

3.7. Antioxidant Activity

BaONPs’ antioxidant potential was measured using 2,2-diphenyl-1-picrylhydrazyl
(DPPH) as a free radical [66,67]. Different concentrations of NPs were prepared (25, 50,
100, 200, and 400 µg/mL) to be used in the antioxidant assay against DPPH free radicals.
Then, 180 µL of DPPH solution (4.8 mg/50 mL of methanol) was mixed with 20 µL of
the experimental sample and was poured into each well of a titer plate, followed by
incubation at 37 ◦C for 30 min. The absorbance was then measured at 517 nm using a
COBAS microplate reader after a 30 min incubation at 37 ◦C. During the assay, ascorbic
acid served in the capacity of a positive control, and the experiment was carried out three
times. The following Equation (2) was used to determine the percentage of free radical
scavenging activity (FRSA):

% FRSA= (1Abs/Abc) × 100 (2)

Absorbance of the sample is denoted by Abs, and that of the control, by Abc.

3.8. Anti-Inflammatory Assay

The test employed reagents for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2)
from a French-made Ovine kit (701050) to look into the potential anti-inflammatory effects of
barium oxide nanoparticles [68–71]. Nanoparticles at concentrations of 50–400 µg/mL were
used to inhibit the activities of COX-1 and COX-2. Tetramethyl-p-phenylene diamine was
detected by measuring the absorbance at 590 nm in a 96-well microplate reader. We used
10 mM of ibuprofen as a standard positive control.

4. Conclusions

In conclusion, Spirogyra hyalina has emerged as a promising biotemplate and environ-
mentally friendly reducing agent, offering a sustainable and economically viable approach
to nanoparticle synthesis. The biosynthesized BaONPs have demonstrated robust antibac-
terial, antioxidant, and anti-inflammatory properties, positioning them as a compelling
candidate for future therapeutic applications. BaONPs hold potential for exploration in
diverse domains such as drug delivery systems, targeted therapies, imaging applications,
antiviral activities, cytotoxic effects on cancer cells, and their capacity to serve as therapeutic
agents against various cancer types. Additionally, their ability to stimulate cell proliferation
and facilitate tissue regeneration presents avenues for further investigation. To ascertain
the viability of Spirogyra-hyalina-mediated BaONPs as therapeutic agents, comprehensive
research is imperative. This research should encompass the evaluation of their therapeutic
efficacy, safety profile, biocompatibility, and pharmacokinetics.
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