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Abstract: The review covers more than a century of decaborane chemistry from the first synthesis
by Alfred Stock to the present day. The main attention is paid to the reactions of the substitution of
hydrogen atoms by various atoms and groups with the formation of exo-polyhedral boron–halogen,
boron–oxygen, boron–sulfur, boron–nitrogen, boron–phosphorus, and boron–carbon bonds. Partic-
ular attention is paid to the chemistry of conjucto-borane anti-[B18H22], whose structure is formed
by two decaborane moieties with a common edge, the chemistry of which has been intensively
developed in the last decade.
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1. Introduction

Decaborane [B10H14] plays a central role in the chemistry of polyhedral boron hy-
drides. Decaborane is an essential boron reagent for the preparation of medium and higher
carboranes C2BnHn+2 (n = 8–10) [1] and the carba-closo-decaborate anions [CB9H10]− [2].
Until recently, the synthesis of the closo-dodecaborate [B12H12]2− [3,4] and the carba-closo-
dodecaborate [CB11H12]− [5,6] anions was also based on the use of decaborane, and it
is still used for the synthesis of the closo-decaborate anion [B10H10]2− [7,8]. In addition,
decaborane can be used to prepare boron coatings [9–13], nanoparticles [14], microcrys-
tals [15,16], boron nitride nanosheets [17], and nanotubes [18], as well as various metal
boride thin films [19–24]. Recently, a decaborane-based fuel cell power source with a
high energy density was developed [25]. The intensive development of the chemistry of
decaborane is associated with the 1950s to the early 1960s, when the main types of its
transformations were discovered and described. These early studies were reviewed in the
1960s by Hawthorne [26] and Zakharkin et al. [27]. This area was also partly elucidated in
Boron Hydride Chemistry [28] and Comprehensive Inorganic Chemistry I [29]. Recent studies
in the field of decaborane chemistry, deepening and expanding the previously described
conclusions using modern instrumental methods, were briefly covered in Comprehensive In-
organic Chemistry III [30]. Therefore, the purpose of this review is to give the most complete
picture of the current state of the chemistry of decaborane and its derivatives.

2. Synthesis, Structure, and General Properties

The formation of this ten-vertex cluster during the pyrolysis of diborane B2H6 was
first described by Alfred Stock and co-workers more than 100 years ago [31,32]. The best
yields of decaborane(14) were obtained by heating diborane to 120 ◦C for 47 h. The low
volatility of decaborane allows it to be easily separated from other volatile boron hydrides
while being volatile enough to be easily separated from non-volatile products. Decaborane
is a colorless, air-stable, easily subliming, malodorous, crystalline solid that melts at 99.7 ◦C
and boils with decomposition at 213 ◦C [33]. For a long time, interest in the chemistry of
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boron hydrides was mainly academic but was supported by the fact that boranes and some
related compounds did not comply with the usual rules relating the chemical composition
to the classical theory of valence. At the same time, various assumptions were made about
the structure of B10H14, including linear [34] or naphthalene-like [35] structures.

Practical interest in boron hydrides, and decaborane in particular, arose shortly after
World War II, when the United States government launched programs (Projects Hermes,
Zip, and HEF (High-Energy Fuels)) [36,37] whose purpose was to develop borane-based
aviation and rocket fuels capable of generating much higher energy than conventional
kerosene-based fuels [38–40]. As a part of this program, two chemical companies, Callery
Chemical Company and Olin-Mathieson Corporation, developed eight pilot and pro-
duction plants and produced an array of borane-derived energetic products, including
methyldecaborane (HEF-4), ethyldecaborane (HEF-3), and ethylacetylenedecaborane (HEF-
5), to be tested as additives to propellants and explosives [41]. Amost at the same time,
due to the development of various physical research methods, such as single-crystal X-ray
diffraction, neutron diffraction, and gas phase electron diffraction, the molecular structure
of [B10H14] was determined [42–50]. The decaborane molecule was found to be shaped like
a boat built from ten BH-units, with four additional BHB bridges decorating its bow and
stern (Figure 1).
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Figure 1. Structure and numbering of atoms in decaborane B10H14.

Shortly thereafter, the future Nobel Winner Lipscomb and his collaborators developed
bond counting rules and topological principles that made it possible to describe bonding in
boron hydrides. According to the topological formalism, the binding in the decaborane
molecule can be described by a combination of four 3c-2e B-H-B bonds, six closed or
fractional closed 3c-2e B-B-B bonds, and two 2c-2e B-B bonds [51–53]. Some time later,
molecular orbital theory in the form of the extended Hückel theory was originated and
applied to decaborane to provide an alternative to this topological approach [54–56]. Subse-
quently, both the logical basis and the parameters for these molecular orbitals were greatly
improved using the more rigorous molecular self-consistent field (SCF) method [57,58].
More recently, the electronic structure of decaborane has been described in terms of the
BadeR′s theory “Atoms in Molecules” (AIM) [59].

A powerful tool for determining the structure of polyhedral boron hydrides is NMR
spectroscopy, the practical birth of which coincided with a wave of interest in the chem-
istry of boron hydrides. Therefore, it is not surprising that decaborane was one of the
first molecules to be investigated using NMR spectroscopy [60–62]. The subsequent de-
velopment of the instrumental base and methods of NMR spectroscopy caused repeated
studies [63–70]. The decaborane molecule has also been characterized by IR [59,71,72],
Raman [59], electron [73–75], NQR [76,77], photoelectron [78], and electron energy loss [79]
spectroscopy. The ionization potentials of decaborane and 11B-enriched decaborane were
determined to be 11.0 eV [80] and 10.26 eV [81], respectively. The dipole moment of de-
caborane was determined by measuring the dielectric constants of benzene, cyclohexane,
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and carbon disulfide solutions and varies from 3.17 D in carbon disulfide to 3.62 D in ben-
zene [82]. The magnetic susceptibility of decaborane is −116 ± 1.5 × 10−6 emu mol−1 [82].
The heat of formation of decaborane was determined to be −66.1 kJ/mol [83]. The heat
capacity of decaborane has been measured, and the derived thermodynamic functions
have been calculated [84,85]. The heats of melting and vaporization [85], as well as the
vapor pressure of decaborane [85,86], were also determined. Pressure-induced room tem-
perature transformations of decaborane up to 131 GPa were studied using in situ optical
spectroscopy techniques [87].

The industrial production of boron hydrides, which involved more than 2000 people,
was accompanied by various accidents, which led to the discovery of the high toxicity of
decaborane and its derivatives [88–92]. With decaborane, intoxication, headaches, tremors,
impaired coordination, confusion, anxiety, photophobia, and other symptoms are observed.
Moreover, intoxication can occur from relatively small amounts of decaborane. Decaborane
can be detected by its odor at or near its maximum acceptable concentration, but there is
considerable olfactory fatigue. Repeated exposure to decaborane can cause severe damage
to the nervous system [93]. The effects of decaborane on various animals have also been
studied [93–111]. A number of studies were directed to study the mechanism of decaborane
action on living organisms [112–130].

The production of decaborane, established in the 1950s, was based on the pyrolytic
conversion of diborane proposed by Alfred Stock [33]. At the same time, attempts were
made to find an alternative to this dangerous process, among which the use of the CW CO2
laser is worth mentioning [131]. Almost at the same time, a convenient and effective method
was proposed, which is based on the oxidation of sodium tetrahydroborate NaBH4 to the
octahydrotriborate anion [B3H8]−, followed by its pyrolysis in diglyme at 105 ◦C to the
tetradecahydro-nido-undecaborate anion [B11H14]− [132]. The subsequent mild oxidation
of [B11H14]− gives decaborane [B10H14] (Scheme 1) [133–136]. Decaborane can also be
obtained by the cage-opening of the closo-decaborate anion [B10H10]2− on protonation with
strong acids such as sulfuric acid [137].
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Scheme 1. Synthesis of decaborane(14) from sodium tetrahydroborate NaBH4.

Decaborane(14) has an acidic character [138] and can be deprotonated with strong
bases, such as sodium hydride [139], tetraalkylammonium hydroxides [140], diethy-
lamine [140], triethylamine [140,141], methylenetriphenylphosphorane [141,142], or a
Proton Sponge (PS) [143,144] to give the corresponding salts of the tridecahydro-nido-
decaborate [B10H13]− anion (Scheme 2). The pKa value of decaborane(14) in aqueous
ethanol was found to vary from 2.41 to 3.21 depending on the water content [145].
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Scheme 2. Preparation of the [B10H13]− anion and its tautomeric forms.

The (Et3NH)[B10H13] and (Et4N)[B10H13] salts obtained by the deprotonation of de-
caborane with Et3N and (Et4N)OH, respectively, have been found to trigger the hypergolic
reactivity of some polar aprotic organic solvents, such as tetrahydrofuran and ethyl ac-
etate [146].

The solid state structures of (Et3NH)[B10H13] [147], (BnNMe3)[B10H13] [148], and
(HPS)[B10H13] [144] were determined by single-crystal X-ray diffraction. The solid state
structure of the [B10H13]− anion (Figure 2) can be derived from the structure of B10H14 by
µ-H(9,10) deprotonation.
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Figure 2. Solid state structures of the (HPS)+ cation (left) and of the [nido-B10H13]− anion (right) in
the crystal structure of (HPS)[B10H13].

In the solution, the [B10H13]− anion exists as a mixture of symmetrical and unsymmet-
rical H-tautomers with different arrangements of bridging hydrogens (Figure 2) [143,149],
with an interconversion ∆G‡ value of less than 7 kcal/mol [144].

Strong bases such as sodium hydride in ether solvents are able to remove two protons
from decaborane(14) to form the [B10H12]2− dianion [140,150,151]. The latter is unstable in
solution and transforms into other decaborates and their derivatives [151]. According to
quantum chemical calculations, the [B10H12]2− anion has the C2-symmetric structure with
µ-B(5)HB(6) and µ-B(8)HB(9) bridging hydrogens [152].

The reduction of decaborane(14) with KBH4 in water results in the formation of the
[arachno-B10H14]2− anion with a boron cage geometry near the same as that of the starting
[nido-B10H14] (Scheme 3), which was isolated by precipitation from an aqueous solution
in the form of rubidium, cesium, or tetramethylammonium salts [153,154]. The structure
of the [B10H14]2− anion was proposed using 11B NMR spectroscopy [155]. The solid state
structure of (Me4N)2[B10H14] was determined by single-crystal X-ray diffraction [154].
It was supposed that the reaction proceeds by hydride transfer with the formation of
the [B10H15]− anion. The latter is unstable in the solution and loses hydrogen to form
[nido-B10H13]− [156,157].
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It should be borne in mind that decaborane itself has pronounced reducing properties.
Due to this, the possibility of its use as a reducing agent in organic synthesis was studied. In
particular, decaborane can be used for the reduction of acetals to ethers [158], the reductive
esterification of aromatic aldehydes [159,160], and the reductive amination of acetals with
aromatic amines [161]. Decaborane can also be used for chemoselective reduction aldehydes
and ketones [162–164], the dehalogenation of α-halocarbonyl compounds [165], and the
hydrogenation of alkenes or alkynes [166].

The bridging hydrogens in decaborane(14) were found to exchange rapidly for deu-
terium atoms with D2O in 1,4-dioxane or acetonitrile to give [µ4-B10H10D4] [72,167,168].
The use of DCl in 1,4-dioxane makes it possible to obtain the decadeuterated decaborane [µ4-
5,6,7,8,9,10-B10H4D10] [169]. The treatment of decaborane(14) with DCl in a carbon disulfide
solution and in the presence of AlCl3 results in the tetradeuterated decaborane [1,2,3,4-
B10H10D4] [169,170]. If the reaction is carried out under heating in sealed ampoule, the prod-
uct is the octadeuterated decaborane [1,2,3,4,5,7,8,10-B10H6D8] [72]. The tetradeuterated
decaborane [5,7,8,10-B10H10D4] was obtained by the reaction of [1,2,3,4,5,7,8,10-B10H6D8]
with HCl in a carbon disulfide solution and in the presence of AlCl3 [72]. The octadeuter-
ated decaborane [µ4-1,2,3,4-B10H6D8] was prepared by the reaction of [1,2,3,4-B10H10D4]
with D2O in acetonitrile [72], whereas the dodecadeuterated decaborane [µ4-1,2,3,4,5,7,8,10-
B10H2D12] was obtained by heating [µ4-B10H10D4] with DCl in carbon disulfide in sealed
ampoule in the presence of AlCl3 [72]. Deuterated aromatic solvents can also act as a
source of deuterium. For example, heating decaborane(14) in benzene-d6 in the presence of
AlCl3 under reflux leads to the the tetradeuterated decaborane [1,2,3,4-B10H10D4], while
the reaction of decaborane(14) with AlCl3 in toluene-d8 at 5 ◦C results in the dideuterated
decaborane [2,4-B10H12D2] [171]. The reaction of [1,2,3,4-B10H10D4] with AlCl3 in benzene
leads to [1,3-B10H12D2] [172].

3. Halogen Derivatives

Stock first reported the preparation of halogen derivatives of decaborane(14) by the
direct reaction of decaborane with halogens in a sealed tube [33]. These reactions were
re-investigated in the 1960s. It was found that the reaction of decaborane(14) with 1 equiv.
iodine at 110–120 ◦C leads to the formation of a mixture of 1- and 2-iodo derivatives of
decaborane in a ratio of ~1:2 [173,174]. The resulting mixture of isomers can be separated
by fractional crystallization from low-boiling alkanes (pentane, hexane, heptane) [173] or
chromatographically [175]. The assignment of the substitution position was made based
on the 11B NMR spectra [174,176,177]; however, the 1-isomer was initially erroneously
assigned as the 5-isomer [173,178]. The subsequent reaction of 2-iododecaborane with
iodine at 110 ◦C results in a mixture of the 1,2- and 2,4-diiodo derivatives [1,2-I2-B10H12]
and [2,4-I2-B10H12] in a nearly equal ratio, while the similar reaction of 1-iododecaborane
produces mainly [1,2-I2-B10H12]. The reaction of decaborane(14) with an excess of iodine
was found to give a mixture of [1,2-I2-B10H12] and [2,4-I2-B10H12] in a ratio of ~1:2 [173]. The
reaction of decaborane(14) with iodine or iodine chloride in carbon disulfide in the presence
of AlCl3 was found to give a mixture of the 1- and 2-iodo derivatives of decaborane in the
same ratio of ~1:2 [179]. Later, the 1- and 2-iodo derivatives of decaborane were synthesized
by the reaction of decaborane(14) with iodine chloride in refluxing dichloromethane in the
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presence of AlCl3 and reliably characterized by NMR spectroscopy [180]. The solid state
structures of [1-I-B10H13] [181], [2-I-B10H13] (Figure 3) [180], and [2,4-I2-B10H12] [182] were
determined by single-crystal X-ray diffraction.

The 5- and 6-iodo derivatives of decaborane were prepared in an indirect way. The
treatment of [arachno-6,9-(Me2S)2-B10H12] with anhydrous HI in benzene under reflux con-
ditions results in a mixture of the 5- and 6-iodo derivatives of decaborane [5-I-B10H13] and
[6-I-B10H13] [174], which was separated by fraction crystallization from hexane [174] or chro-
matographically [175]. The reaction of [arachno-6,9-(Et2S)2-B10H12] with anhydrous HI in
benzene at room temperature was found to give the 5-iodo derivative [5-I-B10H13] [183–185].
The reaction of (NH4)2[closo-B10H10] with anhydrous HCl in a mixture of AlI3 and 1-butyl-3-
methylimidazolium iodide (bmimI) at 70 ◦C proceeds with the boron cage opening and results
in the 6-iodo derivative of decaborane [6-I-B10H13] [186]. The 6-iodo derivative isomerizes
to the 5-iodo derivative [5-I-B10H13] in the presence of a catalytic amount of triethylamine
in toluene at 60 ◦C. It is assumed that the isomerization occurs through the transformation
of [6-I-B10H13] into the [6-I-B10H13]− anion, followed by its isomerization [187]. The 6-iodo
derivative [6-I-B10H13] was also found to undergo photochemical isomerization to [5-I-B10H13]
under UV-irradiation in a solution [187]. The solid state structures of [5-I-B10H13] [187] and
[6-I-B10H13] [186] were determined by single-crystal X-ray diffraction (Figure 4). The 6-iodo
derivative [6-I-B10H13] was also obtained by the reaction of (NH4)2[closo-B10H10] with AlI3,
followed by the hydrolysis of the resulting intermediate [188].
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The reactions of decaborane(14) with bromine in dichloromethane in the presence of
AlCl3 [189] or AlBr3 [190], or in carbon disulfide in the presence of AlCl3 [174], lead to the
formation of a mixture of 1- and 2-bromo derivatives of decaborane [1-Br-B10H13] and [2-
Br-B10H13], which can be separated by fractional crystallization from hexane [173,189,190]
or chromatographically [175].

The 5- and 6-bromo derivatives of decaborane were also prepared in an indirect way.
The treatment of [arachno-6,9-(Me2S)2-B10H12] with anhydrous HBr in benzene under reflux
conditions results in a mixture of the 5- and 6-bromo derivatives of decaborane [5-Br-
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B10H13] and [6-Br-B10H13] in a ratio of ~1:4, which was separated by fraction crystallization
from hexane [174] or chromatographically [175,190]. The reactions of [arachno-6,9-(R2S)2-
B10H12] (R = Me, Et) with anhydrous HBr in benzene at room temperature were found to
give the 5-bromo derivative [5-Br-B10H13] [183–185]. The reaction of (NH4)2[closo-B10H10]
with anhydrous HBr in a mixture of AlBr3 and 1-butyl-3-methylimidazolium bromide
(bmimBr) at 70 ◦C proceeds with the boron cage opening and results in the 6-bromo deriva-
tive of decaborane [6-Br-B10H13] [186]. The 6-bromo derivative isomerizes to the 5-bromo
derivative [5-Br-B10H13] in the presence of a catalytic amount of triethylamine in toluene at
60 ◦C [187]. The solid state structures of [5-Br-B10H13] [187] and [6-Br-B10H13] [186] were
determined by single-crystal X-ray diffraction (Figure 5). The 6-bromo derivative [6-Br-
B10H13] was also obtained by the reaction of (NH4)2[closo-B10H10] with AlBr3, followed by
the hydrolysis of the resulting intermediate [188].
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The reaction of dimethylstannaundecaborane [nido-Me2SnB10H12] with bromine in
carbon disulfide leads to the oxidative removal of tin with the formation of the 5,10-dibromo
derivative of decaborane [5,10-Br2-B10H12] (Figure 6) [191].
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The reaction of decaborane(14) with chlorine in dichloromethane in the presence of
AlCl3 results in a mixture of the 1- and 2-chloro derivatives of decaborane [1-Cl-B10H13]
and [2-Cl-B10H13] [174,189]. Unexpectedly, a mixture of the 1- and 2-chloro derivatives
of decaborane was obtained in the reaction of decaborane(14) with 1,1-difluoroethane in
carbon disulfide in the presence of AlCl3 [192]. The isomers were separated by fractional
crystallization from pentane or hexane [174,189,192] or chromatographically [175], and the
substitution position was assigned using 11B NMR spectroscopy [174,193].

Similar to the corresponding iodo and bromo derivatives, the 5- and 6-chloro deriva-
tives of decaborane were prepared in an indirect way. The treatment of [arachno-6,9-
(Me2S)2-B10H12] with anhydrous HCl in benzene under reflux conditions results mainly
in the 6-chloro derivative of decaborane [6-Cl-B10H13] with some amount of the 5-chloro
isomer [174]. The reactions of [arachno-6,9-(Et2S)2-B10H12] with anhydrous HCl or HgCl2
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in benzene at room temperature were also found to give the 6-chloro derivative [6-Cl-
B10H13] [183–185]. The reaction of (NH4)2[closo-B10H10] with anhydrous HCl in a mixture
of AlCl3 and 1-butyl-3-methylimidazolium chloride (bmimCl) at 70 ◦C proceeds with the
boron cage opening and results in the 6-chloro derivative of decaborane [6-Cl-B10H13] [186].
The 6-chloro derivative of decaborane can also be prepared by the reactions of (NH4)2[closo-
B10H10] with triflic acid in dichloromethane, respectively [186]. The 6-chloro derivative
isomerizes to the 5-chloro derivative [5-Cl-B10H13] in the presence of a catalytic amount
of triethylamine in toluene at 60 ◦C [187]. It was assumed that the isomerization occurs
through the transformation of [6-Cl-B10H13] into the [6-Cl-B10H13]− anion, followed by
its isomerization. The solid state structures of [6-Cl-B10H13], (HPS)[6-Cl-B10H12], and
(HPS)[5-Cl-B10H12] were determined by single-crystal X-ray diffraction (Figure 7) [186,187].
The B-H-B bridge deprotonation at the site adjacent to the halogenated boron atoms was
revealed [187].
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and [5-Cl-B10H12]− (bottom right) anions in the crystal structures of the corresponding protonated
Proton Sponge salts.

The 6-chloro derivative [6-Cl-B10H13] was also obtained by the reaction of (NH4)2[closo-
B10H10] or (Et4N)2[closo-B10H10] with AlCl3, followed by the hydrolysis of the resulting
intermediate [188,194,195].

The 6-fluoro derivative of decaborane [6-F-B10H13] was first obtained by the reaction of
[arachno-6,9-(Et2S)2-B10H12] with anhydrous HF in benzene at room temperature [183–185].
Later, the 6-fluoro derivative was prepared by the reaction of (NH4)2[closo-B10H10] with triflic
acid in 1-fluoropentane [186]. The solid state structure of [6-F-B10H13] was determined by
single-crystal X-ray diffraction (Figure 8) [186].
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4. Derivatives with a B-O Bond

Due to the lack of electrophilic reagents for the introduction of oxygen substituents,
the corresponding decaborane derivatives with substituents localized in the “bottom” of
the decaborane basket have not yet been obtained. Alkoxy derivatives of decaborane [5-RO-
B10H13] (R = Me, Et, Pr, Bu) were first obtained in low (13–20%) yields by trying to iodinate
Na[B10H13] in the corresponding esters [196]. The phenoxy derivative [5-PhO-B10H13] was
obtained in the same way, using anisole as a solvent [196]. The substitution position was
determined using 11B NMR spectroscopy [197]. It was assumed that their formation pro-
ceeds through the formation of oxonium derivatives of arachno-decaborane [R2O-B10H13]−,
followed by the elimination of one alkyl group [26]. The reaction of Na[B10H13] with SnCl4
in diethyl ether leads to a mixture of 6- and 5-alkoxy derivatives of decaborane [6-EtO-
B10H13] and [5-EtO-B10H13] in a ratio varying from 85:15 to 70:30 depending on the reaction
temperature. The isomers were separated using column chromatography on silica [198].
It should be noted that the direct reactions of decaborane(14) with alcohols and phenols
ROH leads to its complete degradation to the corresponding trialkyl- or triarylborates
(RO)3B [199]. The trimethylsiloxy derivative [6-Me3SiO-B10H13] was obtained in a low
yield (5–20%) from the reactions of Na[B10H13] and Na2[B10H12] with Me3SiCl in diethyl
ether [198]. The report on the preparation of a trimethylsilyl derivative [Me3Si-B10H13]
under similar conditions [200] should apparently be considered erroneous.

The reactions of 5-bromo derivative [5-Br-B10H13] with alcohols ROH in the presence of
NaHCO3 in dichloromethane lead to 6-alkoxy derivatives [6-RO-B10H13] (R = Me, Et, t-Bu,
c-Hx, CH2CH2SH, CH2CH2I, CH2CH2OCH2CH2Cl, (CH2)3C≡CH, CH(CH2CH=CH2)2),
while the reactions of 6-bromo derivative [6-Br-B10H13] with alcohols ROH in the presence
of NaHCO3 in dichloromethane lead to 5-alkoxy derivatives [5-RO-B10H13] (R = Me, t-Bu,
cHx, CH2CH2SH, CH2CH2I, CH2CH2N(CO)2C2H4, CH2CH2OCH2CH2Cl, (CH2)3C≡CH,
CH2C≡CCH3, CH(CH2CH=CH2)2). The reactions of [5-Br-B10H13] and [6-Br-B10H13]
with 1,4-cyclohexyldiol lead to the compounds [µ-6,6′-(OC6H10O)-(B10H13)2] and [µ-5,5′-
(OC6H10O)-(B10H13)2], respectively. The reactions of alcohols with [6-Br-B10H13] proceed
quickly at room temperature, while those with [5-Br-B10H13] require heating (70 ◦C) to
achieve completion. The reaction of [6-Br-B10H13] with ethanol was largely complete after
12 h at room temperature, but the reactions with 2-iodoethanol (~20 h), 2-bromoethanol
(~40 h), 2-chloroethanol (~100 h), and 2-fluoroethanol (~125 h) all took increasingly
longer times. The reactions with chloro- and iodo-derivatives of decaborane were found
to proceed in a similar way; however, the reaction rate decreases in the halogen se-
ries I~Br > Cl [198]. The solid state structures of [5-MeO-B10H13] (Figure 9), [6-t-BuO-
B10H13] (Figure 9), [5-ClCH2CH2OCH2CH2O-B10H13], [6-ClCH2CH2OCH2CH2O-B10H13],
[5-MeC≡CCH2O-B10H13], and [µ-6,6′-(OC6H10O)-(B10H13)2] (Figure 9) were determined
by single-crystal X-ray diffraction [201].

The 6-triflate derivative of decaborane [6-TfO-B10H13] was prepared by the reaction of
Cs2[closo-B10H10] with neat triflic acid at an ambient temperature [202,203]. In contrast, the
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reaction of (NH4)2[closo-B10H10] with triflic acid in 1-butyl-3-methylimidazolium triflate at
60 ◦C results in the 5-triflate derivative of decaborane [5-TfO-B10H13] [204]. It was found
that the reaction proceeds through the formation of the 6-triflate derivative, which, upon
heating, isomerizes into the 5-triflate derivative. In the presence of a catalytic amount of
triethylamine, the isomerization of [6-TfO-B10H13] to [5-TfO-B10H13] proceeds even at room
temperature [204]. The reactions of [5-TfO-B10H13] with methanol and 4-methoxyphenol in
1,2-dichloroethane at 70 ◦C result in the corresponding ethers [6-RO-B10H13] (R = Me, C6H4-
4-OMe) [204]. The solid state structures of [6-TfO-B10H13] [202] and [5-TfO-B10H13] [204]
were determined by single-crystal X-ray diffraction (Figure 10).

The reactions of Na2[closo-B10H10] with alcohols ROH (R = Me, Et, i-Pr, Bu, Ph)
in hexane in the presence of trimethylsilyl triflate lead to the corresponding 6-alkoxy
derivatives of decaborane [6-RO-B10H13] [205]. The reaction with water under the same
conditions results in the 6-trimethylsiloxy derivative [6-Me3SiO-B10H13] [205].
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In a similar way, the reaction of (NH4)2[closo-B10H10] with sulfuric acid produces the
6-hydroxy derivative of decaborane [6-HO-B10H13] [206]. The 6-hydroxy derivative was
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also obtained as a by-product of the reaction of [arachno-6,9-(Me2S)2-B10H12] with sulfuric
acid in benzene [207].

The 6-acetoxy derivative of nido-decaborane [6-AcO-B10H13] was obtained by the reac-
tion of [arachno-6,9-(Me2S)2-B10H12] with mercury acetate [208]. The 6-acetoxy derivative
of the arachno-decaborate anion [arachno-6-AcO-B10H13]2− was obtained by the reaction
of decaborane with 1-ethyl-3-methylimidazolium acetate (C2mim)(OAc). The solid state
structure of (C2mim)2[6-AcO-B10H13] was determined by single-crystal X-ray diffraction
(Figure 11) [209].

The bis(decaboranyl) ether [µ-6,6′-O-(B10H13)2] was prepared by the reaction of
[arachno-6,9-(R2S)2-B10H12] (R = Me, Et) with sulfuric acid in benzene [210,211]. Its structure
was determined by 11B NMR spectroscopy [183,211] and supported by single-crystal X-ray
diffraction [212]. The bis(decaboranyl) ether [µ-6,6′-O-(B10H13)2] was also obtained by the
dehydration of (H3O)2[closo-B10H10] [213].
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The preparation of decaborane derivatives with amides [arachno-6,9-(MeRN(R′)CO)2-
B10H12] (R = H, R′ = H, Me; R = Me, R′ = H, Me), triphenylphosphine oxide [arachno-
6,9-(Ph3PO)2-B10H12], and dimethylsulfoxide [arachno-6,9-(Me2SO)2-B10H12] has also been
reported [214–217].

5. Derivatives with a B-S Bond

The reaction of decaborane(14) with sulfur in the presence of AlCl3 at 120 ◦C results
in a mixture of the mercapto derivatives [1-HS-B10H13], [2-HS-B10H13], and [1,2-(HS)2-
B10H12] [218,219]. The solid state structures of these mercapto derivatives were determined
by single-crystal X-ray diffraction (Figure 12) [219].
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The reactions of Na2[closo-B10H10] with thiols RSH (R = i-Pr, i-Bu, c-Hx, C6H4-p-Me,
C6H4-p-F) in hexane in the presence of trimethylsilyl triflate led to the corresponding 6-
alkyl- and 6-arylsulfides [6-RS-B10H13] [205]. It should be noted that the direct reactions of
decaborane(14) with alkyl thiols RS lead to its complete degradation to the corresponding
trialkylthioborates (RS)3B [220].

Due to its use in the synthesis of carboranes, the 6,9-bis(dimethylsulfonium) deriva-
tive of the arachno-decaborate anion [arachno-6,9-(Me2S)2-B10H12], which is formed by
refluxing decaborane with dimethyl sulfide in ether or benzene, is the most known de-
caborane derivative with a B-S bond [214,221,222]. The solid state structure of [arachno-
6,9-(Me2S)2-B10H12] was determined by single-crystal X-ray diffraction [223]. The 6,9-
bis(dimethylsulfonium) derivative was studied by X-ray and X-ray photoelectron spec-
troscopy [224–226], and its diamagnetic susceptibility was determined [227]. The Me2S
substituents in [arachno-6,9-(Me2S)2-B10H12] can be easily replaced by stronger Lewis
bases [214,228]. A series of other bis(dialkylsulfonium) derivatives ([arachno-6,9-(RR′S)2-
B10H12] (R = R′ = Et, Pr; RR′ = (CH2)4, (CH2CH2)2S, (CH2CH2)2O)) have been prepared in
a similar manner [215,220,228,229].

The bis(diethylsulfonium) derivative [arachno-6,9-(Et2S)2-B10H12] can also be obtained
by the reaction of (NH4)2[closo-B10H10] with anhydrous hydrogen chloride in diethylsul-
fide [230]. This approach has been extended to other salts of the closo-decaborate anion and
other strong acids, including (H3O)2[closo-B10H10] [231,232].

The reactions of 2-halogen derivatives of decaborane [2-X-B10H13] (X = Cl, Br, I)
with dimethylsulfide Me2S give the corresponding 2-halogen-6,9-bis(dimethylsulfonium)
derivatives [arachno-2-X-6,9-(Me2S)2-B10H11] [233,234]. In a similar way, the reactions of
5-halogen derivatives of decaborane [5-X-B10H13] (X = F, Br, I) with dialkylsulfides R2S
(R = Me, Et) result in the corresponding 5-halogen-6,9-bis(dialkylsulfonium) derivatives
[arachno-5-X-6,9-(R2S)2-B10H11], while the reactions of the 6-chloro derivative proceed with
the halogen displacement, giving [arachno-6,9-(R2S)2-B10H12] [185]. The solid state structure
of [5-Br-6,9-(R2S)2-B10H11] was determined by single-crystal X-ray diffraction [235]. The
reactions of 2,4-dichloro- and 1,2,4-trichloro derivatives of decaborane [nido-2,4-Cl2-B10H12]
and [nido-1,2,4-Cl3-B10H11] with dimethylsulfide were found to proceed with the boron cage
rearrangement, resulting in [arachno-1,7-Cl2-6,9-(Me2S)2-B10H10] and [arachno-1,3,7-Cl3-6,9-
(Me2S)2-B10H9], respectively [236]. The solid state structures of [1,7-Cl2-6,9-(Me2S)2-B10H10]
and [1,3,7-Cl3-6,9-(Me2S)2-B10H9] were determined by single-crystal X-ray diffraction [236].

The reaction of the 5-triflato derivative of decaborane [5-TfO-B10H13] with dimethylsul-
fide in toluene results in the 5-triflato-6,9-bis(dialkylsulfonium) derivative [arachno-5-TfO-
6,9-B10H11(SMe2)2], while the similar reaction of the 5-triflato derivative [6-TfO-B10H13]
proceeds with the substitution of the triflate group, giving [arachno-6,9-B10H12(SMe2)2] [204].
The solid state structure of [5-TfO-6,9-(Me2S)2-B10H11] was determined by single-crystal
X-ray diffraction [204].

The 5-dimethylsulfonium derivative of decaborane [nido-5-Me2S-B10H12] was obtained
by heating [arachno-6,9-(Me2S)2-B10H12] in toluene or mesitylene, and its solid state struc-
ture was determined by single-crystal X-ray diffraction (Figure 13) [215,222,237,238]. It was
found that the B-H-B bridge deprotonation occurs at the site adjacent to the substituted
boron atom, and thus, the structure of [5-Me2S-B10H12] is similar to the structure of the
[6-Cl-B10H12]− anion [187].
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The preparation of the bis(dimethylthioformamide) [arachno-6,9-(Me2N(H)CS)2-
B10H12] [215] and the bis(di(alkyl/aryl)thiourea) [arachno-6,9-((RHN)2CS)2-B10H12]
(R = Et, Ph) [217,239] derivatives has also been reported.

6. Derivatives with a B-N Bond

Heating decaborane(14) in acetonitrile under reflux proceeds with hydrogen elimi-
nation, resulting in the 6,9-bis(acetonitrilium) derivative of the arachno-decaborate anion
[arachno-6,9-(MeC≡N)2-B10H12] [240], which was the first structurally characterized de-
caborane derivative [217,241–243] (Figure 14). The 6,9-bis(acetonitrilium) derivative was
studied by X-ray photoelectron spectroscopy [226], and its diamagnetic susceptibility was
determined [227]. The 6,9-bis(propionitrilium) and 6,9-bis(benzonitrilium) derivatives
[arachno-6,9-(RC≡N)2-B10H12] (R = Et, Ph) were prepared in a similar way from decab-
orane(14) and propionitrile [244] or benzonitrile [217], respectively. The reaction of the
6,9-bis(acetonitrilium) derivative with diethylcyanamide in diethyl ether results in [arachno-
6,9-(Et2NC≡N)2-B10H12] [214,245]. The reaction of the 2-bromo derivative of decaborane
[2-Br-B10H13] gives [arachno-6,9-(MeC≡N)2-2-Br-B10H11] [233].
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The 6,9-bis(acetonitrilium) derivative [arachno-6,9-(MeC≡N)2-B10H12] reacts with N-
nucleophiles (primary and secondary amines and hydrazine), giving the correspond-
ing amidines [arachno-6,9-(RR′N(Me)C=HN)2-B10H12] (R = H, R′ = Et, Pr, Bu, Ph, NH2,
NHMe; R = R′ = Et, Pr, Bu] [246–248]. The solid state structures of the amidines [6,9-
(Bu2N(Me)C=HN)2-B10H12] and [6,9-(PhHN(Me)C=HN)2-B10H12]·Et2O were determined
by single-crystal X-ray diffraction (Figure 15) [248]. It should be noted that the reactions
with primary amines produce mainly the ZE isomers, whereas the reactions with secondary
amines result only in the EE isomers.

The reaction of the 6,9-bis(acetonitrilium) derivative with methanol results in the for-
mation of the corresponding imidate [arachno-6,9-(MeO(Me)C=HN)2-B10H12] [248]. Nowa-
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days, the addition of nucleophiles to the activated triple -C≡N- bond of nitrilium deriva-
tives of various polyhedral boron hydrides has become a widely used method for their
modification [249–258].

The reactions of the 6,9-bis(acetonitrilium) derivative with tertiary amines in reflux-
ing benzene or toluene lead to the corresponding 6,9-bis(trialkylammonium) derivatives
[arachno-6,9-(R3N)2-B10H12] (R = Me, Et) [214,245]. The 6,9-bis(ammonium) derivative
[arachno-6,9-(H3N)2-B10H12] was prepared by the reaction of decaborane(14) with am-
monia in benzene or toluene [259,260]. The solid state structures of [6,9-(H3N)2-B10H12]
(Figure 16) [243,261], [6,9-(Me3N)2-B10H12] [262], and [6,9-(Et3N)2-B10H12] [263] were de-
termined by single-crystal X-ray diffraction. [6,9-(H3N)2-B10H12] and [6,9-(Et3N)2-B10H12]
were studied by X-ray photoelectron and X-ray fluorescence spectroscopy [225,226,264].
The diamagnetic susceptibilities of [6,9-(Me3N)2-B10H12] and [6,9-(Et3N)2-B10H12] were de-
termined [227]. The thermal decomposition of the 6,9-bis(ammonium) derivative [arachno-
6,9-(H3N)2-B10H12] was studied [260,265,266].

The reaction of decaborane(14) with diethylamine in cyclohexane results in the di-
ethylammonium derivative of the arachno-decaborate anion (Et2NH2)[arachno-6-Et2HN-
B10H13] [267]. Similar alkylammonium derivatives (Me4N)[arachno-6-RR′R′′N-B10H13]
(R = Et, R′ = R′′ = H; R = R′ = Et, R′′ = H; R = R′ = R′′ = Et; RR′ = (CH2)5, R′′ = H) were pre-
pared by the reactions of Na[B10H13] with the corresponding amines, followed by precipita-
tion with (Me4N)Cl [267]. Heating (Et2NH2)[arachno-6-Et2HN-B10H13] in THF under reflux
gives the 6,9-bis(diethylammonium) derivative [arachno-6,9-(Et2HN)2-B10H12], whereas the
similar reaction in acetonitrile leads to [arachno-6-Et2HN-9-Et2N(Me)C=HN-B10H12] [267].
The reactions of Na[arachno-6-Et2HN-B10H13] with acetonitrile and dimethylsulfide in the
presence of dry HCl result in [arachno-6-Et2NH-9-MeC≡N-B10H12] and [arachno-6-Et2NH-
9-Me2S-B10H12], respectively [267]. In a similar way, the reaction of (Me4N)[arachno-6-
Et3N-B10H13] with acetonitrile leads to [arachno-6-Et3N-9-MeC≡N-B10H12] [221]. The reac-
tions of Na[arachno-6-Et2HN-B10H13] with amines in THF produce the corresponding 6,9-
bis(alkylammonium) derivatives [arachno-6-Et2NH-9-RR′R′’N-B10H12] (R = Et, R′ = R′′ = H;
R = R′ = Et, R′′ = H; R = R′ = R′′ = Me) [267].
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The reactions of decaborane(14) with pyridines, quinolines, and isoquinoline lead to
the corresponding [arachno-6,9-L2-B10H12] (L = pyridine, 2-methylpyridine, 3-methylpyridine,
4-methylpyridine, 2-ethynylpyridine, 2-cyanopyridine, quinoline, 2-methylquinoline,
8-methylquinoline, isoquinoline) derivatives (Scheme 4) [214,236,268,269]. A more convenient
way to prepare 6,9-bis(pyridinium) derivatives is the nucleophilic substitution of the dialkylsul-
fide groups in [arachno-6,9-(R2S)2-B10H12] (R = Me, Et). In this way, the [arachno-6,9-L2-B10H12]
(L = pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,3-dimethylpyridine,
2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 3,4-dimethylpyridine, 2-
methyl-5-ethylpyridine, 2-phenylpyridine, 4-benzylpyridine, 4-styrylpyridine,
2-methoxypyridine, 4-methoxypyridine, 3-chloropyridine, 4-chloropyridine, 2-bromopyridine,
4-bromopyridine, 3,5-dibromopyridine, 3-cyanopyridine, 4-cyanopyridine, 4-acetylpyridine,
quinoline) derivatives were synthesized (Scheme 4) [229,270–272].
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azaheterocycle [6,9-(NC5H4C5H4N)2-B10H12] (Figure 18) [276].  

Scheme 4. Synthesis of 6,9-bis(pyridinium) derivatives [6,9-L2-B10H12].

All compounds of this series are brightly colored from yellow to red, which is the reason
for the interest in their study by UV and luminescent spectroscopy [229,271–273]. The 6,9-
bis(pyridinium) derivative [6,9-Py2-B10H12] was studied by X-ray photoelectron and X-ray
fluorescence spectroscopy [225,226] and, its diamagnetic susceptibility was determined [227].
The thermal decomposition of the 6,9-bis(pyridinium) and 6,9-bis(quinolinium) derivatives
was studied [274]. The solid state structures of [6,9-Py2-B10H12] [275], [6,9-(HC≡C-o-C5H4N)2-
B10H12] [269], and [6,9-(N≡C-o-C5H4N)2-B10H12]·CH2Cl2 [269] were determined by single-
crystal X-ray diffraction (Figure 17).
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4,4′-bipyridine leads to the product of the substitution of the Me2S groups with 

azaheterocycle [6,9-(NC5H4C5H4N)2-B10H12] (Figure 18) [276].  

Figure 17. Solid state structures of [arachno-6,9-(HC≡C-o-C5H4N)2-B10H12] (left) and [arachno-6,9-
(N≡C-o-C5H4N)2-B10H12] (right). Hydrogen atoms of organic substituents are omitted for clarity.

It should be noted that the reaction of decaborane(14) with pyridine at low tem-
peratures was found to form the 6,6-bis(pyridinium) derivative [arachno-6,6-Py2-B10H12],
which, upon refluxing in dry degassed pyridine, converts into the more stable 6,9-isomer
(Scheme 5) [268].
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Scheme 5. Synthesis of [arachno-6,6-Py2-B10H12] and its transformation to [arachno-6,9-Py2-B10H12].

The reaction of [6,9-(Me2S)2-B10H12] with pyrazine in dichloromethane gives the
pyrazine-bridged derivative [µ-6,6′-pyrazine-(9-Me2S-B10H12)2], whereas the reaction with
4,4′-bipyridine leads to the product of the substitution of the Me2S groups with azahetero-
cycle [6,9-(NC5H4C5H4N)2-B10H12] (Figure 18) [276].
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Figure 18. Solid state structures of [µ-6,6′-pyrazine-(9-Me2S-B10H12)2] (top) and [6,9-
(NC5H4C5H4N)2-B10H12] (bottom).

The similar reactions of [6,9-(Me2S)2-B10H12] with 1,4-bis[β-(4-pyridyl)vinyl]benzene
and 1,4-bis[β-(4-quinolyl)vinyl]benzene were found to produce mixtures of the correspond-
ing bridged and terminal substituted derivatives (Scheme 6) [277].

The reactions of Na[arachno-6-Et2HN-B10H13] and (Me4N)[arachno-6-Et3N-B10H13]
with pyridine in THF produce the corresponding 6-alkylammonium-9-pyridinium deriva-
tives [arachno-6-Et2RN-9-Py-B10H12] (R = H, Et) [267,278].

The reactions of decaborane(14) with imidazoles in refluxing benzene result in the
corresponding 6,9-bis(imidazolium) derivatives [arachno-6,9-(RIm)2-Me2S-B10H12] (R = H,
Me, Et, Bu) (Figure 19). The hypergolic properties of the 6,9-bis(imidazolium) derivatives
prepared were studied [279].
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The reactions of decaborane(14) with 2-isopropyl- and 2-methyl-5-(2-chloroethyl)
tetrazoles in benzene result in the corresponding 6,9-bis(tetrazolium) derivatives [arachno-
6,9-L2-Me2S-B10H12] [280].

The 6-isothiocyanato derivative [6-SCN-B10H13] was prepared by the reaction of
[6,9-(R2S)2-B10H12] (R = Me, Et) with mercury isothiocyanate [208]. Alternatively, the
6-isothiocyanato derivative can be prepared by the reaction of decaborane(14) with NaSCN
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in 1,2-dimethoxyethane in the presence of dry HCl [281]. The solid state structure of
[6-SCN-B10H13] was determined by single-crystal X-ray diffraction (Figure 20) [281].
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Figure 20. Solid state structures of [6-SCN-B10H13] (left) and [6-N3-µ-5,6-NH2-B10H11] (right).

The reaction of [6,9-(Me2S)2-B10H12] with excess HN3 in toluene results in the 6-azido-
µ-5,6-amino derivative [6-N3-µ-5,6-NH2-B10H11], the structure of which was determined
by single-crystal X-ray diffraction (Figure 20) [282].

7. Derivatives with a B-P Bond

The reaction of decaborane(14) with triphenylphosphine in diethyl ether under reflux
results in the 6,9-bis(triphenylphosphonium) derivative of the arachno-decaborate anion
[arachno-6,9-(Ph3P)2-B10H12]; the same product can be prepared by the reaction of [6,9-
(MeC≡N)2-B10H12] with triphenylphosphine in hot acetonitrile [214,245,283]. The solid
state structure of [arachno-6,9-(Ph3P)2-B10H12]·2DMF·H2O was determined by single-crystal
X-ray diffraction [284]. The 6,9-bis(triphenylphosphonium) derivative was also studied
by X-ray emission and X-ray photoelectron spectroscopy [279,280], and its diamagnetic
susceptibility was determined [227]. The reaction of [6,9-(Me2S)2-2-Br-B10H11] with triph-
enylphosphine in benzene results in the corresponding 6,9-bis(triphenylphosphonium)
derivative [6,9-(Ph3P)2-2-Br-B10H11] [233].

The reaction of decaborane(14) with PhMe2P at low temperatures (~200 K) gives a
mixture of exo,exo- and exo,endo-isomers of [6,9-(PhMe2P)2-arachno-B10H12], which were
separated chromatographically [285,286]. The structure of both isomers was confirmed by
single-crystal X-ray diffraction (Figure 21) [286].
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Figure 21. Solid state structures of exo,endo-[6,9-(PhMe2P)2-arachno-B10H12] (left) and exo,exo-[6,9-
(PhMe2P)2-arachno-B10H12] (right). Hydrogen atoms of organic substituents are omitted for clarity.

Under similar conditions, the reaction of the 2,4-dichloro derivatives of decaborane
with PhMe2P solely produces the exo,endo-isomer of [6,9-(PhMe2P)2-2,4-Cl2-arachno-B10H10],
while the reaction of 2-bromo leads to mixtures of exo,exo- and exo,endo-isomers and [6,9-
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(PhMe2P)2-2-Br-arachno-B10H11]. It is interesting to note that in the reaction of the 2-bromo
derivative, it is precisely the 6,9-exo,endo-isomer that is formed, without any traces of the
9,6-exo,endo-isomer. The solid state structure of the exo,endo-isomer [6,9-(PhMe2P)2-2-Br-
arachno-B10H12] was determined by single-crystal X-ray diffraction (Figure 22) [286].
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The reaction of decaborane(14) with triethylphosphine in benzene results in the
6,9-bis(triethylphosphonium) derivative [arachno-6,9-(Et3P)2-B10H12] [287], whereas the
6,9-bis(diphenylphosphonium) and 6,9-bis(phenylphosphonium) derivatives [arachno-6,9-
(Ph2HP)2-B10H12] and [arachno-6,9-(PhH2P)2-B10H12] were prepared by the reactions of the
corresponding phosphines with [arachno-6,9-(Et2S)2-B10H12] [217].

The phosphite, phosphinite, and thiophosphite derivatives of the arachno-decaborate
anion [arachno-6,9-(R2R′P)2-B10H12] (R = R′ = OMe, OEt, OPh; R = Ph, R′ = OEt; R = OBu,
R′ = Ph; R = R′ = SEt) were prepared by the direct reactions of decaborane(14) with the
corresponding phosphorus compounds or via substitution of the Me2S and MeCN groups in
[arachno-6,9-(Me2S)2-B10H12] and [arachno-6,9-(MeC≡N)2-B10H12], respectively [217,288–290].

The reaction of decaborane(14) with diphenylchlorophosphine in diethyl ether gives
the 6,9-bis(chlorodiphenylphosphonium) derivative [arachno-6,9-(ClPh2P)2-B10H12], which,
upon the treatment with dimethylamine in alcohols, lead to the corresponding phospho-
nites [6,9-(ROPh2P)2-B10H12] (R = Me, Et, CH2CH2OH) [290]. The reaction of [6,9-(ClPh2P)2-
B10H12] with dimethylamine in aqueous solution water results in the bis(dimethylammonium)
salt of the corresponding acid (Me2NH2)2[6,9-(OPh2P)2-B10H12] [290]. The 6,9-bis-(hydroxy
diphenylphosphonium) derivative [6,9-(HOPh2P)2-B10H12] was prepared by the reaction of
[6,9-(ClPh2P)2-B10H12] with water in acetone [290].

The 6,9-bis(chlorodiphenylphosphonium) derivative reacts with ammonia, hydrazine,
primary aliphatic amines, and ethylenimine in alcohols to form the corresponding 6,9-
bis(aminodiphenylphosphonium) derivatives [6,9-(R′RNPh2P)2-B10H12] (R = H, R′ =NH2,
Me, Bu; R = R′ = CH2CH2) [290]. The reactions of decaborane(14) or [arachno-6,9-(R2S)2-
B10H12] (R = Me, Et) with dimethylaminophosphines in refluxing benzene lead to the corre-
sponding 6,9-bis(dimethylaminophosphonium) derivatives [6,9-(RR′(Me2N)P)2-B10H12]
(R = R′ = NMe2; R = NMe2, R′ = Ph, Cl; R = R′ = Ph; R = Ph, R′ = Cl; RR′ = OCH2CH2O) [217].

The reaction of [6,9-(ClPh2P)2-B10H12] with NaN3 in ethanol results in the 6,9-bis-(azidodi
phenylphosphonium) derivative [6,9-(N3Ph2P)2-B10H12] [290], which, upon the treatment with
triphenylphosphine in refluxing benzene, gives the 6,9-bis(triphenylphosphineiminodiphenyl
phosphonium) derivative [6,9-(Ph3P=NPh2P)2- B10H12] [291].

The bifunctional derivatives [6,9-(XPh2P)2-B10H12] (X = Cl, OH, N3) were used for the
synthesis of decaborane-based polymers [291,292]. The chemistry of decaborane-based
polymers is considered in detail in the review [293]. The formation of decaborane-based
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polymers along with a small amount of [6,9-(dppf)2-B10H12] has also been reported in the
reaction of decaborane(14) with 1,1′-bis(diphenylphosphino)ferrocene (dppf) [294].

The reaction of Na[B10H13] with tributylphosphine in acetonitrile in the presence of
dry HCl leads to [arachno-6-Bu3P-9-MeC≡N-B10H12] [221]. The reaction of Na[B10H13]
with diphenylchlorophosphine in diethyl ether leads to the diphenylphosphine derivative
[nido-µ-5,6-Ph2P-B10H13] [295], whose structure was determined by single-crystal X-ray
diffraction [296]. The same compound was reported to be formed in the reaction of the
so-called “Grignard derivative” [B10H13MgI] formed by the treatment of decaborane(14)
with MeMgI, with diphenylchlorophosphine in diethyl ether [297]. The diphenylphosphine
derivative [nido-µ-5,6-Ph2P-B10H13] is easily deprotonated with triethylamine or sodium
hydroxide to form the corresponding salts [295,297]. The solid state structure of the
triphenylmethylphosponium salt (Ph3PMe)[arachno-µ-6,9-Ph2P-B10H12] was determined
by single-crystal X-ray diffraction (Figure 23) [298].

Molecules 2023, 28, x FOR PEER REVIEW 21 of 56 
 

 

The reaction of Na[B10H13] with tributylphosphine in acetonitrile in the presence of 

dry HCl leads to [arachno-6-Bu3P-9-MeC≡N-B10H12] [221]. The reaction of Na[B10H13] with 

diphenylchlorophosphine in diethyl ether leads to the diphenylphosphine derivative 

[nido-μ-5,6-Ph2P-B10H13] [295], whose structure was determined by single-crystal X-ray 

diffraction [296]. The same compound was reported to be formed in the reaction of the so-

called “Grignard derivative” [B10H13MgI] formed by the treatment of decaborane(14) with 

MeMgI, with diphenylchlorophosphine in diethyl ether [297]. The diphenylphosphine 

derivative [nido-μ-5,6-Ph2P-B10H13] is easily deprotonated with triethylamine or sodium 

hydroxide to form the corresponding salts [295,297]. The solid state structure of the 

triphenylmethylphosponium salt (Ph3PMe)[arachno-μ-6,9-Ph2P-B10H12] was determined 

by single-crystal X-ray diffraction (Figure 23) [298]. 

 

Figure 23. Solid state structure of the [arachno-μ-6,9-Ph2P-B10H12]− anion. Hydrogen atoms of organic 

substituents are omitted for clarity. 

It should be noted that the reactions of [6,9-(MeC≡N)2-B10H12] with low-coordinated 

phosphorus compounds, such as phosphaalkynes RC≡P (R = t-Bu, Ad), do not lead to 

substitution o hydrogens but to the incorporation of phosphorus into the decaborane 

basket with the formation of 11-vertex phosphoboranes [nido-RC(H)=PB10H13] [299,300]. 

8. Derivatives with a B-As Bond 

The 6,9-bis(trialkyl/arylarsonium) derivatives [6,9-(R3As)2-B10H12] (R = Et, Ph) were 

prepared by the reactions of decaborane(14) or [6,9-(MeC≡N)2-B10H12] with the 

corresponding arsines in benzene or toluene [287]. The reaction of decaborane(14) with 

triethoxyarsine in benzene leads to [6,9-((EtO)3As)2-B10H12] [289].  

9. Derivatives with a B-C Bond 

Decaborane derivatives with a B-C bond are probably the most studied area of 

decaborane chemistry. Like the halogenation of decaborane, the direct alkylation reactions 

result in the substitution of hydrogen atoms at “the bottom” of the decaborane basket. The 

reaction of decaborane(14) with methyl bromide in carbon disulfide in the presence of 

AlCl3 at 80 °C gives a mixture of the 2-methyl [2-Me-B10H13], 1,2- and 3,4-dimethyl [1,2-

Me2-B10H12] and [2,4-Me2-B10H12], 1,2,3- and 1,2,4-trimethyl [1,2,3-Me3-B10H11] and [1,2,4-

Me3-B10H11], 1,2,3,4- and 1,2,3,5(or 8)-tetramethyl [1,2,3,4-Me3-B10H10], and [1,2,3,5(or 8)-

Me4-B10H10] derivatives, which were chromatographically separated [301]. The 

methylation of decaborane(14) was also studied using methyl chloride [302,303].  

The reaction of decaborane(14) with neat methyl iodide in the presence of AlCl3 at 

room temperature gives the 1,2,3,4-tetramethyl derivative [1,2,3,4-Me4-B10H10], whereas 

Figure 23. Solid state structure of the [arachno-µ-6,9-Ph2P-B10H12]− anion. Hydrogen atoms of
organic substituents are omitted for clarity.

It should be noted that the reactions of [6,9-(MeC≡N)2-B10H12] with low-coordinated
phosphorus compounds, such as phosphaalkynes RC≡P (R = t-Bu, Ad), do not lead to
substitution o hydrogens but to the incorporation of phosphorus into the decaborane basket
with the formation of 11-vertex phosphoboranes [nido-RC(H)=PB10H13] [299,300].

8. Derivatives with a B-As Bond

The 6,9-bis(trialkyl/arylarsonium) derivatives [6,9-(R3As)2-B10H12] (R = Et, Ph) were
prepared by the reactions of decaborane(14) or [6,9-(MeC≡N)2-B10H12] with the correspond-
ing arsines in benzene or toluene [287]. The reaction of decaborane(14) with triethoxyarsine
in benzene leads to [6,9-((EtO)3As)2-B10H12] [289].

9. Derivatives with a B-C Bond

Decaborane derivatives with a B-C bond are probably the most studied area of decabo-
rane chemistry. Like the halogenation of decaborane, the direct alkylation reactions result in
the substitution of hydrogen atoms at “the bottom” of the decaborane basket. The reaction
of decaborane(14) with methyl bromide in carbon disulfide in the presence of AlCl3 at 80 ◦C
gives a mixture of the 2-methyl [2-Me-B10H13], 1,2- and 3,4-dimethyl [1,2-Me2-B10H12]
and [2,4-Me2-B10H12], 1,2,3- and 1,2,4-trimethyl [1,2,3-Me3-B10H11] and [1,2,4-Me3-B10H11],
1,2,3,4- and 1,2,3,5(or 8)-tetramethyl [1,2,3,4-Me3-B10H10], and [1,2,3,5(or 8)-Me4-B10H10]
derivatives, which were chromatographically separated [301]. The methylation of decabo-
rane(14) was also studied using methyl chloride [302,303].
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The reaction of decaborane(14) with neat methyl iodide in the presence of AlCl3 at
room temperature gives the 1,2,3,4-tetramethyl derivative [1,2,3,4-Me4-B10H10], whereas
the reaction at 120 ◦C leads to the octasubstituted product [1-I-2,3,4,5,6,7,8-Me7-B10H6].
The similar octasubstituted derivative [1-TfO-2,3,4,5,6,7,8-Me7-B10H6] was obtained by the
reaction of decaborane(14) with TfOMe in the presence of a catalytic amount of triflic acid
at 120 ◦C. The solid state structures of [1-I-2,3,4,5,6,7,8-Me7-B10H6] and [1-TfO-2,3,4,5,6,7,8-
Me7-B10H6] were determined by single-crystal X-ray diffraction (Figure 24) [304]. The
methyl derivatives prepared can be easily deprotonated with a Proton Sponge to give the
corresponding salts [304].
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B10H6] (right). Hydrogen atoms of methyl groups are omitted for clarity.

The reaction of decaborane(14) with ethyl bromide in carbon disulfide in the pres-
ence of AlCl3 under reflux gives a mixture of mono-, di-, and triethyl derivatives [305].
The monoethyl derivative of decaborane was prepared by the reaction of decaborane(14)
with neat ethyl bromide in the presence of AlCl3 [306]. The solid state structure of the
1-ethyl derivative of decaborane [1-Et-B10H13] was determined by single-crystal X-ray
diffraction [307].

The reaction of decaborane(14) with MeLi in benzene followed by treatment with HCl
has been reported to give a mixture of the 6-methyl-, 6,5(or 8)- and 6,9-dimethyl derivatives
of decaborane [308]. The reaction with EtLi in benzene gives the 6-ethyl derivative [6-Et-
B10H13] [308]. The reaction of decaborane(14) with MeMgI has been shown to proceed by
two routes. The major reaction yields the so-called “Grignard derivative” [B10H13MgI] and
methane, and the minor reaction produces the 6-methyl derivative of decaborane. The
reaction of the “Grignard derivative” with dimethyl sulfate produces a mixture of the 5- and
6-methyl derivatives of decaborane [309]. In a similar way, the reaction of decaborane(14)
with EtMgI produces the “Grignard derivative” as the main product and the 6-ethyl
derivative of decaborane as a by-product. The reaction of the “Grignard derivative” with
[Et3O]BF4 or diethyl sulfate gives the 5-ethyl derivative of decaborane [5-Et-B10H13] [309].
A series of alkyl derivatives [R-B10H13] (R = butyl, amyl, hexyl, cyclohexyl, heptyl, octyl)
was prepared by the reactions of the “Grignard derivative” with the corresponding alkyl
fluorides [310]. The 6-benzyl derivative of decaborane [6-Bn-B10H13] can be prepared by
the reaction of the “Grignard derivative” with benzyl chloride or Na[B10H13] with benzyl
bromide [309,311,312].

Later, these reactions were re-examined, and it was shown that the first stage of
the reaction of decaborane(14) with the alkyllithium reagents RLi is deprotonation of



Molecules 2023, 28, 6287 23 of 54

decaborane with the formation of Li[B10H13]. The reaction with the second equivalent of
RLi produces Li2[arachno-6-R-B10H13], which, when treated with HCl, gives Li[arachno-6-R-
B10H14] and then [nido-6-R-B10H13] (R = Me, n-Bu, t-Bu). The use of pre-prepared salts of
the [B10H13]− anion makes it possible to reduce the formation of by-products [237,313].

Another approach to the 6-alkyl derivatives of decaborane includes the reactions
of [arachno-6,9-(Me2S)2-B10H12] with alkenes in dichloromethane, resulting in [nido-6-
R-8-Me2S-B10H11] (R = cyclohexyl, cyclohexenyl, hexyl, octyl, 2,3-dimethyl-1-butyl, 2,3-
dimethyl-2-butyl, 2-methyl-2-butyl, (1R)-(+)-α-pinene, and (1S)-(−)-β-pinene), which can
be reduced using Superhydride Li[Et3BH] in THF to [6-R-B10H12]− and then protonated
with HCl/Et2O to [6-R-B10H13] [222,237,313–315]. From the point of view of organic chem-
istry, these reactions can be considered as the hydroboration reactions. The solid state
structures of [6-Chx-8-Me2S-B10H11] [316], [6-Thx-8-Me2S-B10H11] [237] (Figure 25), and
[6-Thx-B10H13] [237] (Figure 26) were determined by single-crystal X-ray diffraction.
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Hydrogen atoms of organic substituents are omitted for clarity.
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Another convenient method for the synthesis of 6-alkyl derivatives of decaborane is based
on the use of ionic liquids as a solvent. The reactions of decaborane(14) with terminal alkenes
in biphasic ionic-liquid/toluene mixtures lead to the corresponding 6-alkyl derivatives [6-R-
B10H13] (R = C6H13, C8H17, C16H33, CH(i-Pr)CH2CHMe2, (CH2)2C6H5, (CH2)3C6H5, (CH2)6Br,
(CH2)4CH=CH2, (CH2)6CH=CH2, (CH2)3OC3H7, (CH2)3SiMe3, (CH2)4COMe, (CH2)6OAc,
(CH2)3OBn, (CH2)3OH, and (CH2)3Bpin, norbornenyl) [317–320]. The best results were ob-
served for reactions with [bmim]X (1-butyl-3-methylimidazolium, X = Cl− or BF4

−) and
bmpyX (1-butyl-4-methylpyridinium, X = Cl− or BF4

−). The reaction mechanism includes
the ionic-liquid-promoted formation of the [B10H13]− anion, its addition to the alkene to form
the [6-R-B10H12]− anion, and, finally, the protonation of the last one to form the final product
[6-R-B10H13] [314]. The solid state structures of [6-Me3Si(CH2)3-B10H13] and [6-MeC(O)(CH2)4-
B10H13] were determined by single-crystal X-ray diffraction (Figure 26) [318]. The 6-cyclohexyl
derivative of decaborane [nido-6-C6H11-B10H13] was obtained in a low yield from the re-
action of Cs2[closo-B10H10] with triflic acid in cyclohexane (Figure 27) [202,203]. In a
similar way, the 6-hexyl derivative [nido-6-C6H13-B10H13] was isolated from the reaction of
(NH4)2[closo-B10H10] with concentrated nitric acid in hexane [321].
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left) and [6-(5′-norbornenyl)-B10H13] (bottom right).

The Cp2Ti(CO)2-catalyzed reactions of decaborane(14) with terminal alkenes have
been found to result in the high-yield formation of 6-alkyl derivatives of decaborane [6-R-
B10H13] (R = C6H13, C8H17, (CH2)3SiMe3) [322,323]. The reactions of decaborane(14) with
equimolar amounts of bifunctional alkenes such as diallyldimethylsilane, 1,5-hexadiene, 1,4-
cyclohexadiene, 1,5-cyclooctadiene, and 2,5-norbornadiene produce the corresponding de-
caborane derivatives with a double bond in the substituent [6-R-B10H13]
(R = (CH2)3SiMe2CH2CH=CH2, (CH2)4CH=CH2, 4-cyclohexenyl, 5-cyclooctenyl,
5-norbornenyl) [322–325]. The solid state structures of [6-H2C=CHCH2SiMe2(CH2)3-
B10H13] (Figure 26) [322], [6-(4′-cyclohexenyl)-B10H13] (Figure 27) [325], and [6-(5′-
norbornenyl)-B10H13] (Figure 27) [324] were determined by single-crystal X-ray diffraction.

The reactions of multifunctional alkenes with an excess amount of decaborane(14) pro-
duce the saturated linked-cage compounds with two ([µ-6,6′-Me2Si-(6-(CH2)3-B10H13)2], [µ-
6,6′-(CH2)6-(B10H13)2], [µ-6,6′-(1′′,5′′-cyclooctyl)-(B10H13)2], and [µ-6,6′-(2′′,5′′-norbornyl)-
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(B10H13)2]) or four ([µ4-6,6′,6′′,6′′′-Si-(6-(CH2)3-B10H13)4]) decaborane units [322,323,325].
The solid state structures of [µ-6,6′-(CH2)6-(B10H13)2], [µ-6,6′-(2′′,5′′-norbornyl)-(B10H13)2],
and [µ4-6,6′,6′′,6′′′-Si-(6-(CH2)3-B10H13)4] were determined by single-crystal X-ray diffrac-
tion (Figure 28) [322,323,325].
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(B10H13)2] (middle), and [µ4-6,6′,6′′,6′′′-Si-(6-(CH2)3-B10H13)4] (bottom). Hydrogen atoms of organic
substituents are omitted for clarity.

The derivatives with the two decaborane units [µ-6,6′-(1′′,5′′-cyclooctyl)-(B10H13)2]
and [µ-6,6′-(2′′,5′′-norbornyl)-(B10H13)2] can also be prepared by the titanium-catalyzed re-
actions of decaborane(14) with [6-(5′-cyclooctenyl)-B10H13] and [6-(5′-norbornenyl)-B10H13],
respectively [325].

The 6-alkyl derivatives of decaborane with substituents containing double bonds in
the side chain (hexenyl, norbornenyl, etc.) are used for the synthesis of decaborane-based
polymers and boron-containing ceramics [319,324–332].
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The reactions of decaborane(14) with terminal alkenes in the presence of catalytic
amounts of PtBr2 or H2PtCl6 lead to the 6,9-dialkyl derivatives nido-[6,9-R2-B10H12]
(R = C2H5, C3H7, C4H9, C5H11) [333]. The reactions of [5-TfO-B10H13] and [5-I-B10H13]
with 1-pentene in the presence of a catalytic amount of PtBr2 at 55 ◦C lead to the correspond-
ing 6,9-dialkyl derivatives [6,9-(C5H11)2-5-TfO-B10H11] and [6,9-(C5H11)2-5-I-B10H11] [204].
The solid state structure of [6,9-(C5H11)2-5-I-B10H11] was determined by single-crystal X-ray
diffraction (Figure 29) [204].
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Figure 29. Solid state structure of [6,9-(C5H11)2-5-I-B10H11]. Hydrogen atoms of organic substituents
are omitted for clarity.

The reactions of decaborane(14) with terminal alkynes in toluene in the presence of
[Cp*IrCl2]2 or [(p-cymene)RuCl2]2 as catalysts lead to the corresponding 6,9-di(β-alkenyl)
derivatives of decaborane [6,9-((E)-RCH=CH)2-B10H12] (R = H, C6H13, C6H5, (CH2)2Br,
(CH2)3Cl, SiMe3) [334,335]. The solid state structures of [6,9-((E)-Br(CH2)2CH=CH)2-
B10H12] and [6,9-((E)-Me3SiCH=CH)2-B10H12] were determined by single-crystal X-ray
diffraction (Figure 30) [334,335].
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Figure 30. Solid state structures of [6,9-((E)-Br(CH2)2CH=CH)2-B10H12] (left) and [6,9-((E)-
Me3SiCH=CH)2-B10H12] (right).

In contrast to [(p-cymene)RuCl2]2, the reactions of decaborane(14) with terminal
alkynes in the presence of [(p-cymene)RuI2]2 result in the 6,9-di(α-alkenyl) derivatives [6,9-
(R(H2C=)C)2-B10H12] (R = C6H13, CH2-c-C6H11, (CH2)2Br, (CH2)3Cl) [334,335]. The solid
state structure of [6,9-(c-C6H11CH2(H2C=)C)2-B10H12] was determined by single-crystal
X-ray diffraction (Figure 31) [334,335].
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Figure 31. Solid state structure of [6,9-(c-C6H11CH2(H2C=)C)2-B10H12]. Hydrogen atoms of organic
substituents are omitted for clarity.

In a similar way, the reactions of 6-alkyldecaboranes [6-R-B10H13] with terminal
alkynes in the presence of [Cp*IrCl2]2 give asymmetrically substituted 6-alkyl-9-alkenyl-
derivatives [6-R-9-((E)-R′CH=CH)2-B10H12] (R = (CH2)3SiMe3, R′ = H, C6H5, C6H4-m-
CH≡CH; CH2CH=CH2; R = C5H11, R′ = H). The solid state structure of [6-Me3Si(CH2)3-
9-(E)-m-HC≡CC6H4CH=CH-B10H12] was determined by single-crystal X-ray diffraction
(Figure 32) [334,335].
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Figure 32. Solid state structure of [6-Me3Si(CH2)3-9-(E)-m-HC≡CC6H4CH=CH-B10H12].

While [Cp*IrCl2]2 proved to be inactive for inducing the hydroboration of simple
olefins, such as 1-pentene, by either decaborane or the 6-alkyl-decaboranes, it was found to
catalyze the hydroboration of 6-alkyl-9-vinyldecaboranes [6-R-9-CH2=CH-B10H12]
(R = C5H11, (CH2)3SiMe3) by 6-alkyl-decaboranes [6-R-B10H13] (R = C5H11, (CH2)3SiMe3)
to yield linked-cage products [9,9′-µ-CH2CH2-(6-R-B10H12)2] (R = C5H11, (CH2)3SiMe3)
(Figure 33) [335].

The vinyl derivative [6-Me3Si(CH2)3-9-CH2=CH)2-B10H12] was found to readily un-
dergo both homo- and cross-metathesis reactions in the presence of Grubbs’ II catalyst,
giving the corresponding products [9,9′-µ-CH=CH-(6-Me3Si(CH2)3-B10H12)2] (Figure 34)
and [6-Me3Si(CH2)3-9-RCH=CH-B10H12] (R = C3H7, (CH2)4Br, CH2SiMe3) [335].
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Figure 34. Solid state structure of [9,9′-µ-CH=CH-(6-Me3Si(CH2)3-B10H12)2].

Heating [arachno-6,9-(Me2S)2-B10H12] with silylated acetylenes Me3SiC≡CR
(R = Me, Bu, SiMe3) leads to the corresponding trimethylsilyl alkenyl derivatives [nido-6-
Me3Si(R)C=CH-5-Me2S-B10H11] [336,337]. The solid state structures of [6-Me3Si(Me)C=CH-
5-Me2S-B10H11] [336], [6-Me3Si(Bu)C=CH-5-Me2S-B10H11] [337], and [6-(Me3Si)2C=CH-5-
Me2S-B10H11] [337] were determined by single-crystal X-ray diffraction (Figure 35).

The reaction of [6,9-(Me2S)2-B10H12] with the phosphaalkyne t-BuC≡P in reflux-
ing benzene leads to [µ-6(C),6′(C),5′(P)-C(t-Bu)PH-(nido-8-Me2S-B10H11)(nido-B10H12)], in
which two decaborane units are linked by the C(t-Bu)PH-bridge (Figure 36) [338].
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Figure 35. Solid state structures of [6-Me3Si(Me)C=CH-5-Me2S-B10H11] (top left), [6-Me3Si(Bu)C=CH-
5-Me2S-B10H11] (top right), and [6-(Me3Si)2C=CH-5-Me2S-B10H11] (bottom). Hydrogen atoms of
organic substituents are omitted for clarity.
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Figure 36. Solid state structure of [µ-6(C),6′(C),5′(P)-C(t-Bu)PH-(nido-8-Me2S-B10H11)(nido-B10H12)].
Hydrogen atoms of organic substituents are omitted for clarity.

The derivatives [µ-(exo-6(C),endo-6(N)-CH=CH-o-C5H4N)-9(N)-HC≡C-o-C5H4N-
arachno-B10H11] (Figure 34) [265] and [µ-(exo-6(C),endo-6(N)-(closo-1′,2′-C2B10H10-2′-)-o-
C5H4N)-µ-(exo-8(C),exo-9(N)-CH2CH2-o-C5H4N)-arachno-B10H10] (Figure 37) [339] were
isolated in minor amounts as products of the intramolecular hydroboronation of [arachno-
6,9-(HC≡C-o-C5H4N)2-B10H12] during its thermolysis in 1,2-dichloroethane. In the latter
compound, the formation of the ortho-carborane fragment occurs as a result
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of the reaction of the acetylene group of the substituent with the second molecule of the
decaborane derivative.
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The reactions of Cs2[closo-B10H10] with triflic acid or (NH4)2[closo-B10H10] with sulfuric
acid in the presence of aromatic hydrocarbons produce the corresponding 6-aryl derivatives
of decaborane [nido-6-Ar-B10H13] (Ar = Ph, C6H4-4-Me, C6H3-3,5-Me2, C6H2-2,4,6-Me3,
C6H2-2,4,6-iPr3, C6H4Cl, C6H4CF3) [202,203,321,340]. The solid state structures of [6-Ph-
B10H13], [6-p-Tol-B10H13], and [6-(2′,4′,6′-iPr3-C6H2-B10H13] were determined by single-
crystal X-ray diffraction (Figure 38) [202,203,340].
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of the reaction of the acetylene group of the substituent with the second molecule of the
decaborane derivative.
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9(N)-CH2CH2-o-C5H4N)-arachno-B10H10] (right). Hydrogen atoms of organic substituents in the left
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The reactions of Cs2[closo-B10H10] with triflic acid or (NH4)2[closo-B10H10] with sulfuric
acid in the presence of aromatic hydrocarbons produce the corresponding 6-aryl derivatives
of decaborane [nido-6-Ar-B10H13] (Ar = Ph, C6H4-4-Me, C6H3-3,5-Me2, C6H2-2,4,6-Me3,
C6H2-2,4,6-iPr3, C6H4Cl, C6H4CF3) [202,203,321,340]. The solid state structures of [6-Ph-
B10H13], [6-p-Tol-B10H13], and [6-(2′,4′,6′-iPr3-C6H2-B10H13] were determined by single-
crystal X-ray diffraction (Figure 38) [202,203,340].
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Figure 38. Solid state structures of [6-Ph-B10H13] (top left), [6-p-Tol-B10H13] (top right), and [6-
(2′,4′,6′-iPr3-C6H2-B10H13] (bottom). Hydrogen atoms of organic substituents are omitted for clarity.

The 6-phenyl derivative [6-Ph-B10H13] was also obtained by the reaction of decabo-
rane(14) with PhLi, followed by the treatment with HCl in Et2O [237] as well as by the solid
state pyrolysis of [nido-Ph2SnB10H12] at 95 ◦C [198].
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The pyrolysis of decaborane(14) in benzene at 200 ◦C gives the 5-phenyl derivative
[5-Ph-B10H13] as the main product together with some amounts of the 6-isomer and 5,8-
diphenyl derivative [5,8-Ph2-B10H12] [341]. The solid state structures of [5-Ph-B10H13] and
[5,8-Ph2-B10H12] were determined by single-crystal X-ray diffraction (Figure 39) [341].
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Figure 39. Solid state structures of [5-Ph-B10H13] (left) and [5,8-Ph2-B10H12] (right). Hydrogen atoms
of organic substituents are omitted for clarity.

The pyrolysis of decaborane(14) in toluene at 250 ◦C affords the novel microporous
polymer named “activated borane”, in which the decaborane clusters are interconnected
by toluene moieties. Activated borane displays a high surface area of 774 m2 g−1, a thermal
stability up to 1000 ◦C (under Ar), and a sorption capacity to emerging pollutants exceeding
the capacity of commercial activated carbon [342].

Heating (HPS)[B10H13] in acetonitrile under reflux results in the formation of the
bridged imino derivative (HPS)[arachno-µ-6(C),9(N)-MeC=NH-B10H12] (Figure 40) [343].
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Figure 40. Solid state structures of the [arachno-µ-6(C),9(N)-MeC=NH-B10H12]− (left) and [arachno-
endo-6-N≡C-B10H12]2− (right) anions.

The reaction of decaborane(14) with sodium cyanide in water followed by the ad-
dition of CsCl gives Cs2[arachno-endo-6-N≡C-B10H13] [215]. The solid state structure of
the trimethylphenylammonium salt (Me3NPh)2[endo-6-N≡C-B10H13] (Figure 40) [344] and
lead complex {(Bipy)2Pb[endo-6-N≡C-B10H13]} [345] were determined by single-crystal
X-ray diffraction.

The reactions of decaborane(14) with sodium cyanide and dimethylsulfide or tetrahy-
drothiophene lead to the corresponding Na[arachno-6-N≡C-9-RR′S-B10H12] (R = R′ = Me,
RR′ = (CH2)4). Na[6-N≡C-9-Me2S-B10H12] can also be prepared by the reaction of [6,9-
(Me2S)2-B10H12] with sodium cyanide in dimethylsulfide [215].
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10. Derivatives with an exo-Polyhedral B-B Bond

Decaborane derivatives with an exo-polyhedral B-B bond are rare, since the reaction
of decaborane(14) with boron hydrides usually leads to the completion of the polyhedral
backbone with the formation of tetradecahydro-nido-undecaborate [B11H14]− [346] and
dodecahydro-closo-dodecaborate [B12H12]2− [3] anions and their derivatives.

The reactions of decaborane(14) with sterically hindered (alkyl/arylimino)(2,2,6,6-
tetramethylpiperidino)boranes lead to the corresponding 6-substituted aminoborane deriva-
tives [nido-6-(RNH)(C5H6Me4NH)B-B10H13] (R = t-Bu, C6H3-2,6-iPr2) (Figure 41) [347].

Molecules 2023, 28, x FOR PEER REVIEW 32 of 56 
 

 

 
 

Figure 40. Solid state structures of the [arachno-μ-6(C),9(N)-MeC=NH-B10H12]− (left) and [arachno-

endo-6-N≡C-B10H12]2− (right) anions. 

The reaction of decaborane(14) with sodium cyanide in water followed by the 

addition of CsCl gives Cs2[arachno-endo-6-N≡C-B10H13] [215]. The solid state structure of 

the trimethylphenylammonium salt (Me3NPh)2[endo-6-N≡C-B10H13] (Figure 40) [344] and 

lead complex {(Bipy)2Pb[endo-6-N≡C-B10H13]} [345] were determined by single-crystal X-

ray diffraction.  

The reactions of decaborane(14) with sodium cyanide and dimethylsulfide or 

tetrahydrothiophene lead to the corresponding Na[arachno-6-N≡C-9-RR′S-B10H12] (R = R′ = 

Me, RR′ = (CH2)4). Na[6-N≡C-9-Me2S-B10H12] can also be prepared by the reaction of [6,9-

(Me2S)2-B10H12] with sodium cyanide in dimethylsulfide [215]. 

10. Derivatives with an exo-Polyhedral B-B Bond 

Decaborane derivatives with an exo-polyhedral B-B bond are rare, since the reaction 

of decaborane(14) with boron hydrides usually leads to the completion of the polyhedral 

backbone with the formation of tetradecahydro-nido-undecaborate [B11H14]− [346] and 

dodecahydro-closo-dodecaborate [B12H12]2− [3] anions and their derivatives.  

The reactions of decaborane(14) with sterically hindered (alkyl/arylimino)(2,2,6,6-

tetramethylpiperidino)boranes lead to the corresponding 6-substituted aminoborane 

derivatives [nido-6-(RNH)(C5H6Me4NH)B-B10H13] (R = t-Bu, C6H3-2,6-iPr2) (Figure 41) [347]. 

 
 

Figure 41. Solid state structures of [nido-6-(t-BuNH)(C5H6Me4NH)B-B10H13] (left) and [μ-5,6-(9-

BBN)-B10H13] (right). Hydrogen atoms of alkyl groups are omitted for clarity. 
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The reaction of Na[B10H13] with 9-bora[3.3.1]bicyclononane (9-Br-BBN) in
dichloromethane results in the formation of [µ-5,6-(9-BBN)-B10H13], where the 9-BBN
group appears in the role of an asymmetric bridge between the B(5) and B(6) positions
of the decaborane basket (Figure 41). It is noteworthy that upon the deprotonation of [µ-
5,6-(9-BBN)-B10H13] with a Proton Sponge in dichloromethane, the 9-BBN bridging group
migrates from the B(6) atom to the B(10) atom, which leads to the formation of an 11-vertex
nido-structure (HPS)[µ-7,7-CH(CH2CH2CH2)2CH-B11H12], being a formal derivative of the
[B11H14]− anion [348].

Decaborane derivatives with an exo-polyhedral B-B bond also include isomeric con-
juncto-decaboranes [B10H13]2, which consist of two nido-B10 units linked by a direct B-B
bond. These compounds were first identified as trace impurities in technical decaborane
(l4) [349]. In principle, there can be 11 different geometric isomers of conjuncto-decaborane
[B10H13]2, 4 of which are in the form of enantiomeric pairs. Therefore, various routes
(photolysis [350,351], pyrolysis [350,351], γ-irradiation [352], high-energy electron bom-
bardment [351], silent electrical discharge [353]) for synthesizing these compounds have
been developed. All of them, as a rule, lead to the formation of mixtures with different
isomeric compositions. The solid state structures of the 1,1′- [353], 1,2′- [354], 1,5′- [352],
1,6′- [238], 2,2′- [355,356], and 2,6′- [356] isomers have been determined by single-crystal
X-ray diffraction, whereas the 2,5′- [351], 5,5′- [351], and 6,6′- [357] isomers have been
characterized by NMR spectroscopy.

The asymmetric derivatives [arachno-1-(6′-nido-B10H13)-6,9-(Me2S)2-B10H11] and [nido-
4-(2′-nido-B10H13)-5-Me2S-B10H11] (Figure 42) were isolated from the reaction of [1,5′-(nido-
B10H13)2] with dimethylsulfide under reflux [238]. The first compound was also obtained
by the thermolysis of [arachno-6,9-(Me2S)2-B10H12] in refluxing toluene [238].
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The isomeric tridecaboranyl species [arachno-1,5-(6′-nido-B10H13)2-6,9-(Me2S)2-B10H10] 

(Figure 43) and [arachno-1,3-(6′-nido-B10H13)2-6,9-(Me2S)2-B10H10] were isolated from the 

products of the thermolysis of [arachno-6,9-(Me2S)2-B10H12] in refluxing benzene [238,358]. 

Figure 42. Solid state structures of [arachno-1-(6′-nido-B10H13)-6,9-(Me2S)2-B10H11] (left) and [nido-4-
(2′-nido-B10H13)-5-Me2S-B10H11] (right). Hydrogen atoms of alkyl groups are omitted for clarity.

The isomeric tridecaboranyl species [arachno-1,5-(6′-nido-B10H13)2-6,9-(Me2S)2-B10H10]
(Figure 43) and [arachno-1,3-(6′-nido-B10H13)2-6,9-(Me2S)2-B10H10] were isolated from the
products of the thermolysis of [arachno-6,9-(Me2S)2-B10H12] in refluxing benzene [238,358].
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Here, it is also worth mentioning an unusual structure, in which two hydrogen atoms
at positions 5 and 6 of the decaborane basket are replaced by pentaborane moieties—5-
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(nido-pentaboran-2-yl)-6-(nido-pentaboran-1-yl)-nido-decaborane, formed as a result of the
long-term storage (23 years) of a sealed, under-vacuum pentaborane(9) sample under
ambient lighting and temperature conditions (Figure 44) [339].
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11. Decaborane-Related conjucto-Boranes [B18H22]

Another type of compound worth considering here are the conjuncto-boranes [B18H22],
in which two decaborane baskets are connected by a common edge. Octadecaborane(22)
[B18H22] in the form of a mixture of syn- and anti-isomers (Figure 45) is formed on the
hydrolysis of (H3O)2[trans-B20H18]·nH2O and can be separated by fractional crystalliza-
tion [359]. More recently, a convenient method has been proposed for the synthesis of
anti-[B18H22] by mild oxidation of (Me4N)[nido-B9H12] with iodine in toluene, which gives
excellent yields (~80%) and thus provides a large-scale and safe route to this important
polyborane cluster [360].
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The photophysics of both isomers have been studied by UV–vis spectroscopic tech-
niques and quantum chemical calculations. In an air-saturated hexane solution, anti-
[B18H22] shows fluorescence with a high quantum yield, ΦF = 0.97, and singlet oxygen
O2(1∆g) production (Φ∆ ~ 0.008). Conversely, the isomer syn-[B18H22] shows no measurable
fluorescence, instead displaying a much faster, picosecond nonradiative decay of excited
singlet states [361]. Due to this, anti-[B18H22] can be considered as a potential blue laser
material. The photophysical properties of anti-[B18H22] can be tuned by the partial substi-
tution of hydrogen atoms with various functional groups. Because of this, combined with
its high stability [362–366], anti-[B18H22] is attracting increasing research interest, while the
syn-[B18H22] isomer has received much less attention.

The reaction of anti-[B18H22] with chlorine generated in situ from N-chlorosuccinimide
(NCS) with HCl/dioxane in dichloromethane leads to the 7-chloro derivative anti-[7-Cl-
B18H21] (Figure 46) [367]. The reaction of anti-[B18H22] with AlCl3 in tetrachloromethane
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results in a mixture of the 3,3′- and 3,4′-dichloro derivatives anti-[3,3′-Cl2-B18H20] (Figure 46)
and anti-[3,4′-Cl2-B18H20] (Figure 45) together with minor amounts of the other isomeric
dichloro derivatives anti-[4,4′-Cl2-B18H20] (Figure 46), anti-[3,1′-Cl2-B18H20] (Figure 46),
and anti-[7,3′-Cl2-B18H20], as well as the 3- and 4-chloro derivatives anti-[3-Cl-B18H21] and
anti-[4-Cl-B18H21] and the 3,4,3′- and 3,4,4′-trichloro derivatives anti-[3,4,3′-Cl3-B18H19]
and anti-[3,4,4′-Cl3-B18H19], which were separated chromatographically [368].
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Figure 46. Solid state structures of anti-[7-Cl-B18H21] (top left), anti-[3,1′-Cl2-B18H20] (top
right), anti-[4,4′-Cl2-B18H20] (middle left), anti-[3,3′-Cl2-B18H20] (middle right), and anti-[3,4′-Cl2
-B18H20] (bottom).
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The bromination of anti-[B18H22] with bromine in dichloromethane in the presence of
AlCl3 leads to the 4-bromo or 4,4′-dibromo derivatives anti-[4-Br-B18H21] or anti-[4,4′-Br2-
B18H20] depending on the reagent ratio (Figure 47) [369,370].
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The reaction of anti-[B18H22] with iodine in ethanol leads to the 4-iodo derivative anti-
[7-I-B18H21] (Figure 48) [359,371], while the reaction with I2 or ICl in the presence of AlCl3
in dichloromethane results in the 4-iodo- and 4,4′-diiodo derivatives anti-[4-I2-B18H21] and
anti-[4,4′-I2-B18H20] (Figure 48), depending on the reagent ratio [367,371].
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The iodine atom in anti-[7-I-B18H21] can be substituted by various nucleophiles: the re-
action with trifluoroacetamide in toluene in the presence of K3PO4 gives the corresponding
N-boronated amide anti-[7-CF3CONH-B18H21]; the reactions with t-BuOK, 4-FC6H4OK,
and 1-AdSK in toluene or tetrahydrofuran lead to the corresponding (thio)ethers anti-[7-RX-
B18H21]. The reaction with potassium 2,6-dimethylthiophenolate in toluene results in the
corresponding thioether anti-[7-(2′,6′-Me2C6H3S)-B18H21], while the reaction in tetrahydro-
furan produces anti-[7-(2′,6′-Me2C6H3S(CH2)4O)-B18H21] [372]. The Pd-catalyzed reactions
of anti-[7-I-B18H21] with CF3CONH2, t-BuOK, and 2,6-Me2C6H3OK in the presence of
catalytic amounts of RuPhos Pd G4 and RuPhos in 1,4-dioxane lead to the corresponding
derivatives with B-N and B-O bonds anti-[7-X-B18H21] [372].

The reaction of anti-[B18H22] with neat methyl iodide in the presence of AlCl3 at
room temperature results in the 3,3′,4,4′-tetramethyl derivative anti-[3,3′,4,4′-Me4-B18H18]
(Figure 49) as the main product, together with minor amounts of the 4,4′-dimethyl deriva-
tive anti-[4,4′-Me2-B18H20] (Figure 49), the 3,4,4′- and 3,3′,4-trimethyl derivatives anti-
[3,4,4′-Me3-B18H19] (Figure 47) and anti-[3,3′,4-Me3-B18H19], as well as the 1,3,3′,4,4′- and
3,3′,4,4′,8-pentamethyl derivatives anti-[1,3,3′,4,4′-Me5-B18H17] and anti-[3,3′,4,4′,8-Me5-
B18H17] and the 1,1′,3,3′,4,4′-hexamethyl derivative anti-[1,1′,3,3′,4,4′-Me6-B18H16] [373].
The similar reaction with ethyl iodide gives the 3,3′,4,4′-tetraethyl derivative anti-[3,3′,4,4′-
Et4-B18H18] (Figure 49) [373].
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leads to the 4,4′-dimercapto derivative anti-[4,4′-(HS)2-B18H20] (Figure 51) [375]. 

Figure 49. Solid state structures of anti-[4,4′-Me2-B18H20] (top left), anti-[3,4,4′-Me3-B18H19] (top
right), anti-[3,3′,4,4′-Me4-B18H18] (bottom left), and anti-[3,3′,4,4′-Et4-B18H18] (bottom right).

The dichloroundecamethyl anti-[2,2′-Cl2-1,1′,3,3′,4,4′,7,7′,8,8′,10′-Me11-B18H9],
dichlorododecamethyl anti-[2,2′-Cl2-1,1′,3,3′,4,4′,7,7′,8,8′,10,10′-Me12-B18H8] (Figure 50),
and dichlorotridecamethyl anti-[2,2′-Cl2-1,1′,3,3′,4,4′,7,7′,8,8′,9,10,10′-Me13-B18H7] deriva-
tives were obtained by the reaction of anti-[B18H22] with methyl iodide in the presence of
AlCl3 in dichloromethane at 55 ◦C [373,374].
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Figure 50. Solid state structure of anti-[2,2′-Cl2-1,1′,3,3′,4,4′,7,7′,8,8′,10,10′-Me12-B18H8]. Hydrogen
atoms of organic substituents are omitted for clarity.

The reaction of anti-[B18H22] with elemental sulfur in the presence of AlCl3 at 125 ◦C
leads to the 4,4′-dimercapto derivative anti-[4,4′-(HS)2-B18H20] (Figure 51) [375].
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Figure 51. Solid state structure of anti-[4,4′-(HS)2-B18H20].

The reaction of anti-[B18H22] with pyridine in refluxing chloroform or benzene unex-
pectedly results in a two-fold substitution in one of the B10-baskets to form nido-arachno-
[6′,9′-Py2-B18H20] (Figure 52) together with some amount of anti-[8′-Py-B18H21]
(Figure 52) and [3′,8′-Py2-B16H18] as the main degradation product. In contrast to the
thermochromic fluorescence of nido-arachno-[6′,9′-Py2-B18H20] (from 620 nm brick red
at room temperature to 585 nm yellow at 8 K), anti-[8′-Py-B18H21] exhibits no lumines-
cence [376,377]. The 6′,9′-disubstituted derivatives with 4-picoline [377], isoquinoline [378],
and 5-hydroxyisoquinoline [379] were prepared in a similar way.
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Figure 52. Solid state structures of nido-arachno-[6′,9′-Py2-B18H20] (left) and anti-[8-Py-B18H21] (right).

The reaction of anti-[B18H22] with methyl isonitrile MeNC in benzene leads to anti-
[7-{(MeNH)C3N2HMe2}-B18H20], in which a reductive trimerization of MeNC gives an
unusual imidazole-based carbene, {(MeNH)C3N2HMe2}, that is stabilized by coordination
to the macropolyhedral boron cluster (Figure 53) [380].
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The reaction with tert-butyl isonitrile in 1,2-dichloroethane results in anti-[7-
{(t-BuNHCH){t-BuNHC(CN)}CH2}-B18H20], in which a reductive oligomerization of
t-BuNC has given the complex polynitrogen base {(t-BuNHCH){t-BuNHC(CN)}CH2:} for-
mally as a zwitterionic carbene attached to the macropolyhedral boron cluster
(Figure 54) [381].

Molecules 2023, 28, x FOR PEER REVIEW 40 of 56 
 

 

 

Figure 53. Solid state structure of anti-[7-{(MeNH)C3N2HMe2}-B18H20]. Hydrogen atoms of organic 

substituents are omitted for clarity. 

The reaction with tert-butyl isonitrile in 1,2-dichloroethane results in anti-[7-{(t-

BuNHCH){t-BuNHC(CN)}CH2}-B18H20], in which a reductive oligomerization of t-BuNC 

has given the complex polynitrogen base {(t-BuNHCH){t-BuNHC(CN)}CH2:} formally as 

a zwitterionic carbene attached to the macropolyhedral boron cluster (Figure 54) [381]. 

 

Figure 54. Solid state structure of anti-[7-{(t-BuNHCH){t-BuNHC(CN)}CH2}-B18H20]. Hydrogen 

atoms of organic substituents are omitted for clarity. 

The synthesis of few substituted derivatives of syn-[B18H22] was reported. Heating 

syn-[B18H22] with sulfur in the presence of anhydrous AlCl3 at 125 °C results in a mixture 

of the isomeric mercapto derivatives syn-[1-HS-B18H21], syn-[3-HS-B18H21], and syn-[4-HS-

B18H21], which were all separated by chromatography on silica (Figure 55) [382]. 

Figure 54. Solid state structure of anti-[7-{(t-BuNHCH){t-BuNHC(CN)}CH2}-B18H20]. Hydrogen
atoms of organic substituents are omitted for clarity.

The synthesis of few substituted derivatives of syn-[B18H22] was reported. Heating
syn-[B18H22] with sulfur in the presence of anhydrous AlCl3 at 125 ◦C results in a mixture
of the isomeric mercapto derivatives syn-[1-HS-B18H21], syn-[3-HS-B18H21], and syn-[4-HS-
B18H21], which were all separated by chromatography on silica (Figure 55) [382].
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The 3- and 4-mercapto derivatives of syn-[B18H22], syn-[3-HS-B18H21], and syn-[4-HS-
B18H21] were obtained as byproducts of thermolysis of nonathiaborane arachno-[SB8H12]
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in boiling cyclohexane [383]. The mercapto derivatives obtained are brightly luminescent
under UV irradiation, making these compounds rare examples of a luminescent derivative
of syn-[B18H22] [382,383].

The deprotonation of syn-[B18H22] with NaH in 1,2-dimethoxyethane, followed by the
reaction with iodine and dimethylsulfide under reflux, results in the 7-dimethylsulfonium
derivative syn-[7-Me2S-B18H20] (Figure 56) [384].
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12. Conclusions

The purpose of this review was to give the most complete picture of the current state
of the chemistry of decaborane and its derivatives. After its rapid development on the
verge of the 1950s and 1960s, associated with the study of the chemistry of decaborane as
a potential component of rocket fuels, the chemistry of decaborane was studied by many
research groups. However, no comprehensive review elucidating it in full has appeared
for more than 50 years, which certainly hindered the development of this important area
of boron cluster chemistry. We would like to hope that this review will be useful both for
young researchers just starting their way in boron chemistry and for researchers actively
working in this field.
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208. Štíbr, B.; Plešek, J.; Hanousek, F.; Heřmánek, S. Chemistry of boranes. XXIII. Reaction of 6,9-bis(dialkylsulfido)-dodecahydrodecaboranes
with mercuric salts. Collect. Czech. Chem. Commun. 1971, 36, 1794–1799. [CrossRef]

209. Kelley, S.P.; Rachiero, G.P.; Titi, H.M.; Rogers, R.D. New reactions for old ions: Cage rearrangements, hydrolysis, and two-electron
reduction of nido-decaborane in neat 1-ethyl-3-methylimidazolium acetate. ACS Omega 2018, 3, 8491–8496. [CrossRef] [PubMed]
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