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Abstract: The competition between base-induced elimination (E2) and bimolecular nucleophilic
substitution (SN2) is of significant importance in organic chemistry and is influenced by many
factors. The electronic structure calculations for the gas-phase reactions of F− + RY (R = CH3,
C2H5, iC3H7, tC4H9, and Y = Cl, I) are executed at the MP2 level with aug-cc-pVDZ or ECP/d
basis set to investigate the α-methyl substitution effect. The variation in barrier height, reaction
enthalpy, and competition of SN2/E2 as a function of methyl-substitution and leaving group
ability has been emphasized. And the nature of these rules has been explored. As the degree
of methyl substitution on α-carbon increases, the E2 channel becomes more competitive and
dominant with R varying from C2H5, iC3H7, to tC4H9. Energy decomposition analysis offers
new insights into the competition between E2 and SN2 processes, which suggests that the drop
in interaction energy with an increasing degree of substitution cannot compensate for the rapid
growth of preparation energy, leading to a rapid increase in the SN2 energy barrier. By altering
the leaving group from Cl to I, the barriers of both SN2 and E2 monotonically decrease, and,
with the increased number of substituents, they reduce more dramatically, which is attributed to
the looser transition state structures with the stronger leaving group ability. Interestingly, ∆E0

‡

exhibits a positive linear correlation with reaction enthalpy (∆H) and halogen electronegativity.
With the added number of substituents, the differences in ∆E0

‡ and ∆H between Y = Cl and I
likewise exhibit good linearity.

Keywords: base-induced elimination (E2); nucleophilic substitution (SN2); α-methyl substitution;
electronic structure calculation

1. Introduction

Two basic organic reactions in the development of modern physical organic chem-
istry, base-induced bimolecular elimination (E2) and bimolecular nucleophilic substi-
tution (SN2) reactions, usually compete with each other in many cases. In the past
few decades, E2 and SN2 reactions have been widely researched in the gas and con-
densed phase, both experimentally [1–3] and theoretically [4–19]. Since SN2 and E2
pathways generate the same ionic product, it is a serious challenge to distinguish be-
tween the two processes using conventional spectrometric techniques [20]. Kinetic
isotope effects could qualitatively tell E2 and SN2 pathways apart, as it is observed that
E2 reactions have normal KIEs (kH/kD > 1), whereas SN2 reactions have inverse KIEs
(kH/kD < 1) [1]. In this regard, theoretical approaches have played an important role in
probing the mechanisms. Extensive theoretical investigations have mainly focused on
the reactions of the type of X− + CH3CH2Y (X = F, Cl, OH, ClO, et al.; Y = F, Cl, Br, I) over
the years [13,14,16,17,21–29]. The competition between E2 and SN2 reaction pathways
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caused by multiple factors, such as nucleophile, leaving groups, substrate characteristics,
and environment, has been investigated in detail [10,16,17,25,28–31]. Mugnai et al. [10]
analyzed the influence of temperature on the competition between E2 and SN2 in
F− + CH3CH2Cl reaction by ab initio molecular dynamics, and found that SN2 and
E2 reaction mechanisms were favored at high and low temperatures, respectively. In
addition, the ion-imaging experiments and quasi-classical trajectory simulations of this
system conducted by Wester et al. [31] also showed that the SN2 mechanism becomes
more relevant as the collision energy is increased. Bickelhaupt and colleagues [22],
founded on an activation-strain analysis, reported that F− could participate in a more
stabilizing orbital interaction with CH3CH2Cl than PH2

− , owing to its augmented
proton affinity, leading to the observed preference for E2. Shaik et al. [24]. from the VB
perspective, revealed that essentially SN2 was the preferred reaction pathway but the
E2 pathway prevailed in many cases on account of the greater resonance stabilization in
its transition-state (TS) region.

Among these factors, substituent effects have revealed an important function in study-
ing the mechanisms and the competition between the E2 and SN2 [32–37]. Gronert [28,29]
measured fluoride reacting with CH3Cl with a reaction efficiency of 0.56, and with
the increased degree of substitution to ethyl, isopropyl, and tert-butyl chloride, the
efficiency improved from 0.79 to 0.93 due to the presence of an E2 pathway, which
was entropically favored [36]. Further theoretical calculations at the MP2/6-31 + G**
level for the reaction of F− with CH3CHClCH3 pointed out methyl substitution at the
α-carbon elevated the barrier of the SN2 pathway due to the crowded environment
while stabilizing the transition state in E2 reactions [38]. Accordingly, Bierbaum et al. [1]
explored the competition between E2 and SN2 pathways for BrO− and ClO− with
RCl (R = CH3, C2H5, iC3H7, tC4H9) by using deuterium kinetic isotope effect (KIE)
means. For each anion series, the trend that KIEs became increasingly more normal
(kH/kD > 1) as the extent of substitution indicated that the E2 pathway became the
predominant pathway and steric effects inhibited the SN2 pathway. A method calcu-
lating “steric hindrance (SH)” was proposed by Pendás and co-workers [39,40], which
was consistent with the chemical intuition that the SH of the complex methylated alkyl
system SN2 was greater than E2.

Recently, Wester et al. [41] presented a series of reactions X− + RY (X = F, Cl,
R = CH3, C2H5, iC3H7, tC4H9 and Y = Cl, I), which displayed the transition from
backward to forward scattering by the substitution of the α-carbon. It is noticed that the
changes following increasing methyl substitution are somewhat different for different
leaving groups. Compared to the rich experimental studies, systematic and accurate
PESs for complex methylated alkyl halides, especially iC3H7Y and tC4H9Y, are still
lacking. In this paper, a series of F− + RY (R = CH3, C2H5, iC3H7, tC4H9; Y = Cl,
I) reactions as shown in Scheme 1 have been investigated with electronic structure
calculations. We revisit these systems and try to address the following two issues.
(1) The accurate PESs for a series of reactions are established and compared to explore
how methyl substitution at the α-carbon affects the E2/SN2 competing mechanisms.
(2) It will be of interest to probe the role of the leaving group in E2/SN2 reactions of
α-methyl substitution.
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MP2/aug-cc-pVDZ (ECP/d) level is reasonable. The profiles of PES for F− + RY are pre-
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Scheme 1. Pathways for reactants F− + RY (R= CH3, C2H5, iC3H7, tC4H9,represented in red; Y = Cl,
I, represented in blue).

2. Results and Discussion
2.1. Potential Energy Surfaces of F− + RY Reactions

The relative energy of stationary points of F− + RCl (R = CH3, C2H5, iC3H7, tC4H9 and
Y = Cl, I) calculated by the MP2 method are displayed in Table 1 together with the high-level
CCSD(T)-F12b [16,42], CCSD(T) [17] benchmark values, and the available B97-1/aug-cc-
pVDZ values [43]. The average deviation from the benchmark is 0.11/0.48, 0.16/0.13, and
0.16/0.35 kcal/mol for CH3Cl/I, C2H5Cl/I, and iC3H7Cl/I, respectively, indicating that
the MP2/aug-cc-pVDZ (ECP/d) level is reasonable. The profiles of PES for F− + RY are
presented in detail in Figures 1a,b and S1a,b together with the geometrical structures in
Figure S2a,d. As shown in Figures 1 and S1, similar to the reaction of F− with ethyl halide,
for isopropyl and tert-butyl reactions, four traditional reaction pathways, including base-
induced anti and syn elimination (anti-E2 and syn-E2), as well as nucleophilic substitution
with inversion and retention of configuration (inv-SN2 and ret-SN2), are predicted by MP2
theory. Inv-SN2 and anti-E2 reactions share the same reactant complex (a/bRC), and ret-SN2
and syn-E2 also utilize a common complex (c/dRC) along the reaction coordinate. With
the increased methyl substitution, the difference in PES profiles of the series of reactions
lies in the entrance channel. For F− + RY (R = CH3, C2H5, and Y = Cl, I), a hydrogen-
bonded F···HCαH2(CH2)Y complex (c/dRCH) is obtained, which can easily convert to an
ion-dipole complex F···HβCH2(CH2)Y (a/bRC) via a low-energy TSRC [16,29,42,44–52].
In contrast, for F− + RCl (R = iC3H7, tC4H9 and Y = Cl, I) reactions, only an ion-dipole
complex (a/bRC) is found, where F− is situated between α-carbon and β-hydrogen of
iso-propyl or tert-butyl moiety, so that F− can attack either target atom to form an inv-SN2
or anti-E2 channel. For the reactant complex F···HβH2(CH3)CHY (c/dRC) in syn-E2 and
ret-SN2 channels, F− and some hydrogen atoms in β-position, instead of α-hydrogen of
alkyl halides, have a mild hydrogen-bond interaction. There is no transition state available
for the conversion of these two RCs.
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Table 1. The relative energies (kcal/mol) for stationary points of the E2 and SN2 pathways on the
F− + RY with different methods.

Cl I

R Species MP2 CCSD(T) a Exptl c MP2 CCSD(T) b Exptl c

CH3

1dRCH 16.9 17.6 −18.9 −20.3
1TSRC −15.1 −15.8 −15.8 −17.6
1bRC −15.6 −16.1 −16.2 −18.3
1bTS −12.3 −12.8 −15.6 −18.1
1dTS 32.1 30.7 22.8 18.3
1dPC −40.7 −41.6 −49.6 −55.3
1bPC −40.7 −41.6 −49.6 −55.3
1P2 −30.6 −31.8 −31.1 −40.9 −48.0 −42.3

C2H5

2c/2dRCH −17.8 −18.0 −18.7 −19.6
2a/2bRC −17.5 −17.7 −19.4 −20.1

2aTS −11.2 −11.1 −15.8 −16.0
2bTS −11 −11.3 −15.4 −16.9
2cTS −0.1 −6.8 −4.2 −4.9
2dTS 31.1 30.0 21.5 19.2
2aPC −31.9 −33.6 −41.5 −42.7
2bPC −42.4 −44.6 −51.8 −50.9
2cPC −44.2 −41.6 −49.0 −54.0
2dPC −42.4 −44.6 −51.8 −54.0
2P1 −15.5 −18.1 −22.5 −26.3 −26.2 −37.8
2P2 −31.3 −34.0 −32.0 −42.1 −44.0 −48.7

iC3H7

3a/3bRC −20.7 −21.4 −21.9 −22.8
3c/3dRC −15.5 −16.3 −16.9 −17.9

3aTS −11.6 −12.4 −16.9 −17.5
3bTS −9.1 −11.0 −14.1 −16.3
3cTS 0.3 −1.0 −4.3 −5.4
3dTS 31.5 28.8 21.4 -
3aPC −31.8 −33.8 −41.8 −44.4
3bPC −43.9 −46.9 −54.0 −57.9
3cPC −44.4 −47.3 −48.8 −52.8
3dPC −44.4 −47.3 −54.0 -
3P1 −13.9 −16.5 −22.1 −24.8 −28.4 −37.7
3P2 −31.8 −34.9 −30.3 −42.8 −46.8 −45.9

tC4H9

4a/4bRC −23.1 −23.3 −24.4 −25.6
4c/4dRC −15.6 −16.1 −17.2 −17.8

4aTS −11.9 −17.6 −17.7 −24.4
4bTS −2.3 - −7.5 -
4cTS 0.8 −4.6 −3.9 −10.8
4dTS 39.9 - 28.8 -
4aPC −33.4 −37.8 −43.4 −51.2
4bPC −46.2 - −56.1 -
4cPC −44.0 −49.1 −49.1 −57.4
4dPC −46.2 - −56.1 -
4P1 −12.6 −18.2 −22.1 −23.9 −37.6 −37.6
4P2 −31.9 - −29.5 −43.3 - −37.8

a (1) Energies with respect to the F− + CH3Cl reactants at AE-CCSD(T)/aug-cc-pCVQZ level are from ref. [41].
(2) Energies for F− +C2H5Cl reaction are obtained at the CCSD(T)-F12b/aug-cc-pVQZ + ∆core level of theory from
ref. [16]. (3) Energies for F− + i-C3H7Cl reaction are calculated at CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ
level of theory. (4) Energies For F− + t-C4H9Cl reaction obtained at B97-1/aug-cc-pVDZ level are from ref. [43].
b (1) Energies of F− + CH3I reaction at CCSD(T)-F12b/aug-cc-pVTZ-pp are from ref. [47]. (2) Energies of
F− + C2H5I reaction at CCSD(T)/PP/t level are from ref. [17]. (3) Energies for F− + i-C3H7I reaction are
calculated at CCSD(T)/pp/t//MP2/ECP/d level of theory. (4) Energies For F− + t-C4H9I reaction obtained at
B97-1/aug-cc-pVDZ level are from ref. [43]. c The reaction enthalpies of reaction at 0 K with ZPE calculated from
tabulated reaction enthalpies in ref. [41].
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reactions are considered here, and their PES profiles obtained at the MP2 level of theory 
are characterized in Figure 2 for convenience of comparison. For the F− + CH3Y reaction, 
F− attacks CH3Y on the back-side via a traditional path along a pre-reaction ion-dipole 
complex (1bRC), a Walden-inversion transition state (1bTS), and a post-reaction ion-di-
pole complex FCH3···Y− (1bPC). The E2 pathways appear with the successive addition of 
the methyl group besides the SN2 pathways and show similar double well potential char-
acters. The initial association of F− and RY can form an ion-dipole complex a/bRC and, 
after going over a/bTS, the system drops down to the deep potential energy well a/bPC 
and then decomposes to products P1 (RF + Cl−/I−) and P2 (RCH2 = CH2 + HF + Cl−/I−), re-
spectively. 

Figure 1. Potential energy curves and stationary points at MP2/aug-cc-pVDZ level for F− + RCl
reactions. The energy (in kcal/mol) is relative to F− + CH3Cl (a) and F− + RCl (b) reactants at 0
K, and does not include ZPE. In (b), the black, blue, and pink numbers represent F− + C2H5Cl,
F− + iC3H7Cl, and F− + tC4H9Cl reactions, respectively.

Resulting from the strong steric exclusion between the nucleophile and substrate,
the ret- SN2 TS usually gives a much higher overall barrier than other reaction pathways,
suggesting it is the least favorable pathway. The barrier for the syn-E2 pathway is usually
higher than inv-SN2 and anti-E2 for a similar hindrance effect. Therefore, in the following
discussions, the most competitive inv-SN2 and anti-E2 pathways for the series of F− + RY
reactions are considered here, and their PES profiles obtained at the MP2 level of theory
are characterized in Figure 2 for convenience of comparison. For the F− + CH3Y reaction,
F− attacks CH3Y on the back-side via a traditional path along a pre-reaction ion-dipole
complex (1bRC), a Walden-inversion transition state (1bTS), and a post-reaction ion-dipole
complex FCH3···Y− (1bPC). The E2 pathways appear with the successive addition of the
methyl group besides the SN2 pathways and show similar double well potential characters.
The initial association of F− and RY can form an ion-dipole complex a/bRC and, after
going over a/bTS, the system drops down to the deep potential energy well a/bPC and
then decomposes to products P1 (RF + Cl−/I−) and P2 (RCH2 = CH2 + HF + Cl−/I−),
respectively.

2.2. Effects of α-Methyl Substitution

To explore the effects of the addition of the α-methyl group on the competition of
E2 and SN2 mechanisms, the activation (∆E0

‡) and the overall barrier (∆E‡) are especially
emphasized for discussion as presented in Scheme 2, and the calculated values of the
relevant energies are summarized in Table 1. Here, Y = Cl is used as an example.

Exothermicity. As shown in Figure 2, it is clear that all E2 and SN2 paths for the
reaction of F− + RY (R = CH3, C2H5, iC3H7, tC4H9, and Y = Cl, I) are highly exothermic,
and, for each reaction, the reaction enthalpy ∆H of SN2 pathways is much more negative
than that of E2 pathways, suggesting SN2 reactions are more exothermic than E2 reactions
owing to the strong combination between the F atom and C atoms in the neutral products.
By changing R from the methyl to the tert-butyl group, the ∆H of SN2 pathways slightly
drops, while the values of E2 pathways escalate, eventually widening the ∆H gap between
E2 and SN2.
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Barrier Height. The variation of ∆E0
‡, ∆E‡, and the difference in ∆E0

‡ between inv-
SN2 and anti-E2 along the methylation of the α-carbon is illustrated in Figure 3a–c. The
horizontal coordinate is the degree of methyl substitution of Cα, named n, ranging from
0 to 3. As described in Figure 3a, successively adding methyl groups to the Cα dramat-
ically raises the activation barrier (∆E0

‡) of inv-SN2 from 3.3 to 6.8 to 11.6 and finally to
20.8 kcal/mol, while the ∆E0

‡ of anti-E2 gently escalates from 6.6, 9.1 to 11.2 kcal/mol.
Figure 3b depicts the activation barrier difference between the inv-SN2 and anti-E2 path-
ways (∆∆E0

‡ = ∆E0
‡

inv-SN2 − ∆E0
‡

anti-E2) as n changes from 1 to 3, which is 0.2 and
2.5 kcal/mol for n = 1 and 2, respectively. The significant augment of ∆∆E0

‡ for the
F− + tC4H9Cl reaction is observed in doubling the difference to 9.6 kcal/mol. All these
results suggest that anti-E2 is becoming more and more competitive. Wester and co-
workers [32] have disentangled the dynamics of the competition between anti-E2 and
inv-SN2 in the reaction F− + C2H5Cl, indicating that anti-E2 is more advantageous. In
addition, Gronert [38] also predicted that in the reaction of F− + iC3H7Cl anti-E2 is com-
pletely dominated and substitution should be more competitive with ethyl halides. As
the maximum difference between ∆E0

‡(SN2) and ∆E0
‡(anti-E2) of these three systems, the

anti-E2 mechanism will also be the most favorable pathway for F− + tC4H9Cl (I).
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anti-E2 and inv-SN2 transition states as a function of methyl substitution degree n of Cα (n = 0–3).
(b) Barrier difference ∆∆E0

‡ between anti-E2 and inv-SN2 as a function of n (n = 1–3). Values of
Y = Cl are reported. All the energies are in kcal/mol. (c) Energy decomposition analysis of the anti-E2
and inv-SN2 transition structure between F− + (CH3)nCCl (n = 0–3).

For the variation pattern of overall barriers (∆E‡), the α-methyl group slightly changes
the ∆E‡ of an anti-E2 pathway with values gradually dropping from −11.2, −11.6 to
−11.9 kcal/mol but significantly alters the barrier of inv-SN2 from −12.3 kcal/mol for
F− + CH3Cl to −2.3 kcal/mol for F− + tC4H9Cl. Rablen et al. [35] systematically compared
the free energies of SN2/E2 transition states for CN− + RCl reactions at the W1 and G4
levels of electronic structure theory in the presence of a simulated acetonitrile solvent.
Their results suggest that the barrier to the E2 reaction reduces by the same magnitude
as the barrier to SN2 raises when methylation of the α-carbon increases. Connor and
Gronert [34] studied the impact of α- and β-methylation on E2 and SN2 reactions between
a series of alkyl bromides and nucleophiles in the gas phase using both mass spectrometer
experiment and computational methods. They found the reduction in SN2 rate constant
and the mounting in E2 rate constant when adding a methyl group to the α-carbon position,
which is in line with our findings.

To understand why the increasing alkyl substitution strikingly enhances the ∆E‡ of the
SN2 reaction and slightly lowers the E2 barrier, we decompose the transition state energy
by referring to the activation strain analyses proposed by Bickelhaupt et al. [28,53,54] as
shown in Figure 3b. Energy decomposition contributes to a quantitative understanding
of how methyl substitution affects the inv-SN2/anti-E2 reaction barrier. The total energy
∆E‡, that is, the difference between reactants and transition states, can be decomposed



Molecules 2023, 28, 6269 8 of 13

into preparation energy (∆Eprep) and interaction energy (∆Eint) based on the formula
∆E‡ = ∆Eprep + ∆Eint. The ∆Eprep is the energy that is needed to overcome the deformation
of individual reactants from their equilibrium structure into the geometries of the transition
structure. And the interaction energy ∆Eint is considered as the energy difference between
the individual fragments of transition states’ geometries and the transition states. For
F− + RCl reactions, the inv-SN2 goes with less preparation energy than anti-E2, which
can be attributed to the different mechanisms. One bond breaking occurs in the inv-SN2
mechanism, whereas two bond breakings and one C-C bond shrinking occur along the
anti-E2 pathway. Hence, the destabilizing distortion characteristic for the anti-E2 reaction
pathway is by definition higher than the inv-SN2 reaction pathway. As previously proposed
by Bickelhaupt [53], the Cα-Y bond extension of inv-SN2 reduces the antibonding orbital
overlap between C2p and Y2p orbitals, which makes the LUMO of the substrate more stable.
Obviously, due to the antibonding orbital overlap of both the Cα-Y and Cβ-H bonds being
diminished, this stabilization of the LUMO is more significant in the E2 reaction. For
inv-SN2 transition structures, when the degree of CH3 varies from 0 to 3, ∆Eprep increases
gradually, indicating the fragments in the transition structures distorted more violently,
whereas ∆Eint decreases, suggesting the interaction of two parts is stronger. The decline
in ∆Eint cannot pay for the rapid growth of ∆Eprep, resulting in the overall rise in ∆E‡.
Especially in the F− + tC4H9Cl reaction, the increase in SN2 ∆E‡ is particularly significant.
In comparison, the ∆Eprep of the anti-E2 transition structure is higher but elevates more
slowly than that of the inv-SN2. Accordingly, the results obtained suggest that, compared
to the anti-E2 reaction, the inv-SN2 reaction is more sensitive to structural changes in
the substrate. Therefore, the barrier of inv-SN2 increases with the increased degree of
substitution, resulting in less competitiveness compared to anti-E2, which is in agreement
with previous research by Pendás et al. [39]. The ∆Eint is further broken down into the
steric term ∆Esteric (∆Esteric = ∆Eels + ∆EXC + ∆EPauli) and the orbital interaction term
∆Eorb in order to ascertain the primary contributor to the fluctuation in ∆Eint as shown in
Figure S3 [55]. Obviously, the orbital interaction term ∆Eorb is responsible for the interaction
energy. The orbital interactions of both SN2 and E2 decrease as the number of substituents
increases. It is noteworthy that the stronger orbital interaction favors the E2 reaction to
lower ∆Eint compared to its SN2 analog. This is consistent with the finding by Bickelhaupt
et al. [22] for the F− + CH3CH2Cl reaction.

These results suggest that, with the addition of α-methyl substituent, the anti-E2
reaction is completely dominant considering the energetics from ethyl to butyl reactions in
the gas phase. This is consistent with the scattering experimental phenomenon [41] that the
character of forward scattering becomes more and more obvious with the increased size of
residue R, where scattering into the forward hemisphere is a mechanistic fingerprint of E2
reactions. Further dynamics simulations are desired for revealing the variation in an aspect
of dynamical factors.

2.3. Effects of Leaving Group

It is of interest to explore the effect of the leaving group along the α-methyl substitution.
Figure 4a compares the activation barrier heights of F− + RCl and F− + RI; it can be seen
that, as the enhanced leaving group ability varies from Cl to I, both SN2 and E2 reaction
barriers are dropped by similar amounts. More significantly, with the increased number
of substituents of n = 0–3 the barrier heights decrease more dramatically from 3.5/3.7,
3.8/4.1, to 3.9/4.5 kcal/mol for the SN2/E2 reaction pathways along Y = Cl to I. Their key
TS structural character could be closely related to this change. Variation in the leaving
group from Cl to I causes the elongation of the Cα-Y bond ∆L (LCα-I − LCα-Cl) ranging
from 0.26, 0.29, 0.32 to 0.38Å with n going from 0 to 3 for the TS structure of inv-SN2.
Similarly, the bond elongation ∆L of Cα-Y for anti-E2 TS also grows along with methyl
substitution degree n. The looser transition states typically align with the reduced barrier
heights, resulting in heightened reactivity [20,56,57].
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Along the leaving group ability changing from Cl, Br to I, a good linear relationship
is found between ∆E0

‡ and ∆H for both inv-SN2 and anti-E2 pathways of each F− + RY
reaction as presented in Figure 4b. Obviously, the F− + RY reaction set obeys the expression
∆E0

‡ = a∆H + C, which connects the barrier with the reaction enthalpy, following the Bell–
Evans–Polanyi principle, which is a long-standing chemical theory [58]. Furthermore, good
relevance is also found between activation barrier difference ∆∆E0

‡ and enthalpy difference
∆∆H for Y = Cl and I with the increased degree of substitution of the corresponding SN2
and E2 pathways as shown in Figure 4c. The above results indicate that, as the leaving
group changes from Cl to I, the reaction becomes more exothermic and the barrier drops.
Barriers of both inv-SN2 and anti-E2 reactions are found to exhibit good linear dependences
with halogen electronegativity increasing in the order of I (2.66) < Br (2.96) < Cl (3.16)
as shown in Figure 4d. The above results suggest the decreased electronegativity of Y is
expected to lead to a looser TS structure (elongation of C-Y bond), and further a higher
reaction reactivity.

3. Computational Methods

The stationary points for a series of F− + RY (R = CH3, C2H5, iC3H7, tC4H9 and Y = Cl,
I) reactions are studied by second-order Møller–Plesset perturbation MP2 [59,60] with the
frozen core (FC) method. The atoms of H, C, F, and Cl are based on Dunning and Woons
aug-cc-pVDZ [61,62] basis set. For I, the core electrons use the Wadt and Hay ECP [63] and
the valence electrons use a 3s, 3p basis, plus a d-polarization function with a 0.262 exponent,
and s, p, and diffuse functions with exponents of 0.034, 0.039, and 0.0873, respectively.

According to previous work, aug-cc-pVDZ basis set has the lowest systematic errors,
while G** and aug-cc-pVTZ tend to overestimate and underestimate the single-point en-
ergies [64]. Aug-cc-pVDZ basis set also showed good agreement with the experiment in
previous research on similar reactions [17,30,42]. Vibrational analysis is used to determine
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each stationary point under the harmonic oscillator mode in which balanced structures
have no imaginary frequencies and transition states have one normal mode with an imagi-
nary frequency. Furthermore, each transition state is calculated with the internal reaction
coordinate (IRC) to make sure that it connects the assumed pre- and post-reaction com-
plexes. The coupled cluster theory with triple excitations treated perturbatively CCSD(T)
is often used as a benchmark due to its good accuracy [16,17,25,65]. Hence, the relative
energies of the stationary points are compared with the high-level CCSD(T)-F12b [16,42]
and CCSD(T) [17] benchmark values, and the available B97-1 values [43] for methyl, ethyl,
and tert-butyl halide systems, to rationalize the dependability of the computing method.
Since there is no report available previously for isopropyl halide reactions, the high-level
CCSD(T)/aug-cc-pVTZ or CCSD(T)/ECP/d energy corrections based on MP2 geometries
are performed. Gaussian 09 package [66] was used for all computations.

4. Conclusions

In this paper, F− ions with a series of α-substituted alkyl chlorides and alkyl iodides
in the gas phase are studied by using MP2/aug-cc-pVDZ or MP2/ECP/d methods, and the
effect of methyl substituents and leaving group ability on the competition of E2 and SN2
pathways is investigated. As the degree of methyl substitution increases, the preference
for anti-E2 over inv-SN2 enlarges, and, till R = tC4H9, anti-E2 becomes overwhelmingly
dominant. The prediction of this reaction trend is consistent with the differential scattering
experiment [41]. This can be explained by energy decomposition analysis. With the
increased degree of substitution, the drop in the interaction energy between reactants
cannot compensate for the rapid growth of preparation energy resulting from the more
distorted transition state structure for the inv-SN2 reaction pathway.

In the aspect of the leaving group, the barrier heights for both E2 and SN2 reactions
drop more dramatically along Y = Cl to I with the increased number of substituents, which
can be attributed to the relaxation of the key transition state structure. Variation in the
leaving group from Cl to I results in the larger extension of the Cα-Y for the TS structure
of anti-E2 and inv-SN2 with the methyl group going from 0 to 3, and thus the larger
reaction activity. Along the leaving group ability changing from Cl, Br to I, a notable linear
relationship is found between ∆E0

‡ and ∆H for both the inv-SN2 and anti-E2 channels of
each F− + RY reaction, indicating the smaller the reaction barrier, the more negative the
reaction enthalpy. These results correspond to the decreasing halogen electronegativity
from Cl to I, which results in the more relaxed structural characters of TS and thus the
larger reaction probability. This work lays the foundation for our subsequent dynamic
simulations. Since it is known that the dynamics of the reaction may deviate from the
potential energy surface, dynamics simulations are able to intensify our understanding of
the effects of the substitution and leaving group on the competition mechanism between
E2 and SN2 reactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28176269/s1, Figure S1: Potential energy curves and
stationary points at MP2/ ECP/d level for F- + RI reactions. The energy (in kcal/mol) is relative to
F- + CH3I (a) and F- + RI (b) reactants at 0K, and does not include ZPE. For Figure S1b, the black,
blue, and pink numbers represent F- + C2H5I, F- + iC3H7I, and F- + tC4H9I reactions, respectively;
Figure S2: Stationary point structures of E2 and SN2 pathways for (a) F-+ CH3Y, (b) F-+ C2H5Y,
(c) F-+ iC3H7Y, (d) F-+ tC4H9Y(Y = Cl, I) reaction optimized at the MP2/aug-cc-pVDZ(ECP/d)
theoretical level. Bond distances are in Å, and black/pink line represents Y = Cl/I.; Figure S3:
Interaction energy decomposition according to formula ∆Eint = (∆Eels + ∆EXC + ∆EPauli) + ∆Eorb =
∆Esteric + ∆Eorb. ∆Eels is electrostatic interacton term, ∆EXC is the change of exchange-correlation
energy during complexation process, and ∆EPauli is the Pauli repulsion effect between electrons in
occupied orbitals of the fragments and is invariably positive. They combine to form steric term
∆Esteric (Dashed line). ∆Eorb is orbital interaction term and represented by short dotted line. The full
line represents ∆Eint.

https://www.mdpi.com/article/10.3390/molecules28176269/s1
https://www.mdpi.com/article/10.3390/molecules28176269/s1
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