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Abstract: 1,2- and 1,4-dihydropyridines and N-substituted 2-pyridones are very important structural
motifs due to their synthetic versatility and vast presence in a variety of alkaloids and bioactive
molecules. In this article, we gather and summarize the catalytic and stereoselective synthesis of
partially hydrogenated pyridines and pyridones via the dearomative reactions of pyridine deriva-
tives up to mid-2023. The material is fundamentally organized according to the type of reactivity
(electrophilic/nucleophilic) of the pyridine nucleus. The material is further sub-divided taking into
account the nucleophilic species when dealing with electrophilic pyridines and considering the
reactivity manifold of pyridine derivatives behaving as nucleophiles at the nitrogen site. The latter
more recent approach allows for an unconventional entry to chiral N-substituted 2- and 4-pyridones
in non-racemic form.

Keywords: dearomatization; pyridine; pyridinium salt; asymmetric catalysis; dihydropyridine;
tetrahydropyridine; piperidine; 2-pyridone; 4-pyridone

1. Introduction

The dearomatization of heteroaromatic compounds is a very powerful synthetic strat-
egy that can also build up complex structures in an asymmetric fashion starting from
relatively abundant substrates [1,2]. Nonaromatic six-membered azaheterocycles are priv-
ileged structures present in a variety of natural compounds, small molecule drugs, and
agrochemicals [3]. In this context, the synthesis and applications of dihydropyridines
continue to attract considerable interest di per se and also due to the presence of two double
bonds that can be further elaborated in a regio- and stereoselective fashion to give highly
substituted tetrahydropyridines and piperidines [4] or to impart molecular diversity in a
DOS approach [5–7]. N-Substituted 2-pyridones are also important compounds found in
many natural products and medicinally relevant molecules [8,9] that can be obtained in a
stereoselective fashion by the use of dearomative asymmetric procedures.

Aside from starting with acyclic precursors such as in Hantzsch-type synthesis [4],
one of the most straightforward general methods to obtain hydropyridine derivatives in a
stereoselective fashion relies on the dearomatization of pyridine derivatives. Most often
the dearomatization process can be achieved by the use of pyridine as the electrophilic
reaction partner in nucleophilic addition (Figure 1a). Nucleophilic additions to activated
pyridines, generally known as a Reissert-type reaction, are a largely explored reactivity
that have mainly focused on the dearomatization reactions of substituted N-acyl or N-
alkylpyridinium ions [10]. Much less explored is a complementary strategy where the
stereoselective dearomatization occurs by means of pyridine derivatives that behave as
nucleophiles at the nitrogen site (Figure 1b). So far, the latter strategy has been mostly
developed via 2-substituted pyridine derivatives leveraging inter- and intra-molecular
allylic amination reactions or sigmatropic rearrangements to yield chiral 2-pyridones.
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Figure 1. Schematization of reactivity for the stereoselective dearomatization of pyridines.

As the former approach to dealing with nucleophilic addition to activated electrophilic
pyridines has recently been reviewed up to mid-2018 [11], this review presents only the
most recent literature about this topic. The asymmetric hydrogenation [12] or transfer
hydrogenation [9] of substituted pyridines to give piperidines, and the use of pyridinium
ylides to effect cyclization processes [11] are not covered in this review.

The material presented herein is classified according to the type of pyridine reactivity
(electrophilic/nucleophilic) and to the type of catalyst and/or nature of the reactions.

2. Catalytic Stereoselective Dearomatization of Pyridine Scaffolds with Nucleophiles
2.1. Metal Catalysts

Nonaromatic nitrogen-containing heterocycles such as dihydropiridine (DHP) and
piperidine structures are extremely common in approved drugs, agrochemicals, and al-
kaloid natural products [2]. For these reasons, organic chemists are interested in the
development of new ways to obtain these ubiquitous scaffolds, especially in a stereoselec-
tive fashion and using milder reaction conditions then those used previously [10,13–18].
Various methodologies were developed for the asymmetric synthesis of these frameworks,
but in the last few years catalytic asymmetric dearomatization has gained the most interest,
probably due to the convenient use of commercially available and inexpensive starting
materials such as pyridine and quinoline [1,10,19]. The challenge of asymmetric dearom-
atization is the low reactivity of these scaffolds, which usually need to be activated to be
reactive towards the addition of nucleophiles. For this reason, the activation of pyridine
as a pyridium salt and the use of a transition-metal catalyst is the most common strat-
egy to achieve dearomatization, and several chiral ligands have been employed to obtain
stereocontrol with a degree of success [20–24]. Moreover, in the last few years a great
interest in the use of an organocatalytic approach with an activated pyridinium ion has
risen as well [25–29]. In this review the latest (from the second half of 2018) reports of the
nucleophilic asymmetric dearomatization of pyridine are presented, to provide an updated
overview of the state of the art for the synthesis of enantioenriched DHPs and piperidines,
as well as complex multicyclic and spiro-compounds.
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2.1.1. Grignard Reagents

In 2019, Yu and coworkers presented a new regioselective and diastereoselective
access to tetrahydropyridines and tetrahydroquinolines through a one-pot double nucle-
ophilic addition of Grignard reagents to pyridine (1) and quinoline derivatives (4) with
organoborane catalysts [30]. This method allows for the obtaining of the corresponding
tetrahydropyridines and tetrahydroquinolines with two carbon nucleophiles via direct C-C
bond-forming dearomative reactions (Scheme 1). The protocol requires the use of BF3-Et2O
at 0 ◦C to obtain the corresponding boron trifluoro salt 2 and 5, then the first nucleophile
(Grignard reagent) is added at −50 ◦C to exclusively form the 1,4-derivative. The addition
of MeOH allows for the protonation of the formed enamine, resulting in an electrophilic
iminium ion. The addition of the second nucleophile and TFA allows the desired product
to be obtained with complete regio- and stereocontrol; with good to excellent yields; and
with several functional groups and substituents in positions 3, 5, and 7 as well. In these
conditions, the authors found that only the anti-diastereoisomeric product 6a was formed
for quinoline derivatives, while at room temperature, the stereoselectivity was reversed,
resulting in the syn-diastereoisomer 6b. The stereoselectivity of the reaction is controlled
by the second nucleophilic attack and is kinetically controlled at low temperatures, while
at room temperature the mixture is in equilibrium and the thermodynamic product is
obtained. The study was extended to pyridine derivatives 1 to obtain the desired product
with complete regioselectivity and good yields. In most cases, with pyridine scaffolds a
good diastereoselectivity was obtained and both at low and room temperature the main
product of the reaction was the anti-diastereoisomer 3a, probably due to the lower stability
of the iminium ion that makes the reaction irreversible in both conditions. A broad range
of Grignard reagents was screened for this reaction, all giving moderate to good yields
and very good stereoselectivity. Various kinds of second nucleophiles were also tested to
obtain a set of diversely substituted tetrahydropyridines and tetrahydroquinolines that are
privileged structures in medicinal chemistry.
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A highly enantioselective catalytic dearomatization of in situ-formed N-acylpyridinium
salts with Grignard reagents and copper catalysts was presented in 2021 by Harutyunyan’s
group [31]. The dearomatization of 4-methoxypyridine was carried out at −78 ◦C, where
(R,R)-Ph-BPE L1 (6 mol%), CuBr-Me2S (5 mol%), and Grignard reagent (2.0 equiv) were in
toluene for 12 h (Scheme 2). Several acylating agents were tolerated, with benzyl chloro-
formate generating the higher ee (99%) and higher yields. In this protocol, an increased
temperature reduced the enantioselectivity, but a wide variety of Grignard reagents were
tolerated, except for secondary Grignard reagents that gave a racemic mixture; 2- and 3-
substituted 4-methoxypyridines were also used as substrates, using methyl chloroformate
in CH2Cl2 to generate synthetically useful yields (51–66%) and high enantioselectivities
(80–97%) of the corresponding dihydro-4-pyridones 9. An appealing upside to the reaction
is the possibility of maintaining good results (68% yield, 97% ee) even in a gram-scale
reaction. Mechanistic studies revealed that the high enantioselectivity derives from the
bidentate nature of the ligand and from the flexible linkage between the binding arms that
allow the transfer of chiral information from the catalyst to the product.
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In a study very recently reported by the same group, a novel and enantioselective
direct method for the C4-dearomatization of 2-methoxypyridine derivatives of type 10 was
reported [32] (Scheme 3). The aim of the work was the preparation of functionalized
enantioenriched δ-lactams, highly valuable molecular frameworks in medicinal chem-
istry with well-established pharmacological properties [33–35]. This approach involved
the synergistic use of copper(I) catalysis, Grignard reagents, and a strong Lewis acid
(BF3·Et2O), which interacted with the nitrogen atom of 2-methoxypyridine to enhance its
electrophilicity in situ, eliminating the need for the formation of a pyridinium ion to create
chiral δ-lactam derivatives 11, with excellent control over their regio- and stereochemistry
(Scheme 3). The optimized reaction conditions consisted CuBr·SMe2 (5.0 mol%), (R,R)-Ph-
BPE L1 (6.0 mol%), BF3·Et2O (1.2 equiv), and Grignard reagent (1.2 equiv) in CH2Cl2 at
−78 ◦C for 16 h. The method demonstrated the compatibility of a wide range of Grignard
reagents and substituents with the 2-methoxypyridine derivatives if not at the C4 or C2
position, delivering high yields and exceptional enantioselectivities of up to 99% ee, while
maintaining high regiocontrol. For reactions involving PhMgBr, lower enantioselectivities
could be overcome by increasing the catalyst loading. The researchers employed density
functional theory (DFT) calculations and 13C kinetic isotope effect (KIE) studies to gain
insights into the reaction mechanism. The DFT study confirmed that the Lewis acid, upon
complexation with the pyridine substrate, played a crucial role in activating the system
electronically, facilitating the addition of nucleophilic species through the chiral organocop-
per complex. The KIE experiments and molecular modeling supported the conclusion that
the rate-limiting step of the reaction involved the transfer of the organic group from the
copper center to the C4 position of the 2-methoxypyridine.
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nard reagents.

In an interesting study conducted by Harman and coworkers (Scheme 4), the re-
searchers analyzed the behavior of dihapto-coordinate 1,2-dihydropyridine complexes
13 of the metal fragment {WTp(NO)(PMe3)}(Tp = tris(pyrazolyl)borate), obtained from
pyridine without any 1,4-dihydropyridine impurity [36]. The study revealed that these
complexes undergo protonation at C6, followed by regioselective amination at C5 using
various primary and secondary amines. Remarkably, the addition occurs stereoselec-
tively anti to the metal center, leading to the exclusive formation of cis-disubstituted
products. The resulting compounds, 1,2,5,6-tetrahydropyridines 18, can be easily liber-
ated through oxidation in acidic conditions. This tungsten-mediated procedure provides
a means to access cis-2-substituted 5-amino-1,2,5,6-tetrahydropyridines 19 (also called
3-aminotetrahydropyridines), which are highly valuable scaffolds due to their presence
in biologically active molecules. Notably, a wide range of nucleophiles, including Grig-
nards, organozincs, enolates, indoles, and pyrroles can be added to C2, while the amine
addition can be accomplished without the need for particularly expensive reagents, en-
abling control of the ring stereocenters. All these additions are regio- and stereoselective,
yielding isolated products with a diastereomeric ratio greater than 15:1. Nevertheless,
the reaction needs to be conducted at a low temperature to allow for the kinetic addition
at C5 and the obtainment of the desired complex 18 avoiding an E1-elimination caused
by the ammonium salt generated during the reaction which deprotonates complex 16 in
C6 causing the formation of complex 13 that is thermodynamically favored. Moreover,
to avoid the protonation-induced E1-type elimination a basic quench is required once
the allylamine is formed, the subsequent oxidation with DDQ preconditioned with
HOTf allows the desired product to be obtained. With this procedure it should be possi-
ble to access single enantiomers of the ATHPs based on the previously demonstrated
enantioenrichment and stereochemical retention of {WTp(NO)(PMe3)} [37,38], which is
applicable to pyridine-derived bicyclic amines [39].
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In 2021, Smith and coworkers presented a novel asymmetric addition of alkynyl
nucleophiles to N-alkylpyridinium electrophiles under mild conditions, obtaining dihy-
dropyridine products with complete regiochemical and stereochemical control [40,41]. The
pyridine derivative 20 was prepared via condensation between L-tert-leucine tert-butyl
ester and 3-formylpyridine, followed by chemoselective methylation. Then, the treatment
with propynyl magnesium bromide resulted in the selective formation of the desired
dihydropyridine 21 in 70% yield, with complete stereoselectivity (>20:1 dr) and regiose-
lectivity at C2 (>20:1 rr) (Scheme 5). The asymmetric alkynylation of various substituted
N-alkylpyridinium ions was investigated showing the broad scope and functional group
tolerance of both the pyridine and the alkyne component. This method could be applied for
the synthesis of a variety of dihydropyridines that can be broadly useful for the asymmetric
synthesis of various azaheterocyclic building blocks. The proposed mechanism is based on
what has been described by Koga for addition to unsaturated imines [37]; the chelation of
the magnesium center by the imino ester guides the alkynyl nucleophile to the C2 position,
a step that was also confirmed by X-ray analysis. The tert-butyl group putatively blocks
the top face of the pyridinium, allowing for the alkyne nucleophile to approach from
the opposite side, providing high stereocontrol. This method was then exploited for a
concise, dearomative, and asymmetric synthesis of (+)-lupinine obtained in 75% yield with
a >10:1 diastereomeric ratio with its epimer epilupinine.

A practical protocol for the regiodivergent asymmetric addition of aryl- and alkenyl-
organometallic reagents to substituted N-alkyl pyridinium heterocycles was presented by
Grigolo and Smith in 2022 [42]. The method allows for the achievement of high selectivity
in both regiochemical and stereochemical control for the synthesis of chiral 1,2,3- and
1,3,4-trisubstituted dihydropyridine products. By carefully choosing the nitrogen activating
agent it was possible to obtain regiocontrol and the authors discovered a direct relation-
ship between the size of the activating group and the selectivity for C4 or C2 addition
(activation with MeOTf favored addition in C2 with a 1:>20 ratio, while activation with
trityl cation reversed the selectivity to favor addition in C4 with a 20:1 ratio) (Scheme 6).
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The diastereoselectivities of the additions proved to be high for the major regioisomers
obtained, suggesting that the chiral guide is effective regardless of the activating agent used.
The authors also proposed a mechanism to explain the regio- and stereoselectivity of the
reaction (Scheme 6): in scenario A, a small activation group is used (e.g., Me), and it leads to
the formation of intermediate a after adding the aryl Grignard reagent. The chiral guide has
the tBu group oriented on the opposite side to the chelated nucleophile, which allows for
preferential addition to C2 of the pyridinium ring. In scenario B, a large activation group
is employed (e.g., trityl), and when the nucleophile is added intermediate b is formed.
This intermediate experiences a steric clash with the large activation group, causing the
nucleophile to be controllably added to C4 of the pyridinium ring. In this second case the
relative orientation of the chiral guide, pyridinium, and nucleophile lead to an inversion in
facial selectivity and regioselectivity. The scope of additions at C2 was explored using allyl
as a practical removable activating group, and various aryl and alkenyl Grignard reagents
exhibited high regioselectivity and diastereoselectivity (>20:1) for each regioisomer formed.
The researchers evaluated C4-selective asymmetric dearomatization too: activation of the
pyridine derivative (24) with TIPSOTf was followed by reaction with aryl and alkenyl
Grignard reagents and the subsequent LiOH workup yielded 1,4 adducts 25 with complete
regiocontrol (>20:1 C4/C2) and diastereoselectivity (>20:1 dr). This controlled pyridinium
functionalization was exploited in the total synthesis of complex molecular targets, exem-
plified by the synthesis of (+)-N-methylaspidospermidine and (+)-paroxetine. The protocol
allowed for the avoidance of direct oxidative events, highlighting the strategic advantage
of pyridinium functionalization in redox-economic alkaloid construction.
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2.1.2. Boronic Acids

An interesting rhodium-catalyzed dearomatization of N-alkyl nicotinic acid esters for
the synthesis of dihydropyridines that contain two double bonds with distinct reactivities
showing a fully substituted stereocenter at the C6-position was reported in 2020 by Ka-
rimov [43]. The procedure involves the use of a nicotinic acid-ester-derived pyridinium
salts in dioxane/H2O, with aryl boronic acids as nucleophiles, and the catalytic system is
composed of Rh(COD)2BF4/(R)-BINAP (L2). These conditions create the desired 1,2-DHPs
27 with good yield and high stereoselectivity with the presence of KPF6 as an additive to
improve the solubility of the pyridinium salt (Scheme 7). The use of additives, ethereal sol-
vents, and an amount of water in the reaction mixture are fundamental for the reaction yield
and enantioselectivity. This protocol demonstrated excellent functional group tolerance for
being compatible with a wide range of functional groups in the boronic acid. Interestingly,
the alteration of the ester group, the substituent in C6, the N-alkyl group or the counterion
in the pyridinium salt did not substantially influence the enantioselectivity of the reaction.
Groups with high steric hindrance on the nitrogen atom reduced the ee’s slightly while
the higher solubility of the pyridinium salt allowed higher yields of compounds of type
27. The regioselectivity of the reaction was very high, no C4-addition was obtained and
the ratio of C6/C2 addition was greater than 15:1, due to the higher activation of the C2
and C6 that are closer to the electro-withdrawing nitrogen atom. When using hindered
substituents in C6, the major product derived from the addition of the boronic acid in C2
but the enantioselectivity was still maintained. Moreover, the enantioenriched dearom-
atization products can be selectively functionalized to prepare tetrahydropyridine and
piperidine derivatives of type 28. The DHPs were obtained through gram-scale synthesis
with a maintained yield and enantioselectivity and then reduced using Pd/C, sodium
cyanoborohydride, or LiAlH4 to obtain various enantioenriched tetrahydropyridines and
piperidines with a fully substituted stereogenic center.
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2.1.3. Alkenes

In 2018, Buchwald and coworkers presented an interesting and peculiar copper-
catalyzed asymmetric dearomatization of pyridines and pyridazines that allows C-C bond
formation [44]. Within this method, the formation of the 1,4-DHP adduct 30 is only tran-
sient. The protocol involves mild reaction conditions, without requiring stoichiometric
preactivation of the substrate, moreover, the nucleophile is formed in situ, and there is
no need for protective group manipulation. The 1,4-DHPs are obtained by a catalytic
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high stereoselective 1,4-dearomatization and can be converted in substituted pyridines
31 (by oxidation, Scheme 8 via a) or piperidines 32 (by reduction, Scheme 8 via b) in the
same pot. A wide variety of substituted pyridines and also pyridazines can be reacted
with styrene in the presence of (Ph-BPE)CuH to obtain excellent conversions to the corre-
sponding 1,4-DHP. The dearomatization showed high enantioselectivity and the aerobic
aromatization proved to be stereospecific (Scheme 8 via a). When reducing conditions are
applied after the dearomatization step, good yields and selectivity are obtained even in
gram scale. For the dearomatization/oxidation protocol for pyridines and pyridazines
various functional groups were tolerated, but the ee’s of the pyridines were slightly reduced
by electron-donating groups and enhanced by aryl and π-acceptor substituents. For the
dearomatization/reduction protocol, only pyridines were tolerated, an analysis of the
stereoselectivity of the reaction demonstrated that both steps are responsible for the control
of the endocyclic stereocenter leading to a mixture of diastereomeric piperidines, and the
major diastereomer was isolable in stereochemically pure form allowing for the obtainment
of piperidines with three contiguous stereocenters starting from a prochiral precursor. The
dearomative addition is selective for (Cα,C4)-anti DHPs, whereas the reduction is selective
for (C3, C4)-syn piperidines. Substituents at C3 are tolerated, while are accommodated
at C4 only in particular cases; C2 substituents are not tolerated at all probably because
the heterocycle needs to coordinate with a sterically demanding Lewis acid like copper.
The procedure is applicable with variously substituted styrenes, except for para-F, -Me,
and -OMe styrenes that completely impede dearomatization, due to possible destabilizing
interactions in the dearomative transition state.
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Scheme 8. Asymmetric C-C bond-forming dearomatization of pyridines and pyridazines.

As for the individuation of a mechanism for the reaction there has been a dispute
between Buchwald’s group [44] initially proposing the cooperation of two copper(I) centers,
and Lin’s group [45] proposing an elaborated FDT study in 2020, presenting a mechanism
involving a single copper(I) center in which the reaction occurs through styrene insertion
into Cu–H, to yield a Cu–H addition “product” that undergoes 1,3- and 1,5-Cu migrations
on a benzylic ligand, facilitating the 1,2- and 1,4-dearomatization of pyridine. Lin’s group
found that the comparable stability among the species presenting the benzylic ligand at
different coordination sites allows for the Cu(I) migrations, promoting the C−C coupling
between the benzylic carbon and a coordinated pyridine that completes the dearomatization
process. From the calculations, Buchwald’s mechanism [44] involving two copper(I) centers
was found to be unfavorable due to significant steric repulsions between the substituents
on the ligands on the metal fragments, which hindered the dearomatization process.

In 2020, Buchwald’s group addressed the reaction mechanism once again [46], propos-
ing a monometallic process involving a dearomative rearrangement of the phenethylcopper
nucleophile, leading to a C-para-metallated form before reacting with the heterocycle at
position C4. The unexpected pathway is facilitated by the heterocycle itself, resulting in
a net 1,5-Cu-migration and beginning with a doubly dearomative imidoyl-Cu-ene reac-
tion, before the CuL2 fragment facilitates a stepwise Cope rearrangement of the doubly
dearomatized intermediate, yielding the C4-functionalized 1,4-dihydropyridine (Scheme 9).
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2.1.4. Miscellaneous

The typical reactivity of pyridine or pyridinium salts permits the introduction of
nucleophiles in the 2, 4, or 6 positions of the ring, generating 1,2- or 1,4-DHPs. In 2023,
Fletcher and coworkers presented an innovative work that allows access to enantioenriched
3-substituted piperidines (35) starting from pyridine and sp2-hybridized boronic acids [47]
(Scheme 10). In this case, the protocol consists of two steps: the first is the formation
of 1,2-DHP (34) via the selective Fowler reduction of an in situ-generated pyridinium
salt, and the second is a Rh-catalyzed carbometallation of the obtained 1,2-DHP. After a
screening of activating groups for the formation of the pyridinium ion, the author found
that phenyl carbamate-protected DHPs were the best performing both for the high yield that
was obtained and the facile purification of the solid DHP. Fletcher’s group then focused
on the optimization of the procedure for the Rh-catalyzed carbometallation of phenyl
carbamate dihydropyridines. The optimized protocol involves the use of [Rh(cod)(OH)]2,
Segphos (L5), aqueous CsOH in THP:toluene:H2O (1:1:1) mixture at 70 ◦C, these conditions
allowed for the obtainment of tetrahydropyridines in high yields and with very high
ee’s. The use of aqueous CsOH is necessary for the reaction, as it is the source of water,
rhodium, and ligand. The scope of the boronic acids was extensively analyzed, and a
broad range of boronic acids with numerous functional groups and heterocyclic moiety
were easily tolerated, maintaining good yields and enantioselectivity. The carbamate
activating group can be modified as well, allowing for the introduction of groups that
can be easily modified for the synthesis of specific compounds; alkyl carbamate groups
were tolerated, maintaining good results. This reactivity was also maintained with 2-
substituted pyridines and variously substituted dihydroquinolines, while 4-substituted
dihydropyridines and azepine were not reactive. This synthetic method allows for the
synthesis of enantioenriched tetrahydropyridines from 1,2-dihydropyridines, which can be
performed on gram scale and can be used for the synthesis of enantioenriched piperidines
which are important scaffolds in medicinal chemistry.
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2.2. Organocatalysis

Whereas the use of metal-catalyzed reactions for the dearomatization of pyridine has
a long history in the literature, organocatalyzed reactions gained chemists’ interest only
recently because of the ready availability, low cost, low toxicity, and high variability of the
catalysts that can be exploited [25–29].

Fogagnolo and coworkers in 2018 reported an interesting study on the chiral
N-heterocyclic carbene (NHC)-catalyzed intermolecular dearomatization reaction be-
tween activated N-alkylpyridinium salts and aliphatic aldehydes to obtain acylated
1,4-dihydropyridines with complete C4-regioselectivity and enantioselectivities rang-
ing from 52% to 78% ee’s [28]. The protocol is based on the obtainment of 1,4-DHP
of type 37 with complete regioselectivity, high yield, and promising enantiomeric
excess through the use of a N-benzylpyridinium salt containing a cyano group at the
3-position, a catalytic amount (10 mol %) of amino-indanol-derived triazolium salt C1,
and K3PO4, or better Na2CO3, in toluene (Scheme 11). The authors noticed that the
increase of the polarity of the reaction medium reduced reaction efficiency, but the
use of apolar CCl4 restored enantiocontrol by the catalyst (74% ee), even if giving a
diminished yield likely due to a lower solubility of the pyridinium salt. As for the base,
K3PO4 and Na2CO3 could be used alternatively and exhibited better enantioselectivity
compared to Cs2CO3, probably due to a correlation between the hard/soft character of
the metal and the stereochemical outcome of the dearomatization process. The study
revealed that the conformational freedom of the alkyl substituent on the aldehyde in
the transition state can influence the enantioselectivity (less restricted conformational
freedom in the transition state results in lower ee’s). The methodology exhibited high
selectivities, and usually the moderate yields obtained for certain 1,4-DHPs were as-
sociated with low conversions of the substrates. The limitations of the protocol were
investigated as well by the authors, such as the ineffectiveness of variations in the
electron-withdrawing group at the C3 position of the N-benzylpyridinium ring and the
reduced efficacy of aromatic aldehydes in the dearomatization process. The proposed
mechanism consists of the NHC i (obtained by deprotonation of triazolium salt C1) that
reacts with the aldehyde to give the intermediate ii, which intercepts the pyridinium
salt 36 to give the adduct iii. The deprotonation given by the base creates product 37
and regenerates the catalyst. This methodology enabled the synthesis of previously
unreported C4-acylated 1,4-DHPs 30 with a carbonyl functionality, two enamine-type
double bonds, and a cyanide group. The 1,4-DHP scaffold could be variously elabo-
rated by chemoselective reductions with NaBH4 and H2, Pd(OH)2 to give 1,4-DHPs 38
and tetrahydropyridines 39, respectively.
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In the same year, Chen and coworkers presented an asymmetric dearomative for-
mal [4 + 2] cycloaddition reaction of activated N,4-dialkylpyridinium salts 40 and acyclic
α,β-unsaturated ketones 41 via the ion cascade iminium-enamine catalysis of a cinchona-
derived amine C2 [48]. The authors envisioned that in mild basic conditions the iminium
ion-enamine tautomerization of the alkylpyridinium salts would generate dienamine-type
intermediates, which are enantioselectively trapped by α,β-unsaturated ketone substrates
activated by the formation of iminium ions with a chiral amine. The intramolecular dearo-
mative reaction then allows the formation of chiral azaspiro [5.5]undecane derivatives
42 in a formal [4 + 2] cycloaddition pattern. The optimized reaction conditions for the
dearomative formal [4 + 2] reaction involve the activated pyridinium substrate with a
3-nitro group and the enone in CHCl3 at 60 ◦C in the presence of chiral primary amine C2
(20 mol%), a substituted mandelic acid A1 (40 mol%), and sodium acetate (1.2 equiv) ob-
taining excellent yield (94%), diastereoselectivity (>19:1 dr), and enantioselectivity (95% ee)
(Scheme 12). In general, good to excellent diastereo- and enantioselectivity were obtained
for β-aryl enones with diverse electron-withdrawing or electron-donating groups, but
also for enones bearing a heteroaryl or 2-styryl group, while enones with a linear alkyl
group obtained lower enantioselectivity. Various substitutions for the pyridinium salt
were evaluated, the N-substitution did not affect the selectivity, and various groups were
tolerated with only few exceptions. The obtained dearomative product is also suitable for
further transformations, such as full hydrogenation with Pd/C and H2, deprotection of
the N-benzyl group, and protection with Boc using (Boc)2O to create 43, or ring-opening
reactions with BF3·Et2O in CH2Cl2 producing 44. This interesting work presents a new type
of bench-stable activated N,4-dialkylpyridinium salts that can be easily deprotonated to
generate active dearomative dienamine-type intermediates and participate in an asymmet-
ric formal [4 + 2] cycloaddition reaction with acyclic ion α,β-unsaturated ketones through
the cascade iminium-enamine catalysis of a cinchona-derived amine with moderate to
excellent stereoselectivity.
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In 2020, following on from their previous work Chen reported an enantioselective
cascade reaction for the synthesis of fused polyheterocycles using N-alkylpyridinium
and N-alkylquinolinium salts 45 with o-hydroxybenzylidene acetones 37 [49]. The au-
thors also developed a cascade assembly using N-benzyl-4-methylpyridinium salt and
cyclic 2,4-dienones involving repetitive dearomatization and aromatization activation
and resulting in bridged frameworks. The reactions proceeded through dearomative
dienamine-mediated addition, consecutive trapping of reactive enamine intermediates,
and aminal formation under the catalysis of cinchona-derived primary amines. Moreover,
the researchers performed multiple functionalizations of 4-methylpyridinium salts with
cyclic 2,4-dienone substrates, resulting in bridged and fused frameworks via a domino
regioselective Michael/Michael/Mannich sequence with moderate to good enantioselectiv-
ity. The optimized reaction conditions are with the use of N-benzyl-3-cyanopyridinium
45 salt and o-hydroxybenzylideneacetone 46. The reaction, catalyzed by quinine-derived
primary amine C2 (20 mol%) and salicylic acid A2 (20 mol%) in the presence of potassium
salicylate (1.1 equiv), created the desired product in 78% yield and 98% ee as a single
diastereomer (Scheme 13). The aminal formation is crucial for the cascade process that
does not occur for simple benzylideneacetone. Pyridinium salts with diverse N-benzyl or
other N-alkyl substituents were well-tolerated with this protocol, but without a 3-cyano
group only complex mixtures were obtained. The products with the opposite configu-
ration were produced with similar good data obtained by employing amine with the
opposite configuration. This research demonstrated the utility of activated pyridinium and
quinolinium salts in asymmetric dearomative multiple-functionalization reactions with
o-hydroxybenzylideneacetones.
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The addition of a C(1)-ammonium enolate intermediate to the pyridinium salts for the
enantioselective synthesis of α-functionalized ester-substituted 1,4-DHPs was reported in
2021 by Smith and coworkers [50]. The C(1)-ammonium enolate intermediate is formed
in situ from aryl esters and the isothiourea catalyst (R)-BTM C3, giving a regio- and stere-
oselective formation of enantioenriched 1,4-DHPs 50 (Scheme 14). Extensive screening of
reaction conditions allowed the authors to understand the importance of using toluene as
the solvent of the reaction, as the low solubility of the pyridinium salt in toluene limited
background reactions leading to the formation of a racemate giving a high stereocontrol.
The base obtaining the best results is DABCO (65% yield, 90:10 dr, 91:9 er) and it is nec-
essary to neutralize the HBr generated during the reaction and reduce the deactivation
of the isothiourea catalyst by protonation. Moreover, the counter ion of the pyridinium
salt proved to be important for the reactivity. Coordinating counter ions such as Br− and
Cl− appeared to be compatible with the catalytic protocol, due to their binding to the
isothiourea stabilizing the transition state by non-covalent interactions, while larger and
non-coordinating counter ions such as BF4 and PF6 gave lower yields and enantioselectiv-
ities. Furthermore, for this reactivity an electron-withdrawing substituent (nitro, nitrile,
acetyl, or 3-phenylsulphonyl) in the 3-position of the pyridinium salt was necessary and an
N-benzyl-derived substituent was essential as well, probably due to stabilizing π–cation
or ππ-interactions in the transition state involving the benzyl group. Various aryl acetic
p-nitrophenyl ester components with different steric and electronic properties were also
evaluated and obtained good yields, diastereo-, and enantiocontrol, with only a few excep-
tions such as strongly electron-withdrawing substituents that make the ester acidic and give
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stronger racemic background reactions. After the catalytic process, various nucleophiles
(especially amines) were added to the reaction mixture generating numerous carbonyl
moieties. Mechanistic studies were also performed in this work, showing that stereocontrol
can derive from the ability of the pyridinium salt to interact with donor ππ-systems given
by the aryl acetic ester through π-cation-interactions and form a pre-transition state with
lower steric hindrance. This interesting work broadens the scope of isothiourea catalysis
which had been limited to alkenes and carbonyl derivatives.
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ammonium enolates to pyridinium salt.

In 2022, Feng and Cao reported an innovative catalytic asymmetric sequential three-
component nucleophilic addition/dearomative [4 + 2] cycloaddition/isomerization cascade
reaction which involves the use of a methylene-indolinones electrophile 51 that traps the
transient zwitterions formed by N-heteroaromatic compounds, and allenoates 53 and
56 [51]. This multi-component dearomatization strategy is highly efficient for the synthe-
sis of structures presenting molecular complexity and diversity, with impressive yields
reaching up to 92%, diastereomeric ratios higher than 19:1, and enantiomeric excesses
up to 99%. It is performed in CH2Cl2 at 20 ◦C in the presence of a base like Et3N that
accelerates the isomerization and water that reduces background reactions, increasing yield
and enantioselectivity (Scheme 15). The reaction scope encompassed various structures
such as 1,2-dihydroquinolines, 1,2-dihydropyridines, and other N-heterocycles. Notably,
the enantioselectivities and diastereoselectivities of 1,2-dihydroisoquinoline derivatives
remained consistent even upon altering the ester group, and pyridine maintained a similar
reactivity; only changing the chiral N,N′-dioxide ligand from L4-PicH to L4-PrEt2Me and
prolonging the reaction time without adding the base achieved the corresponding products
54 and 57 with good yields and high enantioselectivities, as a single diastereomer. The
scope of substituents for the synthesis of 1,2-DHPs was investigated by the authors: C4 and
C3 substituents on the pyridines allowed high selectivity with C4-electron-withdrawing
groups, increasing enantioselectivities, while for 3-substituted pyridines, regioselectivity
was influenced by the steric hindrance and electronic effects of the substituents. The dearo-
mative [4 + 2] cycloaddition between methyleneindolinone and the generated zwitterion
exhibited very good diastereoselectivity. Both gram-scale synthesis and derivatization of
the obtained compounds were achieved with good results. An analysis of the mechanism
of the reaction was performed using deuterium labeling, allowing for an understanding
of the regio- and stereoselectivity of the reaction and the role of the additives. With this
reactivity, it is possible to obtain various chiral polycyclic N-heteroaromatic compounds
and complex chiral molecules.
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Scheme 15. Sequential three-component dearomatizing reaction for the construction of chiral hy-
droisoquinolines and hydropyridines.

In 2022, Reisman and coworkers presented an unprecedented bioinspired dearomative
annulation between pyridine and glutaryl chloride that resulted in the first total synthesis of
the lupin alkaloid (−)-sophoridine (69), and the shortest syntheses of other alkaloids such
as (+)-isomatrine (66), (+)-matrine (71), (+)-allomatrine (70), and (+)-isosophoridine (68) to
date [52]. The (+)-Matrine (71) and (+)-isomatrine (66) are tetracyclic alkaloids suggested to
derive from three molecules of (−)-lysine via the intermediacy of the unstable cyclic imine
∆1-piperidine (Scheme 16). Reisman et al. envisioned that pyridine could serve as a stable,
inexpensive synthon for ∆1-piperidine, and the remaining five carbons of the tetracyclic
matrine framework could derive from glutaryl chloride 58, proposing a dearomative
annulation via a bis-acylpyridinium salt to form a tetracycle. The reaction between the
pyridine and glutaryl chloride in CH2Cl2 yielded the (±)-tetracycle 64 with a 62% yield
on a 10 g scale (a one mole scale reaction was also performed). The (±)-tetracycle 64 was
subjected to single-crystal X-ray diffraction confirming the syn-syn relative stereochemistry.
The 1H NMR analysis showed a possible equilibrium between bis-acylpyridinium salt 59
(dominant at −40 ◦C) and the acid chloride resulting from monocyclization 62 (dominant
at 25 ◦C). Computational investigations revealed that the lowest-energy transition state for
the first cyclization step involved a boat-like conformation to form the syn isomer. The final
deprotonation step was found to be the selectivity-determining step, favoring the formation
of syn-syn (±)-tetracycle 64 over the anti-anti, despite being thermodynamically less stable.
This result was consistent with the experimental observation of (±)-tetracycle as the sole
diastereomer, despite the initial mixture of monocyclization products. Hydrogenation of
(±)-tetracycle 64 and the following reduction with alane generated (±)-isomatridine (65) in
60% yield over two steps. The resolution of diamine (±)-isomatridine 65 was performed
via recrystallization of the di-p-toluoyl tartaric acid salt (24% recovery, 90% ee) of the (+)-
diamine isomatridine. The isomerization of (+)-isomatrine (66) was achieved with Rh/C
obtaining (+)-matrine (71) (32% yield), while (+)-allomatrine (70) was obtained in 83%
yield with Pd/C. Isomerization with Pt/C obtained (+)-isosophoridine (68) in 55% yield.
The use of PtO2 at 98 ◦C for 15 min allowed for the obtainment of (−)-sophoridine (69) in
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10% yield. When the reaction with PtO2 was conducted at 80 ◦C for 24 h, the (−)-isomer of
an unnatural product (67) was isolated in 40% yield (Scheme 13).
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Scheme 16. Total synthesis of (+)-isomatrine and isomerization of (+)-isomatrine to additional
matrine-type lupin alkaloids.

Another extremely peculiar method for the asymmetric dearomatization of activated
pyridines for the preparation of stereo-defined 3- and 3,4-substituted piperidines is pre-
sented by Turner and coworkers [53]. This chemo-enzymatic approach exploits a stereose-
lective one-pot amine oxidase/ene imine reductase cascade combining the mild chemical
reduction of pyridiniums to tetrahydropyridines (THPs) with the stereoselectivity of a bio-
catalytic cascade to reduce the C=C bond. The biocatalytic oxidation with an amine oxidase
(AmOx) of the THP (73) in situ generates the corresponding dihydropyridiniums (DHPs)
(74), creating an activated C=C bond conjugated to the C=N bond, which is then reduced
with the biocatalyst to generate a cascade reaction to obtain piperidines (75) (Scheme 17).
The conversion of a series of substituted N-alkyl THPs (obtained by the reduction of ac-
tivated pyridines (72) with NaBH4) into piperidines using AmOxs in combination with
EREDs or EneIREDs was screened; the authors found that the 6-hydroxy-D-nicotine oxidase
(6-HDNO) variant, E350L/E352D, is effective with a broad substrate scope in the oxidation
step. For the reduction of the C=C bond of the α,β-unsaturated iminium ion, the EneIRED
from an unidentified Pseudomonas sp., in combination with 6-HDNO, reduced a wide
number of THPs generating piperidines in good yield and with excellent enantioselectivity.
By screening the metagenomic IRED collection, in combination with the 6-HDNO variant,
the authors identified the biocatalysts capable of generating either enantiomer of piperidine
from the THP allowing for the division of EneIREDs into two groups depending on the
chirality of the obtained piperidines. Enzymes in both series showed a broad tolerance for
aryl substituents at the C-3-position of the THP scaffold, moreover, a variety of N-alkyl
substituents were accepted. Even hindered 3,4-disubstitituted THPs and a combination
of alkyl and aryl substituents at C-3 and C-4 could be reduced with the formation of cys
(75b) or trans (75a) piperidines dependent on the kind of substituents on the scaffold. This
cascade reaction was applied to the synthesis of a precursor of Niraparib, a PARP inhibitor
for the treatment of ovarian cancer.
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3. Dearomative Substitution at Nucleophilic Pyridine Nitrogen

The stereoselective dearomatization of the pyridine nucleus can also occur by means
of pyridine derivatives that behave as nucleophiles at the nitrogen. This kind of approach,
that has come to the fore more recently, can be declined in several ways. A fundamental
tract of this reactivity relies on the use of 2-substituted pyridine derivatives and often
allows straightforward access to N-substituted 2-pyridones, which are important structural
motifs found in natural products and APIs such as pirfenidone, doravirine and palbo-
ciclib [8,9,54–58]. Traditional methods for the synthesis of N-substituted pyridones are
plagued by the ambident nucleophilic nature of 2-pyridones. Despite the recent consider-
able progress, the selective N-alkylation is still problematic especially when it is necessary
to introduce a branched alkyl chain comprising a chiral center α to the nitrogen as is present
in compounds shown in Figure 2 which possess interesting pharmacological properties.
The synthesis of these compounds has so far relied upon the formation of a pyridine ring
starting from chiral amines.
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Figure 2. Examples of biologically active chiral 2-pyridones.

Recently, several elegant direct approaches to obtaining chiral 2-pyridones in an
asymmetric fashion have been developed featuring intramolecular and intermolecular
reactivity generally starting from 2-substituted pyridines.

3.1. Intramolecular Dearomative Reactions of 2-Substituted Pyridines

In a seminal paper, Batey and coworkers reported an enantioselective palladium(II)-
catalyzed formal [3.3]-sigmatropic rearrangement strategy of 2-allyloxypyridines 76 [59].
In the optimized reaction conditions, planar chiral Pd(II) complex (S)-COP-Cl (5 mol%) and
AgOCOCF3 (10 mol%) at 45 ◦C in DCM were applied toward the rearrangement of a variety
of allyloxypyridines 76 that can be easily obtained by microwave-assisted nucleophilic
aromatic substitution reactions (Scheme 18). Both (E)- and (Z)-pyridine substrates rear-
ranged to the corresponding chiral 2-pyridones 77 with good yields and enantioselectivity
up to 90%. The only limitation was given by particularly hindered substrates (R = Chx, no
reaction) or (R = Ph, 30% yield).
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Scheme 18. Rearrangement of substituted 2-allyloxypyridines into chiral 2-pyridones.

On the other hand, suprafacial [1,3]-sigmatropic rearrangements that are thermally
disallowed can be promoted starting from 2-benzyloxypyridine derivatives using Ru [60]
and Ir catalysts [61] at elevated temperatures (80–135 ◦C). A very particular enantioselective
O- to N-[1,3]-rearrangement occurring at temperature as low as −40 ◦C has been reported
by Cordier and coworkers, making use of chiral copper complexes of diphosphine as
catalysts (Scheme 19) [62]. In this way, starting from racemic 2-propargyloxypyridines 78 it
is possible to obtain enantioenriched N-propargylic 2-pyridones 79 with ee’s up to 95%.
In depth mechanistic investigations showed the likely intervention of bimetallic copper-
acetylides in which coordination to the pyridyl nitrogen represents a crucial interaction.
From a synthetic perspective, an important limitation is given by the requirement of
two nitro substituents on the starting pyridine.
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Scheme 19. Copper-catalyzed enantioconvergent formal [1,3]-rearrangement of 2-propargyloxypyridines.

Another way to exploit the nucleophilic character of the pyridine nitrogen in an
intramolecular dearomative stereoselective fashion relies on the presence of an allylic
leaving group at a suitable distance. You and coworkers reported a direct asymmetric
dearomatization of pyridine derivatives and related heterocycles (pyrazines, quinolines,
isoquinolines) by an iridium-catalyzed allylic amination reaction of a pendant allylic
carbonate [63,64]. Key to success are: (i) the iridium-catalyzed oxidative addition to the
allylic carbonate (ii) the presence of an EWG (ester or ketone in the R2 position) then the
acidic Ha is deprotonated by the liberated methoxy anion, as shown in Scheme 20.

By employing this method, a series of 2,3-dihydroindolizines 80 were easily prepared
in high yields and enantioselectivities.

The catalytic asymmetric dearomatization of (nucleophilic) pyridine derivatives have
been recently used for an unprecedented intramolecular atroposelective cycloisomerization
to axially chiral arylquinolizones 82 (Scheme 21) [65]. A positive interplay between the
chiral copper-phosphoramidite catalyst L5 and a chiral Brønsted acid such as (R)-CPA L6
was found in the optimized reaction conditions. From the mechanistic study made by the
authors it seems that the copper-catalyst plays a role in controlling the stereoselectivity
while the Brønsted acid is necessary to promote the reactivity via coordination to the oxygen
of the carbonyl group.
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3.2. Intermolecular Dearomative Reactions of (2-Hydroxy)Pyridines

The intermolecular reactivity of 2-hydroxypyridine is complicated by the existence
of a tautomeric equilibrium with 2-pyridone. Therefore, the N vs. O selectivity of the
electrophilic alkylation of this equilibrating nucleophile can be fundamentally problematic.
Moreover, pyridones are known as good ligands for transition metal catalysts [66] making
transition-metal-catalyzed asymmetric amination more challenging. In a seminal paper
in this field, Breit and coworkers demonstrated the prominent role of the more acidic
2-hydroxypyridine tautomer undergoing a rhodium-catalyzed addition to allenes under
neutral conditions to initially give a kinetic O-allylation product 83 that was finally con-
verted into the thermodynamically more stable N-allyl 2-pyridone 84 in high yield and ee’s
up to 98% (Scheme 22) [67].
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Scheme 22. Asymmetric Rh-catalyzed addition of 2-pyridones to allenes.

Soon after, the You group reported an iridium-catalyzed intermolecular asymmetric
allylic amination of 2-hydroxypyridine with allylic carbonates [68]. Importantly, the reac-
tion did not occur at all in the absence of a base, with Cs2CO3 (40 mol%) showing the best
results. The best substrates were aryl allylic carbonates whereas aliphatic allylic carbonates
were much less selective in terms of chemoselectivity and regioselectivity. For example, for
R2 = nPr a N/O = 86/14 and a regioselectivity ratio of 75/25 between branched and linear
products of type 77 and 85 were achieved (Scheme 23).
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Scheme 23. Iridium-catalyzed intermolecular asymmetric allylic amination of 2-hydroxypyridine
with allylic carbonates.

A further evolution of this chemistry is based on in situ isomerization of the enan-
tioenriched allylic product by an organic base such as DBU to give axially chiral enamides
via a “one-pot” two-steps process [69].

In order to overcome the natural tendency of palladium-catalyzed allylic substitution
reactions to give linear achiral products, Zhang and coworkers exploited the hydrogen-
bond interactions between nucleophilic 2-hydroxypyridine and allylpalladium interme-
diates [70]. In the optimized reaction conditions, hydroxyl-containing allylic carbonates
were allowed to react with 2-hydroxypyridines in the presence of palladium complexes
with Feringa’s phosphoramidite L6 to give N-substituted 2-pyridones 86 with complete
chemo- and regioselectivity and good to high enantioselectivities. A poor branch selectivity
was obtained when using methoxy allylic carbonate or 4-hydroxypyridine (Scheme 24).
The authors also demonstrated that initial O-alkylation followed by rearrangement (as
previously described for the related Rh-catalyzed procedure) is unlikely to be involved.
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Scheme 24. Palladium-catalyzed asymmetric allylation of 2-hydroxypyridines.

A related approach using vinyl cyclic carbonates as the electrophilic partner was
developed subsequently by Khan and coworkers [71]. As allylic carbonates had already
been described as competent electrophiles capable of directing reactivity via secondary
hydrogen-bond interactions [70], the real novelty of this article is the possibility of obtaining
a variety of tertiary allylic-2-pyridones 87 containing a quaternary stereogenic center with
moderate to good yields and very high enantioselectivities. The best results were this time
achieved using Pd(0)/DACH-naphthyl Trost-type ligand L7 (Scheme 25).
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A very particular approach to obtaining α-substituted chiral substituted piperidines
and tetrahydropyridines in non-racemic form makes use of the pyridine quaternary salts
formed in situ from pyridines and haloacetamides as nucleophiles (Scheme 26) [72]. A
palladium-catalyzed allylic alkylation using allylic carbonates in the presence of a catalytic
amount (6 mol%) of chiral ferrocenyl phosphine ligand L8 generated the corresponding
pyridinium salt 88 with high yields and enantioselectivities. The subsequent dearomatizing
reduction can be carried out with Raney Ni to give the corresponding chiral piperidines 89
or with NaBH4 resulting in chiral tetrahydropyridines 90.
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Scheme 26. Palladium-catalyzed allylic substitution cascade.

The inherent preferential for O- over N-reactivity of 2-hydroxypyridines with diazo
compounds can be overcome by the use of 2-O-substituted pyridines such as O-Boc pyridine
in the presence of rhodium catalysts. In this way, the in situ formation of pyridinium ylide
of the general structure 91 followed by the 1,4-acyl rearrangement deliver N-substituted
2-pyridones 92 (Scheme 27a). Based on these results, an asymmetric version of the reaction
was developed by the use of 1 mol% of Rh2(S-TCPTTL)4 L9 on a range of substrates. Beyond
Boc as the R2 group, the amide group was also applicable to the reaction with slightly lower
yields and enantioselectivities (Scheme 27b) [73].

As this protocol was limited to stabilized diazo compounds bearing EWG groups,
the same research group also reported a chemo- and enantioselective insertion of furyl
carbenes generated in situ from readily available enynones using the same chiral dirhodium
complexes (Scheme 28) [74].

The authors showed by means of DFT calculations that the reaction proceeded
through enantioselective pyridinium ylide formation and sequential 1,4-proton transfer
with steric repulsion and π-π interaction in the catalyst pocket accounting for the
chemo- and enantioselectivity.
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In a completely different approach, chiral N-substituted 2-pyridones of type 94 were
prepared by an enantioselective aza-Michael addition of halogenated 2-hydroxypyridines to
α,β-unsaturated-1,4-diketones or 1,4-ketoester catalyzed by squaramide cinchona alkaloids
such as C4 [75]. The main limitations of this method are given by the necessary use of
halogenated 2-hydroxypyridines and by the (E)-stereochemistry of the Michael acceptor in
order to obtain high yields and enantioselectivities (Scheme 29).
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3.3. Intermolecular Reactions of 4-Hydroxypyridines

4-Hydropyridines and tautomeric 4-pyridones are versatile building blocks for the
synthesis of alkaloid natural products and medicinally relevant molecules. In particular,
direct asymmetric synthetic routes to N-alkylated 4-pyridones bearing a stereocenter α

to the nitrogen atom have not been much explored mainly due competing N- and O-
alkylation processes and their low nucleophilicity and chelating properties. You and
coworkers recently reported a copper-catalyzed intermolecular propargylic amination of
4-hydroxypyridines to give N-alkylated derivatives 95 (Scheme 30) [76].
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The authors rationalize the stereocontrol of the asymmetric process with an edge-
to-face interaction between the copper allenylidene and fluorobenzene ring of the Pybox
ligand L10. The main limitations of the methods are related to the non-reactivity of the
aliphatic propargylic substrate and very long reaction times at the cryogenic conditions
(−40 ◦C) necessary to obtain high enantioselectivity.

Building on previous observations (Scheme 22), Breit and coworkers extended the
rhodium-catalyzed addition to terminal allenes using 4-hydroxypyridines as the nucle-
ophilic partner. The reaction showed complete chemoselectivity towards N-allylated
pyridones of type 96 which were obtained with high enantioselectivities although the
regioselectivity (branch/linear) was not complete (Scheme 31) [77]. Switching the catalyst
to a Pd/dppf [dppf = 1,1′-bis(diphenylphosphino)ferrocene] system determined a complete
reversal of regioselectivity in favor of the achiral linear E-alkene isomer of type 97.
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A noteworthy extension of the allylic partner to allylic alcohols in asymmetric allylic
amination with pyridines was described by You and coworkers. The catalyst system was
made by an iridium complex with Carreira’s [P/olefin] ligand L12 with the necessary inclu-
sion of a Lewis acid such as Zn(OTf)2. The reaction obtained the corresponding allylated
pyridines of type 98 with excellent chemo-, regio- and enantioselectivities (>19:1 N/O,
>19/1 branch/linear and ≥89% ee) (Scheme 32) [78].
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4. Conclusions

The possibility of building up complex molecules starting from easily available
pyridines via the dearomatization reaction has come to the fore in recent years as a
particularly versatile approach. In this article we have summarized the catalytic and
stereoselective synthesis of partially hydrogenated pyridines and of pyridones via the
dearomative reactions of pyridine derivatives up to mid-2023. Traditionally, due to its
scarce reactivity, activation of the pyridine nucleus by N-functionalization is required to
efficiently perform a nucleophilic addition. As regards this more frequently encountered
approach, our paper complements and updates previous review articles published in the
last decade [4,10,11]. On the other hand, we also report a collection of examples based
on a less explored complementary strategy where the stereoselective dearomatization
occurs by means of pyridine derivatives that behave as nucleophiles at the nitrogen
site. So far, this more recent strategy has been mostly developed on 2-substituted
pyridine derivatives leveraging inter- and intra-molecular allylic amination reactions or
sigmatropic rearrangements to create chiral 2-pyridones.

Overall, the hydropyridines obtained through dearomatization reactions are valuable
products in consideration of the role that such heterocyclic derivatives have in medicinal
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drugs. Moreover, the further elaboration of hydropyridines in particular by cycloaddition
reactions can offer the possibility to prepare novel stereochemically complex sp3-rich aza-
heterocyclic scaffolds, creating new inputs and solutions in medicinal chemistry programs
aimed at the discovery of new bioactive molecules and novel mechanisms of action.

Funding: This research was funded by the University of Pisa.

Acknowledgments: The article processing charge was sponsored by MDPI.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ding, Q.; Zhou, X.; Fan, R. Recent advances in dearomatization of heteroaromatic compounds. Org. Biomol. Chem. 2014,

12, 4807–4815. [CrossRef] [PubMed]
2. Zheng, C.; You, S.-L. Advances in Catalytic Asymmetric Dearomatization. ACS Cent. Sci. 2021, 7, 432–444. [CrossRef] [PubMed]
3. Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen

Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–11027. [CrossRef] [PubMed]
4. Comins, D.L.; Higuchi, K.; Young, D.W. Dihydropyridine Preparation and Application in the Synthesis of Pyridine Derivatives.

Adv. Heterocycl. Chem. 2013, 110, 175.
5. Menichetti, A.; Berti, F.; Pineschi, M. Nitroso Diels-Alder cycloadducts derived from N-acyl-1,2-dihydropyridines as a new

platform to molecular diversity. Molecules 2020, 25, 563. [CrossRef]
6. Berti, F.; Menichetti, A.; Favero, L.; Marchetti, F.; Pineschi, M. Regio- and stereodivergent allylic reductions of bicyclic piperidine

enecarbamate derivatives. J. Org. Chem. 2018, 83, 12221–12228. [CrossRef]
7. Berti, F.; Menichetti, A.; Di Bussolo, V.; Favero, L.; Pineschi, M. Synthesis of bicyclic piperidinyl enamides and enecarbamates by

hetero-Cope rearrangement of nitroso cycloadducts. Chem. Heterocycl. Compd. 2018, 54, 458–468. [CrossRef]
8. Shang, Y.; Wu, C.; Gao, Q.; Liu, C.; Li, L.; Zhang, X.; Cheng, H.-G.; Liu, S.; Zhou, Q. Diversity-oriented functionalization of

2-pyridones and uracils. Nat. Commun. 2021, 12, 2988. [CrossRef]
9. Wu, Y.-B.; Wu, Y.-Z.; Wu, J.; Jiang, H.; Chang, W.-W.; Ma, C.-Y. Copper-Catalyzed Regioselective Coupling of Tosylhydrazones

and 2-Pyridones: A Strategy for the Production of N-alkylated Compounds. J. Org. Chem. 2021, 86, 6918–6926. [CrossRef]
10. Bull, J.A.; Mosseau, J.J.; Pelletier, J.; Charette, A.B. Synthesis of pyridine and dihydropyridine derivatives by regio- and

stereoselective addition to N-activated pyridines. Chem. Rev. 2012, 112, 2642–2713. [CrossRef]
11. Bertuzzi, G.; Bernardi, L.; Fochi, M. Nucleophilic Dearomatization of Activated Pyridines. Catalysts 2018, 8, 632. [CrossRef]
12. Wagener, T.; Lüchemeier, L.; Daniliuc, C.G.; Glorius, F. Interrupted Pyridine Hydrogenation: Asymmetric Synthesis of δ-Lactams.

Angew. Chem. Int. Ed. 2021, 60, 6425–6429. [CrossRef]
13. Wu, J.; Chen, Z.; Barnard, J.H.; Gunasekar, R.; Pu, C.; Wu, X.; Zhang, S.; Ruan, J.; Xiao, J. Synthesis of chiral piperidines from

pyridinium salts via rhodium-catalysed transfer hydrogenation. Nat. Catal. 2022, 5, 982–992. [CrossRef]
14. Glorius, F. Asymmetric hydrogenation of aromatic compounds. Org. Biomol. Chem. 2005, 3, 4171–4175. [CrossRef] [PubMed]
15. Zhou, Y.G. Asymmetric Hydrogenation of Heteroaromatic Compounds. Acc. Chem. Res. 2007, 40, 1357–1366. [CrossRef]
16. Yu, J.; Shi, F.; Gong, L.-Z. Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly

Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc. Chem. Res. 2011, 44, 1156–1171. [CrossRef]
17. Thu Pham, H.; Chataigner, I.; Renaud, J.L.; New approaches to nitrogen-containing heterocycles. Enantioselective organocatalyzed

synthesis of dihydropyridines (DHP’s), quinolizidine derivatives and dihydropyrimidines (DHPM’s). Curr. Org. Chem. 2012,
16, 1754–1775. [CrossRef]

18. Jiang, X.; Wang, R. Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction. Chem. Rev.
2013, 113, 5515–5546. [CrossRef] [PubMed]

19. Wu, W.T.; Zhang, L.; You, S.L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives.
Chem. Soc. Rev. 2016, 45, 1570–1580. [CrossRef] [PubMed]

20. Ichikawa, E.; Suzuki, M.; Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. New Entries in Lewis Acid–Lewis Base Bifunc-
tional Asymmetric Catalyst: Catalytic Enantioselective Reissert Reaction of Pyridine Derivatives. J. Am. Chem. Soc. 2004,
126, 11808–11809. [CrossRef] [PubMed]

21. Sun, Z.; Yu, S.; Ding, Z.; Ma, D. Enantioselective Addition of Activated Terminal Alkynes to 1-Acylpyridinium Salts Catalyzed by
Cu–Bis(oxazoline) Complexes. J. Am. Chem. Soc. 2007, 129, 9300–9301. [CrossRef]

22. Black, D.A.; Beveridge, R.E.; Arndtsen, B.A. Copper-Catalyzed Coupling of Pyridines and Quinolines with Alkynes: A One-Step,
Asymmetric Route to Functionalized Heterocycles. J. Org. Chem. 2008, 73, 1906–1910. [CrossRef]

23. Christian, N.; Aly, S.; Belyk, K. Rhodium-Catalyzed Enantioselective Addition of Boronic Acids to N-Benzylnicotinate Salts.
J. Am. Chem. Soc. 2011, 133, 2878–2880. [PubMed]

24. Lutz, J.P.; Chau, S.T.; Doyle, A.G. Nickel-catalyzed enantioselective arylation of pyridine. Chem. Sci. 2016, 7, 4105–4109. [CrossRef]
25. García Mancheño, O.; Asmus, S.; Zurro, M.; Fischer, T. Highly Enantioselective Nucleophilic Dearomatization of Pyridines by

Anion-Binding Catalysis. Angew. Chem. Int. Ed. 2015, 54, 8823–8827. [CrossRef] [PubMed]

https://doi.org/10.1039/C4OB00371C
https://www.ncbi.nlm.nih.gov/pubmed/24875150
https://doi.org/10.1021/acscentsci.0c01651
https://www.ncbi.nlm.nih.gov/pubmed/33791426
https://doi.org/10.1021/jm501100b
https://www.ncbi.nlm.nih.gov/pubmed/25255204
https://doi.org/10.3390/molecules25030563
https://doi.org/10.1021/acs.joc.8b01601
https://doi.org/10.1007/s10593-018-2289-8
https://doi.org/10.1038/s41467-021-23058-3
https://doi.org/10.1021/acs.joc.1c00009
https://doi.org/10.1021/cr200251d
https://doi.org/10.3390/catal8120632
https://doi.org/10.1002/anie.202016771
https://doi.org/10.1038/s41929-022-00857-5
https://doi.org/10.1039/b512139f
https://www.ncbi.nlm.nih.gov/pubmed/16294244
https://doi.org/10.1021/ar700094b
https://doi.org/10.1021/ar2000343
https://doi.org/10.2174/138527212802651322
https://doi.org/10.1021/cr300436a
https://www.ncbi.nlm.nih.gov/pubmed/23521039
https://doi.org/10.1039/C5CS00356C
https://www.ncbi.nlm.nih.gov/pubmed/26796922
https://doi.org/10.1021/ja045966f
https://www.ncbi.nlm.nih.gov/pubmed/15382912
https://doi.org/10.1021/ja0734849
https://doi.org/10.1021/jo702293h
https://www.ncbi.nlm.nih.gov/pubmed/21309573
https://doi.org/10.1039/C6SC00702C
https://doi.org/10.1002/anie.201502708
https://www.ncbi.nlm.nih.gov/pubmed/26111052


Molecules 2023, 28, 6186 29 of 30

26. Bertuzzi, G.; Sinisi, A.; Caruana, L.; Mazzanti, A.; Fochi, M.; Bernardi, L. Catalytic Enantioselective Addition of Indoles to
Activated N-Benzylpyridinium Salts: Nucleophilic Dearomatization of Pyridines with Unusual C-4 Regioselectivity. ACS Catal.
2016, 6, 6473–6477. [CrossRef]

27. Flanigan, D.M.; Rovis, T. Enantioselective N-heterocyclic carbene-catalyzed nucleophilic dearomatization of alkyl pyridiniums.
Chem. Sci. 2017, 8, 6566–6569. [CrossRef] [PubMed]

28. Di Carmine, G.; Ragno, D.; Bortolini, O.; Giovannini, P.P.; Mazzanti, A.; Massi, A.; Fogagnolo, M. Enantioselective Dearomatization of
Alkylpyridiniums by N-Heterocyclic Carbene-Catalyzed Nucleophilic Acylation. J. Org. Chem. 2018, 83, 2050–2057. [CrossRef] [PubMed]

29. Bertuzzi, G.; Sinisi, A.; Pecorari, D.; Caruana, L.; Mazzanti, A.; Bernardi, L.; Fochi, M. Nucleophilic Dearomatization of Pyridines
under Enamine Catalysis: Regio-, Diastereo-, and Enantioselective Addition of Aldehydes to Activated N-Alkylpyridinium Salts.
Org. Lett. 2017, 19, 834–837. [CrossRef]

30. Wang, D.; Wang, Z.; Liu, Z.; Huang, M.; Hu, J.; Yu, P. Strategic C-C Bond-Forming Dearomatization of Pyridines and Quinolines.
Org. Lett. 2019, 21, 4459–4463. [CrossRef]

31. Guo, Y.; Reis, M.C.; Kootstra, J.; Harutyunyan, S.R. Enantioselective Catalytic Dearomative Addition of Grignard Reagents to
4-Methoxypyridinium Ions. ACS Catal. 2021, 11, 8476–8483. [CrossRef] [PubMed]

32. Somprasong, S.; Reis, M.C.; Harutyunyan, S.R. Catalytic Access to Chiral δ-Lactams via Nucleophilic Dearomatization of Pyridine
Derivatives. Angew. Chem. Int. Ed. 2023, 62, e202217328. [CrossRef] [PubMed]

33. Parkinson, E.I.; Hergenrother, P.J. Runaway ROS as a Selective Anticancer Strategy. ChemMedChem 2011, 6, 1957–1959. [CrossRef] [PubMed]
34. Bezerra, D.P.; Pessoa, C.; Odorico de Moraes, M.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic

potential of piplartine (piperlongumine). Eur. J. Pharm. Sci. 2013, 48, 453–463. [CrossRef]
35. Peng, S.; Zhang, B.; Meng, X.; Yao, J.; Fang, J. Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid

2-Related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents. J. Med. Chem. 2015, 58, 5242–5255. [CrossRef]
36. Wilde, J.H.; Dickie, D.A.; Harman, W.D. A Highly Divergent Synthesis of 3-Aminotetrahydropyridines. J. Org. Chem. 2020,

85, 8245–8252. [CrossRef]
37. Wilson, K.B.; Smith, J.A.; Nedzbala, H.S.; Pert, E.K.; Dakermanji, S.J.; Dickie, D.A.; Harman, W.D. Highly Functionalized

Cyclohexenes Derived from Benzene: Sequential Tandem Addition Reactions Promoted by Tungsten. J. Org. Chem. 2019,
84, 6094–6116. [CrossRef]

38. Lankenau, A.W.; Iovan, D.A.; Pienkos, J.A.; Salomon, R.J.; Wang, S.; Harrison, D.P.; Myers, W.H.; Harman, W.D. Enantioenrich-
ment of a Tungsten Dearomatization Agent Utilizing Chiral Acids. J. Am. Chem. Soc. 2015, 137, 3649–3655. [CrossRef]

39. Graham, P.M.; Delafuente, D.A.; Liu, W.; Myers, W.H.; Sabat, M.; Harman, W.D. Facile Diels-Alder Reactions with Pyridines
Promoted by Tungsten. J. Am. Chem. Soc. 2005, 127, 10568–10572. [CrossRef]

40. Grigolo, T.A.; Subhit, A.R.; Smith, J.M. Regioselective Asymmetric Alkynylation of N-Alkyl Pyridiniums. Org. Lett. 2021,
23, 6703–6708. [CrossRef]

41. Hashimoto, S.; Yamada, S.; Koga, K. Asymmetric Syntheses Using Tert-Leucine. 1. An Asymmetric Synthesis of Beta-Substituted
Aldehydes via 1,4-Addition of Grignard Reagents to Chiral Alpha,Beta-Unsaturated Aldimines. J. Am. Chem. Soc. 1976, 98,
7450–7452. [CrossRef] [PubMed]

42. Grigolo, T.A.; Smith, J.M. Regiodivergent Asymmetric Pyridinium Additions: Mechanistic Insight and Synthetic Applications.
Chem. Eur. J. 2022, 28, e202202813. [CrossRef] [PubMed]

43. Robinson, D.J.; Spurlin, S.P.; Gorden, J.D.; Karimov, R.R. Enantioselective Synthesis of Dihydropyridines Containing Quaternary
Stereocenters Through Dearomatization of Pyridinium Salts. ACS Catal. 2020, 10, 51–55. [CrossRef]

44. Gribble, M.W., Jr.; Guo, S.; Buchwald, S.L. Asymmetric Cu-Catalyzed 1,4-Dearomatization of Pyridines and Pyridazines without
Preactivation of the Heterocycle or Nucleophile. J. Am. Chem. Soc. 2018, 140, 5057–5060. [CrossRef] [PubMed]

45. Wu, L.; Sheong, F.K.; Lin, Z. DFT Studies on Copper-Catalyzed Dearomatization of Pyridine. ACS Catal. 2020, 10, 9585–9593. [CrossRef]
46. Gribble, M.W., Jr.; Liu, R.Y.; Buchwald, S.L. Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions

in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine. J. Am. Chem. Soc. 2020, 142, 11252–11269. [CrossRef]
47. Mishra, S.; Karabiyikoglu, S.; Fletcher, S.P. Catalytic Enantioselective Synthesis of 3-Piperidines from Arylboronic Acids and

Pyridine. J. Am. Chem. Soc. 2023, 145, 14221–14226. [CrossRef] [PubMed]
48. Yan, R.-J.; Xiao, B.-X.; Ouyang, Q.; Liang, H.-P.; Du, W.; Chen, Y.-C. Asymmetric Dearomative Formal [4 + 2] Cycloadditions of

N,4-Dialkylpyridinium Salts and Enones to Construct Azaspiro [5.5]undecane Frameworks. Org. Lett. 2018, 20, 8000–8003. [CrossRef]
49. Song, X.; Yan, R.-J.; Du, W.; Chen, Y.-C. Asymmetric Dearomative Cascade Multiple Functionalizations of Activated N-

Alkylpyridinium and N-Alkylquinolinium Salts. Org. Lett. 2020, 22, 7617–7621. [CrossRef]
50. McLaughlin, C.; Bitai, J.; Barber, L.J.; Slawin, A.M.Z.; Smith, A.D. Catalytic enantioselective synthesis of 1,4-dihydropyridines via

the addition of C(1)-ammonium enolates to pyridinium salts. Chem. Sci. 2021, 12, 12001–12011. [CrossRef]
51. Pan, G.; He, C.; Chen, M.; Xiong, Q.; Cao, W.; Feng, X. Synthesis of Dihydroisoquinoline and Dihydropyridine Derivatives via

Asymmetric Dearomative Three-Component Reaction. CCS Chem. 2022, 4, 2000–2008. [CrossRef]
52. Kerkovius, J.K.; Stegner, A.; Turlik, A.; Lam, P.H.; Houk, K.N.; Reisman, S.E. A Pyridine Dearomatization Approach to the

Matrine-Type Lupin Alkaloids. J. Am. Chem. Soc. 2022, 144, 15938–15943. [CrossRef] [PubMed]
53. Harawa, V.; Thorpe, T.W.; Marshall, J.R.; Sangster, J.J.; Gilio, A.K.; Pirvu, L.; Heath, R.S.; Angelastro, A.; Finnigan, J.D.; Charnock,

S.J.; et al. Synthesis of stereoenriched piperidines via chemo-enzymatic dearomatization of activated pyridines. J. Am. Chem. Soc.
2022, 144, 21088–21095. [CrossRef]

https://doi.org/10.1021/acscatal.6b01962
https://doi.org/10.1039/C7SC02648J
https://www.ncbi.nlm.nih.gov/pubmed/28989683
https://doi.org/10.1021/acs.joc.7b02996
https://www.ncbi.nlm.nih.gov/pubmed/29338235
https://doi.org/10.1021/acs.orglett.6b03824
https://doi.org/10.1021/acs.orglett.9b01247
https://doi.org/10.1021/acscatal.1c01544
https://www.ncbi.nlm.nih.gov/pubmed/34306813
https://doi.org/10.1002/anie.202217328
https://www.ncbi.nlm.nih.gov/pubmed/36522289
https://doi.org/10.1002/cmdc.201100381
https://www.ncbi.nlm.nih.gov/pubmed/21898834
https://doi.org/10.1016/j.ejps.2012.12.003
https://doi.org/10.1021/acs.jmedchem.5b00410
https://doi.org/10.1021/acs.joc.0c00853
https://doi.org/10.1021/acs.joc.9b00279
https://doi.org/10.1021/jacs.5b00490
https://doi.org/10.1021/ja050143r
https://doi.org/10.1021/acs.orglett.1c02276
https://doi.org/10.1021/ja00439a071
https://www.ncbi.nlm.nih.gov/pubmed/977875
https://doi.org/10.1002/chem.202202813
https://www.ncbi.nlm.nih.gov/pubmed/36098490
https://doi.org/10.1021/acscatal.9b03874
https://doi.org/10.1021/jacs.8b02568
https://www.ncbi.nlm.nih.gov/pubmed/29609461
https://doi.org/10.1021/acscatal.0c01491
https://doi.org/10.1021/jacs.0c04486
https://doi.org/10.1021/jacs.3c05044
https://www.ncbi.nlm.nih.gov/pubmed/37345648
https://doi.org/10.1021/acs.orglett.8b03576
https://doi.org/10.1021/acs.orglett.0c02828
https://doi.org/10.1039/D1SC03860E
https://doi.org/10.31635/ccschem.021.202101060
https://doi.org/10.1021/jacs.2c06584
https://www.ncbi.nlm.nih.gov/pubmed/36006400
https://doi.org/10.1021/jacs.2c07143


Molecules 2023, 28, 6186 30 of 30

54. Pfefferkorn, J.A.; Lou, J.; Minich, M.L.; Filipski, K.J.; He, M.; Zhou, R.; Ahmed, S.; Benbow, J.; Perez, A.-G.; Tu, M.; et al.
Pyridones as glucokinase activators: Identification of a unique metabolic liability of the 4-sulfonyl-2-pyridone heterocycle.
Bioorg. Med. Chem. Lett. 2009, 19, 3247–3252. [CrossRef] [PubMed]

55. Straub, C.S.; Padwa, A. Synthesis of the Angiotensin Converting Enzyme Inhibitor(−)-A58365A via an Isomunchnone Cycloaddi-
tion Reaction. Org. Lett. 1999, 1, 83–85. [CrossRef]

56. Clive, D.L.J.; Coltart, D.M.; Zhou, Y. Synthesis of the Angiotensin-Converting Enzyme Inhibitors (−)-A58365A and (−)-A58365B
from a Common Intermediate. J. Org. Chem. 1999, 64, 1447–1454. [CrossRef]

57. Moeller, K.D.; Wong, P.L. Anodic Amide Oxidation: A Novel Synthesis of the Angiotensin Converting Enzyme Inhibitor A58365A.
Bioorg. Med. Chem. Lett. 1992, 2, 739–742. [CrossRef]

58. Fang, F.G.; Danishefsky, S.J. Total synthesis of the angiotensin-converting enzyme inhibitor A58365A: On the use of pyroglutamate
as a chiral educt. Tetrahedron Lett. 1989, 30, 3621–3624. [CrossRef]

59. Rodrigues, A.; Lee, E.E.; Batey, R.A. Enantioselective Palladium(II)-Catalyzed Formal Rearrangement of 2-Allyloxypyridines and
Related Heterocycles. Org. Lett. 2010, 12, 260–263. [CrossRef]

60. Yeung, C.S.; Hsieh, T.H.H.; Dong, V.M. Ru-catalyzed activation of sp3 C-O bonds: O- to N-alkyl migratory rearrangements in
pyridines and related heterocycles. Chem. Sci. 2011, 2, 544–551. [CrossRef]

61. Pan, S.; Ryu, N.; Shibata, T. Ir(I)-Catalyzed Synthesis of N-Substituted Pyridones from 2-Alkoxypyridines via C–O Bond Cleavage.
Org. Lett. 2013, 15, 1902–1905. [CrossRef] [PubMed]

62. Cheng, L.-J.; Brown, A.P.N.; Cordier, C.J. Enantioselective propargylic [1,3]-rearrangements: Copper-catalyzed O- to N migrations
towards C-N bond formation. Chem. Sci. 2017, 8, 4299–4305. [CrossRef] [PubMed]

63. Yang, Z.P.; Wu, Q.-F.; You, S.-L. Direct Asymmetric Dearomatization of Pyridines and Pyrazines by Iridium-Catalyzed Allylic
Amination reactions. Angew. Chem. Int. Ed. 2014, 53, 6986–6989. [CrossRef] [PubMed]

64. Yang, Z.-P.; Wu, Q.-F.; Shao, W.; You, S.-L. Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization Reaction of
Pyridines, Pyrazines, Quinolines, and Isoquinolines. J. Am. Chem. Soc. 2015, 137, 15899–15906. [CrossRef]

65. Min, X.-L.; Zhang, X.-L.; Yi, W.; He, Y. Brønsted acid-enhanced copper-catalyzed atroposelective cycloisomerization to axially
chiral arylquinolizones via dearomatization of pyridine. Nat. Commun. 2022, 13, 373. [CrossRef] [PubMed]

66. Goncalves, T.P.; Dutta, I.; Huang, K.-W. Aromaticity in catalysis: Metal ligand cooperation via ligand dearomatization and
rearomatization. Chem. Commun. 2021, 57, 3070–3082. [CrossRef] [PubMed]

67. Li, C.; Kähny, M.; Breit, B. Rhodium-Catalyzed Chemo-, Regio-, and Enantioselective Addition of 2-Pyridones to Terminal Allenes.
Angew. Chem. Int. Ed. 2014, 53, 13780–13784. [CrossRef] [PubMed]

68. Zhang, X.; Yang, Z.-P.; Huang, L.; You, S.-L. Highly Regio- and Enantioselective Synthesis of N-substituted 2-Pyridones:
Iridium-Catalyzed Intermolecular Asymmetric Allylic Amination. Angew. Chem. Int. Ed. 2015, 54, 1873–1876. [CrossRef]

69. Sun, C.; Qi, X.; Min, X.-L.; Bai, X.-L.; Liu, P.; He, Y. Asymmetric allylic substitution-isomerization to axially chiral enamides via
hydrogen-bonding assisted central-to-axial chirality transfer. Chem. Sci. 2020, 11, 10119–10126. [CrossRef]

70. Khan, S.; Shah, B.H.; Kan, I.; Li, M.; Zhang, Y.J. Pd-catalyzed regio- and enantioselective allylic substitution with 2-pyridones.
Chem. Commun. 2019, 55, 13168–13171. [CrossRef]

71. Wang, Y.; Xu, Y.; Khan, S.; Zhang, Z.; Khan, A. Selective approach to N-substituted tertiary 2-pyridones. New J. Chem. 2022,
46, 11138–11142. [CrossRef]

72. Yao, K.; Yuan, Q.; Qu, X.; Liu, Y.; Liu, D.; Zhang, W. Pd-catalyzed asymmetric allylic substitution cascade using α-(pyridine-1-yl)-
acetamides formed in situ as nucleophiles. Chem. Sci. 2019, 10, 1767–1772. [CrossRef] [PubMed]

73. Xu, G.; Chen, P.; Liu, P.; Tang, S.; Zhang, X.; Sun, J. Access to N-Substituted 2-Pyridones by Catalytic Intermolecular Dearomatiza-
tion and 1,4-Acyl Transfer. Angew. Chem. Int. Ed. 2019, 58, 1980–1984. [CrossRef]

74. Wang, K.; Liu, Z.; Xu, G.; Shao, Y.; Tang, S.; Chen, P.; Zhang, X.; Sun, J. Chemo- and Enantioselective Insertion of Furyl Carbene
into the N-H bond of 2-Pyridones. Angew. Chem. Int. Ed. 2021, 60, 16942–16946. [CrossRef] [PubMed]

75. Wu, Y.-C.; Jhong, Y.; Lin, H.-J.; Swain, S.P.; Tsai, H.-H.G.; Hou, D.-R. Organocatalyzed enantioselective Michael addition of
2-hydroxypyridines and α,β-unsaturated 1,4-dicarbonyl compounds. Adv. Synth. Catal. 2019, 361, 4966–4982. [CrossRef]

76. Shao, W.; Wang, Y.; Yang, Z.-P.; Zhang, X.; You, S.-L. Efficient Synthesis of N-Alkylated 4-Pyridones by Copper-Catalyzed
Intermolecular Asymmetric Propargylic Amination. Chem. Asian. J. 2018, 13, 1103–1107. [CrossRef] [PubMed]

77. Schmidt, J.P.; Li, C.; Breit, B. Transition-Metal-Catalyzed Regiodivergent and Stereoselective Access to Branched and Linear
Allylated 4-Pyridones. Chem. Eur. J. 2017, 23, 6531–6534. [CrossRef]

78. Tu, H.-F.; Nie, Y.-H.; Zheng, C.; You, S.-L. Iridium-Catalyzed Intermolecular Asymmetric Allylic Amination with Pyridones.
Adv. Synth. Catal. 2022, 364, 3432–3437. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bmcl.2009.04.107
https://www.ncbi.nlm.nih.gov/pubmed/19435665
https://doi.org/10.1021/ol9905497
https://doi.org/10.1021/jo9822941
https://doi.org/10.1016/S0960-894X(00)80403-5
https://doi.org/10.1016/S0040-4039(01)80464-0
https://doi.org/10.1021/ol9025759
https://doi.org/10.1039/C0SC00498G
https://doi.org/10.1021/ol400557z
https://www.ncbi.nlm.nih.gov/pubmed/23540513
https://doi.org/10.1039/C7SC01042G
https://www.ncbi.nlm.nih.gov/pubmed/29081964
https://doi.org/10.1002/anie.201404286
https://www.ncbi.nlm.nih.gov/pubmed/24861469
https://doi.org/10.1021/jacs.5b10440
https://doi.org/10.1038/s41467-022-27989-3
https://www.ncbi.nlm.nih.gov/pubmed/35042873
https://doi.org/10.1039/D1CC00528F
https://www.ncbi.nlm.nih.gov/pubmed/33656025
https://doi.org/10.1002/anie.201407935
https://www.ncbi.nlm.nih.gov/pubmed/25298286
https://doi.org/10.1002/anie.201409976
https://doi.org/10.1039/D0SC02828B
https://doi.org/10.1039/C9CC07482A
https://doi.org/10.1039/D2NJ01065H
https://doi.org/10.1039/C8SC04626C
https://www.ncbi.nlm.nih.gov/pubmed/30842843
https://doi.org/10.1002/anie.201812937
https://doi.org/10.1002/anie.202104708
https://www.ncbi.nlm.nih.gov/pubmed/34038015
https://doi.org/10.1002/adsc.201900997
https://doi.org/10.1002/asia.201800373
https://www.ncbi.nlm.nih.gov/pubmed/29542867
https://doi.org/10.1002/chem.201701382
https://doi.org/10.1002/adsc.202200347

	Introduction 
	Catalytic Stereoselective Dearomatization of Pyridine Scaffolds with Nucleophiles 
	Metal Catalysts 
	Grignard Reagents 
	Boronic Acids 
	Alkenes 
	Miscellaneous 

	Organocatalysis 

	Dearomative Substitution at Nucleophilic Pyridine Nitrogen 
	Intramolecular Dearomative Reactions of 2-Substituted Pyridines 
	Intermolecular Dearomative Reactions of (2-Hydroxy)Pyridines 
	Intermolecular Reactions of 4-Hydroxypyridines 

	Conclusions 
	References

