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Abstract: A green, fast and selective approach for the synthesis of mono-substituted closo-decaborate
derivatives [2-B1gHoCOR]?~ has been established via a nucleophilic addition reaction between the
carbonyl derivative of closo-decaborate [2-B1gHoCO]~ and the corresponding Grignard reagent
RMgX, where R is the ethyl, iso-propyl, pentyl, allyl, vinyl and propynyl groups. This approach
is accomplished under mild conditions with 70-80% yields. The significance of these derivative is
their ability to constitute building blocks for polymeric integration via the allyl, vinyl and propynyl
substituents. All products were characterized by !'B, 'H and 3C NMR, elemental analysis and
mass spectrometry.
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1. Introduction

The closo-borate anions [B,Hp >~ (n = 6-12), particularly the closo-decaborate [BioH10l>~,
represent one of the most multifaceted and appealing compounds in polyhedral
architecture [1-3]. Their physiochemical properties, such as thermodynamic stability [4],
electrochemical properties [5,6], three-dimensional aromaticity [3], modulated biological
compatibility [7,8], as well as their tunable hydrophobicity have encouraged their integra-
tion in a wide spectrum of applications ranging from metal complexation [9], medicine [7]
and catalysis [10] to material sciences [11-13], solid-state batteries [14-16] and hydrogen
storage [17,18]. Functionalized or derivatized compounds of the polyhedral boron clus-
ters are often regarded as versatile and circumventive building blocks, particularly in
the biomedical field. Indeed, the pharmacological aptitudes of these three-dimensional
inorganic cages are often comparable to that of the three-dimensional diamondoid cages of
adamantine but with far more desired electronic properties that infer their derivatives with
stabilizing properties [19]. For example, reactive nitrilium derivatives of the closo-borate
anions often retain their stability and structural integrity under mild aerobic, acidic or basic
conditions, which render them suitable for in situ physiological applications [20]. Phar-
macologically oriented research on boron clusters currently focuses on their coalescence
within self-sufficient systems of diagnostics and treatment; their unique features as selective
receptor agonists are preferable to classical organic scaffolds and are frequently exploited
in further elucidation of structure-activity relationship (SAR) profiles [21]. One of the long-
standing medicinal applications of boron clusters is boron neutron capture therapy (BNCT),
a preferential and theoretically infallible targeted therapy regime that exploits boron-10
isotopes’ susceptibility to thermal neutrons [22]. The BNCT protocol or, more precisely, the
boron-10-enriched functionalized clusters suffer from nonpreferential and inadequate accu-
mulation within the tumor cells due to the lack of selective carriers; hence, a universally and
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medically acquiesced BNCT protocol demands establishing a synergistic unified system
comprising boron-10 sources and targeting carriers. Recently, Yorov et al. immobilized an
alkoxysilane derivative bearing a 10-vertex closo-decaborate nanocluster in a silica (SiO)
aerogel matrix. The silica nanomaterial loaded with 1.2 mol % closo-decaborate possessed
high specific surface area (740 m?/g), low apparent density (80 mg/cm?®) and exhibited low
toxicity towards normal cells and considerable cytotoxicity towards malignant glioblas-
toma cells [23]. The strategy was first introduced in 2014, where the authors reported the
first-in-class borate-alkoxysilane derivatives via the functionalization of the carbonyl- and
diazo-derivatives of closo-decaborate and validated the integrity/activity of the precursors
to integrate into the matrix, pores and surfaces of silica-based nanomaterial (biologically
compatible mesoporous silica and silica nanoparticles) as proof of concept [24,25]. Another
synergistic carrier was introduced by Stepanova et al. to combine boron delivery to the
tumor cells of osteosarcoma and the repair of postoperative bone defects; the authors
reported boron-containing scaffolds comprising novel biodegradable polymer composites
as films and 3D-printed matrices based on aliphatic polyesters containing closo-borates
clusters for BNCT [26].

The impediment in integrating inorganic boron-based polyhedral archetypes such
as the anionic closo-decaborate [B1gH;o]?~ and the closo-dodecaborate [Bi;H,]>~ into
industrial or pharmacological venues lies in the introduction of functional groups into
theses clusters [27-31]. Indeed, the ability to engineer functional boron-enriched materials
via derivatization of the clusters, or what is rather known as the activation of one or
more exo-polyhedral B-H bonds, is often constrained for compounds with a purely boron
skeleton as opposed to their neutral carbon-enclosing analogs as the icosahedral dicarba-
closo-dodecaborane [C;B19H;»] [32]. The polyhedral carboranes rather possess an intrinsic
advantage that fundamentally bridges the chemistry of boron clusters with the vast and
established chemistry of carbon-based scaffolds, the B-C-H bonds (Figure 1); thus, these
compounds have become quite favored in research and industry and have been profoundly
investigated in establishing antitumor, antimicrobial and antiviral formulations [33] via
their integration into the structure of existing conventional drugs or prodrugs to alter
SAR profiles [34,35]. The functionalization pathways of carboranes are quite vast and
established; the most recent approach reported direct B-H functionalization of icosahedral
carboranes at the most electron-rich boron vertex, that is, the boron vertex with the lowest
B-H bond dissociation energy, where a nitrogen-centered radical-mediated hydrogen
atom transfer instigated the homolysis of the B-H bond [36]. Conventionally recognized
pathways include Metal-catalyzed cross-coupling reactions for assembling larger molecules
via covalently bonded molecular fragments [37], the Sonogashira [38], Heck [39] and Suzuki
cross-coupling reactions [40], the Kumada-Corriu cross-coupling reactions between B-iodo-
carboranes and Grignard reagents in the presence of palladium-based catalysts [41]. A
nucleophilic substitution Grignard reaction pathway was also established for B-H bond
activation of ortho-carboranes in the absence of any transition metal catalysts; however,
the reaction necessitates the presence of two electron-withdrawing aryl groups on the cage
carbon atoms [42].

The impedance in the functionalization of the closo-decaborate anion is primarily
dictated by the electronic environment of the cage; this can be quite challenging due to the
presence of 10 inert B-H bonds in a rather stable and comparable chemical environment;
B-H bond substitution can proceed via electrophilic or nucleophilic mechanisms in either
apical (boron atoms with a co-ordination number of 4) or equatorial (boron atoms with
a co-ordination number of 5) positions to yield mono-, di- and poly-substituted deriva-
tives [27,30,31,43]. A recent soft approach utilized an auto-catalyzed reaction pathway to
functionalize (NHy);[B1oH1o] by exploiting the in situ NH4* counter cation during the
nucleophilic addition of nitriles to the borate cluster via Electrophilic-Induced Nucleophilic
Substitution mechanism [44,45].
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Figure 1. Schematic representation of the closo-decaborate anion [B1oH1o]%~ (left), closo-dodecaborate
anion [B1;Hj2]%~ (middle) and the neutral icosahedral carborane C,B1oHj> (right).

One of the foremost derivatives of the closo-decaborate anion is the carbonyl protag-
onist [1-B1gHoCO] ™ [46], which has been repeatedly employed as a precursor for further
functionalization of the decaborate cage. The carbonyl-mediated reaction pathway has
been presented as an alternative to direct alkylation of the closo-decaborate, which pre-
dominantly necessitates manipulations with nido-decaborane B1gH;4 under unfavorable
conditions and yields poly-substituted derivatives. Recently, a direct alkylation strategy of
the B-H bond in closo-decaborate was reported by Kaszynski et al. following a Pd-catalyzed
cross-coupling reaction approach via iodo precursors which has been extensively applied
for substitutions of 12-vertex carboranes and dodecaborate anion [47]. Establishing a di-
rect B-C bond in [B1gH;0]>~ has mainly been hindered by the lack of access to suitable
precursors such as the iodo-derivatives of decaborate anion, which exhibits a practically
diminutive reactivity toward iodination (Figure 2). The authors attempted to synthesize
the [closo-1,10-B;gHg-I]*~ anion from the bis-iodonium zwitterion [closo-1,10-B1oHg-(IPh)]
through Grignard reagents (proven successful for carboranes as the [closo-CB11H;11]7) but
isolation proved ineffective due to the formation of insoluble magnesium salts and instead
diverted to organolithium reagents.
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Figure 2. Synthesis of closo-decaborate derivative encompassing a direct B-C(Ph) bond via the
iodo-closo-decaborate precursor.

Though the carbonyl derivative is prone to facile and rapid hydrolysis leading to the
carboxylic derivative [1-B1oHyCOOH]?*~ and its manipulation normally requires extremely
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anhydrous and inert conditions, it is still the preferable precursor of choice due to the ver-
satility supplied by the carbonyl group. Moreover, new reaction pathways for the selective
functionalization of this derivative are currently under investigation, as conventional ap-
proaches suffer from nonselective side reactions as it is easily susceptible to a wide range of
functional groups [48,49]. Thus, the main notion of the present work is to establish a selec-
tive synthesis route starting from the carbonyl derivative of closo-decaborate to compounds
decorated with alkyl chains, such as ethyl, propyl and pentyl chains, as well as building
block “polymerizable” or “conjugative” constituents, such as the allyl, vinyl and propynyl
derivatives. The necessity of such alkylated and conjugable boron clusters is frequently
noted for biological applications such as antimicrobial applications [50] and boron neutron
capture therapy; indeed, fabricating such derivatives enclosing a hydrophilic charged head
(anionic boron cluster) and a hydrophobic tail (alkyl chain) render them as ideal candidates
for incorporation into physiological media such as lipophilic bilayers and uni-lamellar
liposome penetration, particularly as liposomes have been proven to preferentially localize
in tumor cells. Currently, boron-loaded liposomes are under investigation as self-sufficient
systems for BNCT cancer treatment [51].

2. Results and Discussion

Herein, we report the facile and selective synthesis of versatile closo-decaborate deriva-
tives comprising alkyl chains as the propyl and pentyl chains and building blocks as the
allyl, vinyl and propynyl groups. The novel synthesis approach proceeds via a straightfor-
ward nucleophilic addition reaction at room temperature between the carbonyl derivative
of closo-decaborate (PPhy) [B1oH9CO] and a Grignard reagent RMgX comprising the desired
functionality under an inert atmosphere.

First, the tetraphenyl phosphonium salt of the precursor compound carbonyl-closo-
decaborate (PPhy4)[2-B10HoCO] was prepared according to published procedures by the
reaction of (PPhy),[B1oH;0] with drop-wise addition of excess of oxalyl chloride (COCl), in
anhydrous dichloromethane at 0 °C as seen in Figure 3A [46].

Second, six different Grignard reagents were used, ranging from simple alkyl reagents,
such as ethyl, iso-propyl and pentyl, to the more versatile allyl, vinyl and propynyl groups
as depicted in Figure 3B; the last three of these groups encompass building block func-
tionalities for further conjugation or polymerization of the closo-decaborate cluster into
functional materials.

The straightforward nucleophilic addition of the alkyl Grignard reagents comprising
ethyl, iso-propyl and pentyl magnesium bromide to the carbonyl derivative yields the
corresponding carbonyl-alkyl or acyl derivatives [2-B1gHoC(O)CH,CH31?~ (2), 2~ (3) and
[2-B1oHyC(O)CsHy >~ (4), isolated by mere precipitation out of the reaction mixture via
diethyl ether and filtration.

The structural integrity of the closo-derivatives was verified through multinuclear
1y, 1B, 13C and 3'P NMR. The !B NMR spectra of all derivatives exhibit a down-
field shift in the singlet characteristic of the carbonyl precursor (PPhy4)[2-B1iHoC=0] at
—44.71 ppm to approximately —20 ppm for the carbonyl-alkyl derivatives; for instance,
the 1B NMR of the two alkyl-substituted derivatives (PPhy)(MgBr)[2-B;oHyC(O)CH,CH3]
(2) and (PPhy4)(MgBr)[2-B19HyC(O)C5Hg] (3) confirm the appearance of a singlet at —20.21
for (2) and at —19.98 for (3) and the disappearance of the equatorially carbonyl-substituted
boron B—C=0" at —44.7 ppm consistent with the appearance of the electron-withdrawing
C=0 bonds in place of the C=0" group, which, in turn, contributes to a further deshield-
ing of the boron atom (Figure 4). Furthermore, the "B NMR of the two derivatives
[2-B1oHyC(O)CH,CH3]?~ (2) and [2-B1gHoC(O)CsHg]?>~ (3) evidences the apical boron
atoms as two doublets at 2.59 ppm (B;) and —0.77 (B1p) ppm for (2) and one doublet at
0.23 ppm (By,19), while the remaining equatorial boron atoms appear as overlapping broad
multiplets at ca. —28 ppm (see Figure S1 in the ESI for !'B NMR of all compounds).
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Figure 3. Schematic representation of the synthesis of carbonyl-closo-decaborate (A) and the nucle-
ophilic addition of Grignard reagents RMgX to the carbonyl derivative of closo-decaborate (B).

oBH

OB R )
A‘- - 'I_"‘A'”'a-fru—nu-m_,-l

A v .

e o o\
A~ WLM\—/L
5

&(ppm)

Figure 4. 1B NMR spectrum of carbonyl-closo-decaborate derivative (PPhy) [2-B;gHyC=0] (1),
(PPhy)(MgBr) [2-B1gHoC(O)CH,CHj3] (2), (PPhy)(MgBr) [2-B19HyC(O)CsHo] (3).

'H and 3C NMR of the derivatives (PPhy)(MgBr)[2-B;gHoC(O)CH,CHjz] (2), (PPhy)
(MgBr)[2-B1gHoC(O)C5Hy] (3) and (PPhy)(MgBr)[2-B1oHoC(O)CsHy7] (4) display the charac-
teristic peaks of the carbonyl, ethyl, isopropyl and pentyl groups. 'H NMR (see Figure S2
in ESI) of [2-B1gHoC(O)CH,CH3]?~ exhibits a triplet at 0.65 ppm for CH3, a quadruplet at
2.23 ppm for CH, and a multiplet between 7.69 and 7.99 for the tetraphenyl phosphonium
hydrogens (PPhy); further evidence on the tetraphenyl phosphonium counter cation is
seen in 3P NMR as a singlet at 22.59 ppm, while the 1*C NMR spectrum exhibits a peak
at 157.30 ppm for the carbonyl group C=0, a peak for the sp® carbon in —CH,CHj at
1.13 ppm and another peak at 7.25 ppm for CH,CHj; the aromatic carbons in tetraphenyl
phosphonium appear similarly for all derivatives at 118.49 (doublet resulting from carbon-
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phosphorous coupling), 130.45 (ortho-C), 134.88 (meta-C) and 135.52 (para-C). Similarly,
the 1H NMR of the isopropyl-substituted derivative [2-B1oHoC(O)C3H,1?~ (4) displays
a doublet at 0.68 ppm for the two CHj3 groups (see Figure 510 in the ESI), a sextuplet at
2.65 ppm for CH and a multiplet between 7.60 and 8.19 for the tetraphenyl phosphonium
cation. The *C NMR (see Figure S11 in the ESI) shows a peak at 19.59 ppm for the sp®
carbon in CHj. As for pentyl-substituted derivative [2-B1oHoC5Ho]>~ (3), the TH NMR
(see Figure S6 in the ESI) spectrum exhibits a triplet at 0.75 ppm for CHj, a sextuplet at
1.10 ppm for CHy, a quintuplet at 1.25 ppm for CH; and a triplet at 2.15 ppm for C(O)CH,,
a multiplet spanning the range of 7.69 and 8.20 evidences the tetraphenyl phosphonium
counter cation. The counter cation PPhy* was also detected by the appearance of a singlet
in the 3'P NMR at 22.13 ppm affirming, the presence of phosphonium ion in compound (2)
(see Figure S4 in the ESI). In addition, the 13C NMR (see Figure S7 in the ESI) exhibits
a peak at 166.35 ppm for the carbonyl group, a peak at 14.50 ppm for the sp® carbon in
-CHj and other peaks at 22.73 ppm, 24.01 ppm, 32.08 ppm and 45.29 ppm for the -CH; in
the compound.

As previously mentioned, direct alkylation or acylation of the closo-decaborate cage has
not yet been reported; though the chemistry of the closo-decaborate cage is quite versatile,
its derivatization or functionalization approaches are often restricted by the higher stability
and rigidity of the exopolyhedral B-H bonds in [B1oH10]> compared to other polyhedral
boranes. Introduction of a functional group into the decaborate moiety conventionally
occurs by means of functionalized precursors (interim compounds) such as the carbonyl
precursor [2-B1gHoC=0]~, diazonium precursor [1-BjpHgN=N]~ and nitrilium precursor
[2-B1gH9N=CCH3]~. Hence, [2-B1gH9yC=0]~ was chosen as an ideal candidate for the
expansion of the decaborate chemistry. To assert the necessity of the carbonyl group C=0*
in the present work (i.e., prove that direct alkylation of the decaborate cage via Grignard
reagents is not possible under present conditions) and to further elucidate the nucleophilic
addition mechanism, several control reactions were performed between the parent com-
pound (the tetraphenylphosphonium salt of the closo-decaborate anion (PPhy)2[B1oHio]),
the protonated compound (undecahydro-closo-decaborate anion (PPh4)[B1gH11]) and the
corresponding Grignard reagents following an identical synthetic protocol to that stated
in the experimental details. !B NMR indicated the absence of any functionalization or
degradation of the parent decaborate cluster for the reaction of the closo-decaborate anion
[B1oH10]>~ with RMgBr; in fact, the obtained data suggest the mere precipitation of the cage.
Moreover, the second series of control reaction performed via the protonated undecahydro-
closo-decaborate anion [B1gH;j1]~ and RMgBr reagents suggest the deprotonation of the
closo-decaborate cage and a complexation reaction taking place between [B1gH1o]?~ and the
divalent metallic center Mg?*; the ''B NMR spectrum of the resulting isolated solid displays
a downfield shift in the boron atom peaks residing in the apical position to ca. 3 ppm and
another downfield peak shift of equatorial boron atoms to ca. —26 ppm (the ''B NMR
peaks of (PPhy) [B1gHjo] is typically present at ca. 0 ppm for the two apical boron atoms
and ca. —30 ppm for the eight equatorial boron atoms) while noting the disappearance of
the protonated peak for [B1gpHj1]~ (note that the chemical shifts observed for the resulting
solid are compatible with magnesium-boron cage derivatives currently under investigation
in hydrogen storage). The results can be further interpreted by examining the mechanism
of action where Grignard reagents often react with protonated sources or acidic protons to
yield the R—H compounds.

An identical synthesis methodology was used to functionalize the closo-decaborate
carbonyl derivative [2-B1gHoC=O]~ with potential building block substituents comprising
the allyl, vinyl and propynyl functionalities. The fairly straightforward synthesis involved
the preparation of an etherate solution of (PPhy4)[B;9HoCO] in anhydrous THF under argon,
followed by the corresponding dropwise addition of the Grignard reagent (allyl magnesium
bromide, vinyl magnesium bromide and propynyl magnesium bromide). Isolation of the
respective products via simple filtration and vacuum drying yielded the phosphonium
and MgBr salts of [2-B1gHyC(O)CH,CH=CH,]>~ (5), [2-B19HyC(O)CH=CH,]?>~(6) and [2-



Molecules 2023, 28, 6076

7 of 11

B1oHyoC(O)C=CCH;]>~ (7) derivatives, respectively. 1B NMR data of all derivatives clearly
display a shift in the carbonyl singlet of —C=0" from the characteristic —44.71 ppm to
—20.17, —18.62 and —18.22 ppm for the ally] —COCH,CH=CH,, vinyl —-COCH=CH, and
propynyl —COC=CCHj; derivatives (see Figure S1 in the ESI). The slight discrepancy in
chemical shifts can be explained by the deshielding effect exerted by the vinyl and propynyl
groups in their respective derivatives and can be explicitly attributed to the electronic
resonance between the double and triple bonds of the vinyl —-COCH=CHj; and propynyl
—COC=CCHj groups and the oxygen lone pairs. 'H NMR spectra clearly display the
characteristic peaks of the corresponding allyl and vinyl groups where the -CH=CH, in [2-
B1oHoC(O)CH,CH=CH,]?>~ (5) appears at 4.85 and 5.85 ppm. As for the vinyl group in the
compound [2-B1gHyC(O)CH=CH,]*~ (6), the 'H NMR spectrum displays the appearance
of characteristic peaks at 4.95 ppm for —-COCH=CH,; and 6.49 ppm for —-COCH=CH,,
while the 13C NMR spectrum displays two peaks at 130.91 ppm (—COCH=CH,) and
135.95 ppm (—COCH=CH;) and a small peak at 185.56 for the carbonyl group. For the
[2-B1oHoC(O)C=CCH3]%>~ (7) derivative, the structural information was confirmed by H
NMR and 3C NMR; '"H NMR spectrum displays the appearance of a singlet at 1.75 ppm
for the —COC=CCH3, while '3C NMR shows the appearance of three peaks at 25.66 ppm
for —COC=CCHjg, 67.50 ppm for —COC=CCH3 and 82.95 ppm for —~COC=CCHj.

3. Materials and Methods

All reactions were performed under an inert atmosphere (Argon) using vacuum
tube and Schlenk techniques. All solvents used in the syntheses were dried and distilled
accordingly. (Et3NH),[B1pHio] was purchased from Boron Specialties (Ambridge, PA, USA)
and the salt (PPhy4),B19H;¢ was precipitated from an aqueous solution of (EtsNH),B19Hjg
and recrystallized from an acetonitrile-Et,O mixture. Ethyl magnesium bromide, pentyl
magnesium bromide, iso-propyl magnesium chloride, allyl magnesium chloride, vinyl
magnesium bromide and 1-propynyl magnesium bromide were purchased from Sigma-
Aldrich and used as received. Oxalyl chloride was obtained as 2.0 M solution in CH,Cl,
from Aldrich. Solution 'H NMR, 3C NMR and *'P NMR spectra were recorded using an
AMX 400 Bruker spectrometer operating, respectively, at 400 MHz, 100 MHz and 162 MHz.
For the analysis of our boron-based products, the !'B sequence used has the following
characteristics: 1B spectra were recorded at 298 K on a Bruker Advance III 500 Mz NMR
spectrometer equipped with a BBO helium cryoprobe. The 1B zgbs pulse sequence was
used with a spectral width of 64,102 Hz and 256 scans with a relaxation time of 0.5 s.
Chemical shifts were externally calibrated to TMS for 'H and 13C nuclei, H3POy (85%)
for 31P nuclei and EtO,-BF3 for !'B nuclei. Deuterated DMSO and acetonitrile were used
as solvents. Mass spectrometry measurements were performed by negative electrospray
ionization method (ESI/MS).

3.1. Synthesis of Carbonyl-Closo-Decaborate (PPhy) [B19pH9CO] (1)

(PPhy) [2-B19HoCO] (1) was prepared according to the published literature; in brief, a
solution of (PPhy),[B1oH10] (1.346 g, 2 mmol) in 30 mL of dry dichloromethane was placed
under argon at 0 °C. An excess of a 2.0 M solution of (COCl); in dichloromethane (2.5 mmol)
was added dropwise and the mixture stirred for 30 min and then allowed to warm up to
room temperature and stirred for an additional hour. The volume of the resulting mixture
was reduced till ca. 3 mL, exposed to air and passed through a silica column and eluted
with dry dichloromethane to reduce the hydrolysis of the —C=0O". The resulting product
was isolated with 74% yield after crystallization from CH,Cly-Et,;O. 1B (TH) NMR (&
ppm, 128 MHz, CD3CN): 5.37 (d, 2B), —18.75 (d, 1B), —26.84 (d, 2B), —28.13 (d, 2B), —29.88
(d, 2B), —44.71 (s, 1B).

3.2. Synthesis of Closo-Decaborate Derivatives (PPhy)(MgX)[B19H9COR]

A solution containing 200 mg of (PPhy) [2-B1gH9CO] and 10 mL of anhydrous THF was
placed under argon at room temperature; one equivalent of the corresponding Grignard
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reagent RMgX was added dropwise under stirring. The reaction progress was monitored
periodically by TLC (DEAE-Cellulose), where the complete disappearance of the carbonyl
derivative was noted after 10 min of stirring for all derivatives. The reaction volume was
reduced by 2/3 under vacuum, approximately 5 mL of anhydrous diethyl ether was added
under dynamic argon flow and the mixture was placed at —20 °C for 1 to 2 h; the targeted
products precipitated out of the mixture and were isolated as pale-yellow solids via simple
filtration. The final solids were subjected to three cycles of washing with 5 mL of cold
diethyl ether and dried under vacuum to yield (PPh4)(MgX)[B10HoCOR], where R is the
ethyl, pentyl, iso-propyl, allyl, vinyl and propynyl groups.

(PPhy)(MgBr)[2-B19HeC(O)CH,CHj] (2) 1'B (*H) NMR (5 ppm, 128 MHz, CD3CN): 2.59 (d,
1B), —0.77 (d, 1 B), —20.21 (s, 1 B), between —25.39 and —29.41 (m, broad, 7 B). '"H NMR (5
ppm, DMSO-dg): 0.65 (3 H, t, ] = 8 Hz, CH3), 2.23 (2 H, quadruplet, ] = 6 Hz, CHj), 7.5-7.8
(20 H, m, H of PPhy*). 3C NMR (8 ppm, DMSO-dy): 157.30, 134.16, 133.32, 129.31, 116.49,
(Yep = 77 Hz), 7.25, 1.13. 31P NMR (DMSO-d;): 22.58. Mass spectrometry (ESI/MS):
m/z =172.19 Elemental analysis: % theoretical C: 52.51. Found C: 52.26. Yield: 85%.

(PPhy)(MgBr)[2-B19H9oC(O)C5Ho] (3) 1'B (*H) NMR (5 ppm, 128 MHz, CD;CN): 0.23 (d,
2 B), —19.98 (s, 1B), between —24.75 and —29.40 (m, broad, 7B). 'TH NMR (5 ppm, DMSO-
de): 0.75 (3H, t, | = 6 Hz, CH3), 1.10 (2 H, sextuplet, | = 4 Hz, CH>), 1.25 (4 H, quintuplet,
] =4Hz, 2CH,), 2.15 2 H, t, ] =6 Hz, CH,), 7.5-7.8 (20 H, m, H of PPh;*).13C NMR
(DMSO-dg): 166.35, 135.85, 135.01, 131.01, 118.14 (Jcp = 71 Hz), 32.08, 24.01, 22.73, 14.50.
31p NMR (DMSO-dg): 22.13. Mass spectrometry (ESI/MS): m/z = 216. Elemental analysis:
% theoretical C: 54.63. Found C: 54.25. Yield: 80%.

(PPhy)(MgCl)[2-B19HeC(O)C3H7] (4) 'B (*H) NMR (5 ppm, 128 MHz, CD;CN): 3.30 (d, 2 B),
—19.10 (s, 1 B), between —21.94 and —28.42 (m, broad, 7 B). TH NMR (& ppm, DMSO-d):
0.68 (6 H, d, ] = 8 Hz, 2CH3), 2.65 (1 H, septuplet, | = 4 Hz, CH), 7.51-8.04 (20 H, m, H
of PPhy*). 13C NMR (§ ppm, DMSO-dg): 135.86, 135.00, 131.01, 118.13 (*Jcp = 71 Hz),
19.79. 31P NMR (DMSO-dg): 22.56. Mass spectrometry (ESI/MS): m/z = 188. Elemental
analysis: % theoretical C: 57.25. Found C: 57.35. Yield: 75%.

(PPhy)(MgCI) [2-B19HoC(O)CH,CH=CH,] (5) 'B (‘H) NMR (5 ppm, 128 MHz, CD;CN):
2.56 (d, 1 B), —0.51 (d, 1B) —20.17 (s, 1B), between —26 and —28 (m, broad, 7B). "H NMR (&
ppm, DMSO-dg): 3.25 (2H, d, ] = 6 Hz, CH), 4.85 (2H, m, CH,), 5.85 (1H, m, CH), 7.5-7.8
(20H, m, H of PPhy*). 13C NMR (5 ppm, DMSO-dy):164.24, 135.86, 135.08, 131.01, 130.84,
118.13 (Ycp = 71 Hz), 45.95. 3P NMR (DMSO-d): 21.64. Mass spectrometry (ESI/MS):
m/z = 185.20. Elemental analysis: % theoretical C: 57.45. Found C: 57.35. Yield: 68%.

(PPhy)(MgBr) [2-B1pHeC(O)CH=CH,] (6) 1'B (*H) NMR (5 ppm, 128 MHz, CD3CN): 3.78
(d, 1B), 0.83 (d, 1B), —18.62 (s, 1B), between —25.54 and —31.32 (m, broad, 7 B). '"H NMR (5
ppm, DMSO-d): 4.95 (2H, m, CHj), 6.49 (1 H, m, CH), 7.5-7.8 (20 H, m H of PPh;*).13C
NMR (& ppm, DMSO-d): 185.56, 135.85, 135.09, 134.90, 130.91, 118.14 (}Jc.p = 71 Hz). 31P
NMR (DMSO-dg): 22.14. Mass spectrometry (ESI/MS): m/z = 171.18. Elemental analysis:
% theoretical C:52.68. Found C: 52.45. Yield: 73%.

(PPhy)(MgBr) [2-B19gHoC(O)C=CCHj3] (7) B (‘H) NMR (5 ppm, 128 MHz, CD3;CN): 3.05
(d,1B), —0.64 (d, 1B), —18.22 (s, 1B), between —25.28 and —29.06 (m, broad, 7 B). 'TH NMR
(5 ppm, DMSO-dq): 1.75 (3 H, s, CH3), 7.5-7.8 (20 H, m, H of PPhy*). 13C NMR (§ ppm,
DMSO-de): 171.20, 135.87, 135.00, 131.02, 118.13 (Jc.p = 71 Hz), 82.95, 67.50, 25.66. 31P
NMR (DMSO-dg): 22.13. Mass spectrometry (ESI/MS): m/z = 184. Elemental analysis: %
theoretical C: 53.57. Found C: 52.67. Yield: 70%.

4. Conclusions

In the present work, a selective synthetic approach to actively functionalize the closo-
decaborate cage [B1gH;]?~ with building block properties was developed. The approach
centers on the exploitation of the carbonyl derivative [2-B1gHoC=O]~ as a starting precur-
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sor and subjecting that precursor to a straightforward nucleophilic addition reaction with a
series of Grignard reagents of different R constituents. The approach was validated to the
Grignard reagents used in this work but can be further extended to include all conceivable
“RMgX” reagents, where R can be engineered as the desirable moiety; the developed strat-
egy can be applied to embed or integrate the closo-decaborate cage in complex material sys-
tems such as porphyrins, metal organic frameworks, dendrimers, etc. The key derivatives
achieved in the current work [2-B1gHyC(O)CH=CH,]?*~, [2-B;oHyC(O)CH,CH=CH,]*~
and [2-B1oHoC(O)C=CCH;]*~ comprise the allyl, vinyl and propynyl functionalities and
allow the conjugation/polymerization of the closo-decaborate cluster into biological and
pharmacological compounds; such compounds are currently under investigation as anti-
inflammatory and antitumor agents.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28166076/s1, Figure S1 displays the 11B NMR spectrum for all
compounds with carbonyl-closodecaborate, Figures S2, S6, S10 and S20 showcase the 1H NMR spectra for
compounds (2), (3), (4) and (7) respectively. the 13C NMR spectra for all compounds (2-7) are depicted
in Figures S3, S7, S11, S14, S17 and S21. Figures S4, S8, S12, S15, S18 and S22 illustrate the 3'P NMR
spectra for all compounds (2-7). Figures S5, S9, S13, 516, S19 and S23 provide the mass spectrometry for
all compounds (2-7).
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