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Abstract: Composites with excellent thermomechanical and thermochemical properties are urgently
needed in the aerospace field, especially for structural applications under high-temperature con-
ditions. Carbon fiber-reinforced Si-based composites are considered the most promising potential
high-temperature materials due to their excellent oxidation resistance and ablative behaviors, good
structural designability, and excellent mechanical properties. The reinforcement of the relevant
composites mainly involves carbon fiber, which possesses good mechanical and temperature re-
sistance abilities. In this paper, the ablation behaviors and mechanisms of related composites are
reviewed. For carbon fiber-reinforced pure Si-based composites (C/SiM composites), the anti-ablation
mechanism is mainly attributed to the continuous glassy SiO2, which inhibits the damage of the
substrate. For C/SiM composite doping with refractory metal compounds, the oxides of Si and re-
fractory metal together protect the main substrate from ablation and oxidation. Moreover, in addition
to thermochemical damage, thermophysical and thermomechanical behavior severely destroy the
surface coating of the substrate.

Keywords: carbon fiber-reinforced composites; oxidation; ablation; Si-based ceramics; mechanisms

1. Introduction

In the field of aerospace, advanced thermal protection systems related to aerospace
flight and rocket propulsion require some special materials, which have not only excellent
thermal shock resistance, light weight, and high strength, but also excellent ablative re-
sistance [1–3]. In practical application, ablation and active oxidation are severe problems,
which must be avoided [4]. The mechanical properties of these materials have also been
widely researched [5,6]. Therefore, it is urgent to develop ultrahigh-temperature materials
with a high melting point to meet the application requirements in extreme-temperature
environments above 1600 ◦C, especially when they are used as the leading edges and nose
cones of hypersonic aircraft [7–9].

Fiber-reinforced composites with carbon fiber as the reinforcement material possess
not only excellent mechanical properties, but also good thermal shock and ablative resis-
tance [10]. They can be applied in extreme environments such as ultrahigh-temperature
structures [11–13]. However, as the reinforcing material, carbon fiber is susceptible to
oxidization above 450 ◦C in aerobic environments, which limits its application [14–16].
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At present, there are several methods to improve the ablative and oxidation resistance
of fiber-reinforced composites. The first approach is the use of a ceramic fiber or other
anti-ablative reinforcements, such as SiC fiber [17], which have better ablative properties, es-
pecially in oxygenated environments. When ceramic fiber-reinforced matrix composites are
coated with environmental barrier coatings, they can be used in jet engines, as extensively
and intensively reported in recent reviews by Fang et al. [18] and Tejero-Martin et al. [19].
The second approach is the optimization of the fiber structure (using 2.5D or 3D textiles).
The third approach is an improvement of the interfacial bonding between the fiber and
matrix, where pyrolytic carbon (PyC) is generally added between the fiber and matrix. The
fourth approach is the addition of an ultrahigh-temperature ceramic into matrix. The fifth
approach is coating the fibers or textile structure with ablative ceramics to suppress oxygen
diffusion. By implementing the above measures, when ceramics with excellent ablative
resistance are used as the matrix, and fibers with outstanding mechanical properties are
used as reinforcement material, the composites can be applied to hypersonic vehicles or
other high-temperature aerobic environments.

Silicon carbide (SiC) has been widely used as a high-temperature ceramic below
1800 ◦C in recent decades, since it possesses the merits of structural stability, oxidation
resistance, excellent mechanical properties, etc. [20–23]. In order to expand its application
field at higher temperatures, ultrahigh-temperature ceramics (UHTCs) of transition metals
(Zr, Hf, Ta, Hf, etc.) [24] with melting points over 3000 ◦C have been used in combination
with SiC ceramics [25–29], which are referred to as Si-based ceramics. Recently, the ablation
and oxidation behaviors of fiber-reinforced Si-based ceramic composites with different fiber
structures as reinforcement, including whiskers, particles, and preforms, have been inves-
tigated [30,31]. Figure 1a,b detail the optimal performance temperature and outstanding
mechanical properties of carbon fiber-reinforced Si-based ceramic composites compared
with conventional composites [32]. However, the ablative mechanism of C/Si-based ce-
ramic composites has not been comprehensively reviewed, constituting Si-based ceramics
as the matrix and different fiber structures for reinforcement.
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Figure 1. The optimal performance temperature and outstanding mechanical properties of carbon
fiber-reinforced Si-based ceramic composite compared with conventional composites: (a) optimal
performance temperature; (b) outstanding mechanical properties. Reprinted with permission from
Ref. [32]. Copyright 2016, Springer Nature.

In this paper, the ablation and oxidation mechanisms, as well as the behaviors, of
Si-based-ceramics coated or modified carbon fiber-reinforced composites, with different
structures, are thoroughly reviewed. In Section 2, the preparation of C/Si-based composites
is described. In Section 3, the ablation and oxidation behaviors, as well as the mechanisms,
of carbon fiber-reinforced pure Si-based ceramic matrix composites (C/SiM composites,
where C is carbon fiber, and M refers to B, C, N, etc.) are introduced. Section 4 provides
a comprehensive review of the ablation and oxidation behaviors and mechanisms of
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transition metal Zr-supplemented C/SiM composites (C/SiZrM composites, where M
refers to B, C, N, etc., typically ZrB2, ZrC, ZrB2, and ZrC). In Section 5, the ablation and
oxidation behaviors, as well as the mechanisms, of C/SiM-Z composites are reviewed (Z
refers to other transitional metals, i.e., Ta, Hf, Y, Ti, Mo, Cr, La, etc.). In these sections, the
structures of the reinforced materials such as dispersive fibers, needle preforms, and 3D-
braided performs are presented, and the methods of ablation or oxidation are also described.
Lastly, Section 6 focuses on the challenges and future prospects in the development of
carbon fiber-reinforced Si-based ceramic composites in order to promote their application
fields. This paper can provide a reference for the preparation of anti-ablative composites,
with explanations of their ablative mechanisms.

2. Preparation of C/Si-Based Composites

Ablation is an erosive phenomenon characterized by the removal of raw or oxidized
materials through a combination of thermo-mechanical and thermo-physical as well as
thermo-chemical factors resulting from high temperature, high pressure, and velocity of
combustion flame. The primary methods to test the ablative or oxidation properties of
the composites include plasma arc ablation, oxyacetylene flame ablation, etc. During
ablation, the high heat flux of the combustion gas with high pressure and speed leads
to chemical erosion and mechanical scouring, resulting ultimately in the damage and
failure of composites. These factors are extrinsic elements impacting ablation mechanisms.
Numerical simulation and evaluation system can also be established for diagnosing the
flame during ablation [33].

The preparation process for C/Si-based composites is complex and expensive, mainly
due to selection of reinforcement and the recombination of reinforcement and matrix.
Carbon fiber has been widely utilized as a reinforcement material for composite structures in
the aerospace field due to its high strength and high modulus as well as high melting point,
etc. [34,35]. The development of textile technology has resulted in the existence of reinforced
fiber in three primary forms. They are dispersive fibers, needled structure, as well as 2.5D
or 3D structure with outstanding structural integrity. The third structure is commonly
employed as high-reliability aircraft components and nose cones of missile warheads, as
it can be woven into an integrated structure, and the preform can subsequently serve as
reinforcements directly [36]. This structure has a more prominent ablative resistance than
its 2D prefabricated counterpart.

Moreover, Si-based ceramics have traditionally been used as the matrix of fiber-
reinforced composites or as a protective layer for these composites to improve the ablative
or oxidation resistance of the fibers [37]. Additionally, there are a variety of densification
methods for preparing fiber-reinforced Si-based ceramics [38]. These mainly include hot
pressing (HP), polycarbosilane infiltration pyrolysis (PIP), pressureless infiltration (PI),
thermal gradient chemical vapor infiltration technique (TCVI), chemical vapor infiltration
(CVI), chemical vapor deposition (CVD), pack cementation (PC), isothermal chemical vapor
infiltration (ICVI), reactive melt infiltration (RMI), slurry infiltration (SI), etc. Typically,
different methods are used together to improve the densification of composites. Prelimi-
nary investigations show that fiber-reinforced SiC-based composites, especially those with
carbon fiber as reinforcement, are prone to forming cracks. This leads to carbon fibers
becoming susceptible to oxidation through ingress of air when exposed to high tempera-
tures. Therefore, a graphitic carbon interphase or BN interphase is applied to the surface
of carbon fibers to create a weak bond between the fiber and the matrix, promoting the
toughening behavior of the composite.

3. Ablation Behaviors and Mechanisms of Pure C/SiM Composites

Table 1 provides the ablation and oxidation properties of pure C/SiM composites in
recent years, including preparing and ablation methods. Meanwhile, based on the different
matrix, the corresponding ablative-resistance composites are classified into two types.
These are, respectively, C/SiC with the same matrix of SiC or SiC coating, and C/Si3N4
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with the same Si3N4 matrix. The ablation and oxidation mechanisms of C/SiC have been
more extensively investigated because SiC represents a promising ablation inhibitor, owing
to its effective specific weight and low cost. In subsequent sub-sections, the ablation and
oxidation mechanisms of these composites are separately discussed in detail.

Table 1. Materials, methods, and ablation and oxidation properties of pure C/SiM composites.

Composites Main Structure Interphase Matrix
(Coating)

Preparing
Method Ablation Type Mass Ablation

Rate (mg·s−1)
Liner Ablation
Rate (mm·s−1) Ref.

C/SiC

4D axes carbon
fiber preform SiC coating arcplasma

torch 3 0.1311 [39]

3D braid carbon SiC coating isothermal
oxidation [40]

2D C/C needle PyC SiC ICVI; PI; engine torch [41]

carbon fiber
(M30) PyC SiC CVI oxyacetylene

torch [42]

3D C orthogonal
structure SiC PIP, HP oxyacetylene

torch [43]

3D braid C/C PyC SiC CVI, CVD gas mixture
(O2/H2O/Ar) [44]

3D needled
(30 vol%) PyC SiC CVI; LSI oxyacetylene

torch 1.6 0.0039 [45]

3D braided PyC SiC PIP oxyacetylene
torch [46]

2D plain woven
carbon- fabric PyC Ph/SiC LSI oxyacetylene

torch 1837 [47]

needle punched
disk felts PyC SiC PIP; TCVI oxyacetylene

torch 1.53 [48]

2.5D carbon
fiber felts PyC SiC PIP; TCVI oxyacetylene

torch [49]

2.5D needle
puncher felts PyC SiC coating TCVI; PC oxyacetylene

torch [50]

needle-carbon
fiber felts PyC SiC CVI; molten

infiltration
oxyacetylene

torch [51]

3D needled felt
(T300) PyC SiC coating CVI plasma wind

tunnel [52]

4D woven
carbon preforms SiC impregnation

UH25 was
used as fuel;

N2O4 as
oxidizer

0.005 [53]

carbon fiber PyC SiC coating CVD; ICVI oxyacetylene
torch [54]

2D C/C PyC SiC coating slurry and
sintering isothermal [55]

2D C/C needle PyC SiC CVI
hypersonic

flowing
propane flame

[56]

2.5D needle
punched carbon

fiber felt
PyC SiC PI; PIP; CVI

plasma
generator

equipment
0.017 [57]

2D carbon fiber BN SiC CVD
temperature
programmed

oxidation
[58]

carbon fibers
(T-300)

SiC/SiC
coating PIP; CVD air [59]

carbon fiber
plain fabrics ph/silicon LPI thermal

plasma torch [60]
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Table 1. Cont.

Composites Main Structure Interphase Matrix
(Coating)

Preparing
Method Ablation Type Mass Ablation

Rate (mg·s−1)
Liner Ablation
Rate (mm·s−1) Ref.

C/SiC

3D needle
preform PyC SiC and Si CVI; CVD oxyacetylene

torch 6.2 [61]

carbon fiber PyC SiC CVD wind-tunnel [62]

carbon fiber cloth PyC SiC
nanowires CVD oxyacetylene

torch 0.400 [63]

carbon preform graphitized SiC
oxy-kerosene
hypersonic

torch
0.09 [64]

3D preform PyC SiC CVI; PIP plasma arc
ablation 0.56 1.1 × 10−4 [65]

2.5D preform PyC SiC millisecond
laser [66]

2D carbon
fiber felts SiC CVI; plasma stream [67]

carbon fiber PyC SiC coating PC furnace [68]

carbon fiber SiC CVI continuous
wave lasers [69]

2.5D needle
punched preform PyC SiC CVI; PIP

plasma
generator

equipment
0.133 0.0141 [70]

3D
needle-punched

preform
PyC SiC CVI; PIP plasma wind

tunnel [71]

needled preform
of carbon felt PyC SiC PIP oxy-acetylene

torch [72]

2.5D carbon
fiber felt PyCx-SiCy CVI; oxyacetylene

torch 0.0016 [73]

carbon structure PyCx-SiCy CVI oxyacetylene
torch 0.0013 [74]

2.5D needle
punched preform PyC SiC coating CVI; PC oxyacetylene

torch 0.0001 0.0003 [75]

carbon fibre
needled felts PyC SiC RMI; CVI oxyacetylene

torch 0.75 [76]

Cf/Si3N4 needle preform Si3N4 LPCVI; CVI oxyacetylene
torch [77]

Cf/SiBCN
3D needled
carbon fiber

preform
(PyC/SiC)3 SiBCN CVI; PIP plasma

ablation flame 0.0427 0.0017 [78]

3.1. Ablation Behaviors and Mechanisms of C/SiC Composites

The ablation and oxidation mechanisms of C/SiC composites are similar. The carbon
fiber can be protected by the outer interphase and matrix. These mechanisms are mainly
centered on the outer materials. During the ablation process, the composites primarily
undergo the following chemical reactions.

Reactions of carbon fiber or PyC:

2C(s) + O2(g)→ 2CO(g) (1)

C(s) + O2(g)→ CO2(g) (2)

C(s) + CO2(g)→ 2CO(g) (3)
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Reactions of silicon carbide:

SiC(s) + O2(g)→ SiO(g) + CO(g) (4)

2SiC(s) + 3O2(g)→ 2SiO2(l) + 2CO(g) (5)

SiC(s) + 3CO2(g)→ SiO2(l) + 4CO(g) (6)

2SiC(s) + 3O2(g)→ 2SiO(g) + 2CO2(g) (7)

SiC(s) + 2O2(g)→ SiO(l) + CO2(g) (8)

Reactions of silicon dioxide and silicon monoxide:

SiO2(l)→ SiO2(g) (9)

2SiO(g)→ SiO2(s) + Si(s) (10)

SiO2(s) + C(s)→ SiO(g) + CO(g) (11)

The ablation and oxidation behaviors of C/SiC composites are predominately con-
trolled by oxidation, thermal decomposition, and sublimation, which are chiefly affected
by the external ambient temperature [68,79]. Figure 2 illustrates the ablative progress and
protective mechanism of C/SiC. Under a temperature of 1500 ◦C, oxygen reacts with SiC
to yield SiO2. Below this temperature, SiO2 possessing a high fluidity, quickly seals any
existing cracks of a certain width. The healed original cracks can be observed in the figure.
In conjunction, the composites are shielded by solid or liquid SiO2, demonstrating effective
ablative resistance performances without catastrophic repercussions. However, when the
temperature surpasses 1500 ◦C, SiC oxidizes to generate gaseous SiO and CO. Concurrently,
liquid SiO2 is easy to gasify and vaporize in abundance, leading to the creation of surface
cracks. This allows oxygen to react with SiC, further permeating the coating thickness
to form a penetrating crack. Consequently, the matrix loses its protective capacities over
the fibers, with oxygen traveling to the fiber surface through these defects and inducing a
reaction. As a result, gas holes, surface cracks, and skeleton structures are formed, initiating
erosion of the composites [54].
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Moreover, ablation behaviors of C/SiC composites are also affected by the ablated
method. When the composites undergo ablation in a plasma wind tunnel, both heat flux
and stagnation pressure collectively control the ablation behaviors [52]. With low heat
flux and stagnation pressure, SiO2 can deposit itself on the surface of the composites,
causing minimal erosion and effectively protecting the fibers. In contrast, with high heat
flux and stagnation pressure, SiC coatings are rapidly consumed due to sublimation and
decomposition, resulting in quick exposure of fibers to plasma flow after the consumption
of SiC coatings. When the composites are subjected to ablation under an oxyacetylene torch,
the heat flux also affects the ablative behaviors [49]. The higher the heat flux, the faster the
erosion rate of SiC, ensuing consequential defects in the matrix. As a result, the residual
matrix shows reduced ablation resistance under mechanical denudation. In addition, these
defects also loosen the surface, thereby enlarging the interface area between the oxidizing
components and composites. Correspondingly, the oxidation rate would accelerate. The
final ablative morphology of the composite can be observed in Figure 3, demonstrating
obvious ablative characteristics and appearance of large surface ablation holes (Figure 3a).
Simultaneously, the fibers in the central zone endure severe ablation and noticeable erosion
at the fiber tip due to an extremely high temperature and heat flux.
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Therefore, the ablation mechanisms of C/SiC composites are correlated not only with
external ablative temperature, but also with the ablative method.

3.2. Ablation Behaviors and Mechanisms of C/SiBCN Composites

Compared with a traditional ceramic composite, during the ablation process, the BNC
phase in a fiber-reinforced SiBCN composite can react with oxygen, thus generating B2O3
gas [80]. The evaporation of B2O3 gas can lower the surface temperature. Consequently,
the B/Si ration in the glass decreases, with B being preferentially volatilized compared
to Si, leading to an increase in the viscosity of the glass. Meanwhile, the low-viscosity
B2O3 liquid can seal cracks and enhance the ablation resistance of composites, owing to its
liquidity feature. Furthermore, in order to further study the effects of ultra-high temperature
ceramics (UHTCs) as the secondary phase and SiBCN as the first phase in composites, it
is imperative to discuss the basic ablation properties and mechanisms of fiber-reinforced
SiBCN composites. It is found that, in addition to the reactions in Equations (1)–(11),
the following chemical reactions of Equations (12)–(14) also occur during the ablation of
the composites:

SiO2(l) + B2O3(g)→ Borosilicateglass(l) (12)
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4BN(s) + 3O2(g)→ 2B2O3 + 2N2(g) (13)

B2O3(l)→ B2O3(g) (14)

Figure 4 provides the ablative surface and mechanisms of C/(Pyc/sic)3SiBCN compos-
ites [78]. The morphology of the ablation surface can be classified into the ablation center,
transition zone, and ablation edge (Figure 4a). The ablative mechanism of fiber-reinforced
SiBCN is related to the additional reaction of BN, as shown in Equation (13). The reaction
yield of B2O3 can react with SiO2 to further form borosilicate glass. As the low-viscosity
borosilicate glass diffuses, microcracks may be healed, significantly reducing the volatiliza-
tion of B2O3, and enhancing the ablation resistance of composites. The volatilization of
CO and N2 results in the appearance of variously sized bubbles on the ablated surface of
the composite.
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In addition to fiber-reinforced SiC or SiBCN matrix, composites with another matrix,
such as Si3N4 ceramics with high strength, high thermal shock resistance, and good wear
resistance are also used. During the ablation of the C/Si3N4 composite, carbon fiber is
ablated in the central region, producing a large number of SiO2 droplets. Within the ring
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region, spherical solid SiO2 particles are formed, protecting the carbon fiber from further
ablation [77].

In summary, the ablative mechanism of C/SiM composites primarily relies on a
SiO2-rich layer protecting the fiber from ablation. Gas evolution happens sooner due to the
higher volatility of boron-containing species. Additionally, the evaporation of gases can
carry away energy and reduce the surface temperature—both processes inhibit oxidation
and ablation within the composites.

4. Ablation of C/SiZrM Composites

Pure C/SiM composites can form a protective silica effectively at low temperature.
It is difficult to meet the oxidizing and ablation atmosphere requirements above 2000 ◦C.
SiC tends to oxidize and ablate at high temperatures (>1800 ◦C), coupled with chemical
erosion. Hence, ultra-high temperature ceramics (UHTCs) have been introduced into
C/SiM composites as the second phase of the matrix, encompassing many borides, carbides,
and nitrides of early transition metals, particularly ZrB2 and ZrC. The addition remarkably
improves the ablative resistance of composites at elevated temperature [81–83]. Table 2
gives the recent ablation and oxidation properties of C/SiZrM composites.

Table 2. Materials and methods, as well as ablation and oxidation properties of C/SiZrM composites.

Composites Main Structure Interphase Matrix
(Coating)

Preparing
Method

Ablation
Method

Mass Ablation
Rate (mg·s−1)

Liner Ablation
Rate (mm·s−1) Ref.

C/ZrB2-
SiC

2D plain woven
carbon cloth PyC ZrB2-SiC CVI; SP oxyacetylene

torch [84]

needle punched carbon
fiber webs PyC ZrB2-SiC CVI; HCVI arc-heated

wind tunnel [85]

2D needle punched
carbon fiber preform PyC ZrB2-SiC CVI arc-heated

wind tunnel [86]

2D C/C composites ZrB2-SiC SAPS oxyacetylene
torch 1.7 × 10−4 [87]

2D C/C composites ZrB2-SiC pack-
cementation

oxyacetylene
torch 0.062 0.0044 [88]

needle punched
integrated felt PyC ZrB2-SiC TCVI; PIP oxyacetylene

torch [89]

2D C/C composites ZrB2-SiC SAPS; PC; SI oxyacetylene
torch [90]

2D needled carbon
fiber preform ZrB2-SiC

slurry-
sintering;

CVR

plasma
generator [91]

needle-punching
carbon fiber preform ZrB2-SiC TCVI; PIP oxyacetylene

torch [92]

needled integrated
preform ZrB2-SiC

pressing,
pyrolysis;

RSI

oxyacetylene
torch 1.3 [93]

C/C composites PyC SiC-ZrB2 CVD; CVI oxyacetylene
torch [94]

3D braided
C/SiC preform ZrB2-SiC

painting
slurry; CVD;

PIP

oxyacetylene
torch 22.9 0.0236 [95]

2D SiC-coated
C/C preform ZrB2-SiC TCVI; PC;

SAPS
oxyacetylene

torch [96]

2D SiC-coated
C/C preform

ZrB2-SiC-
Si PC oxyacetylene

torch 1.5 0.00021 [97]

3D braided SiC-coated
C/C preform ZrB2-SiC CVD; slurry

painting; PIP
oxidation in

air [20]
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Table 2. Cont.

Composites Main Structure Interphase Matrix
(Coating)

Preparing
Method

Ablation
Method

Mass Ablation
Rate (mg·s−1)

Liner Ablation
Rate (mm·s−1) Ref.

C/ZrB2-
SiC

carbon fiber ZrB2-SiC
slurry

infiltration;
HP

homemade
testing

chamber
[16]

short random/aligned
continuous carbon fiber ZrB2-SiC HP; SPS arc-jet

plasma [35]

porous C/C preform SiC-ZrB2 RMI; ICVI oxyacetylene
torch 0.61 0.00672 [98]

short carbon fiber phenolic-
ZrB2-SiC

oxyacetylene
torch 14 0.000168 [99]

needle-punched carbon
preform PyC ZrB2-SiC-

Si CVI oxyacetylene
torch [100]

C/C preform ZrB2-SiC HPPS oxyacetylene
torch 2.46 [101]

2D C/SiC preform ZrB2-SiC CVI; CVD oxyhydrogen
torch [102]

PAN-based
carbon fiber PyC ZrB2-SiC PIP arc-jet wind

tunnel [103]

C/C carbon fabric ZrB2-SiC LSI; oxyacetylene
torch 217 [104]

C/ZrC-
SiC

3D 4-directional carbon
fiber preform ZrC-SiC CVD; PIP oxyacetylene

torch 0.69 0.026 [79]

3D 4-directional carbon
fiber preform ZrC-SiC PIP plasma wind

tunnel 0.7 0.0009 [105]

3D needle-punched
carbon fabrics PyC ZrC-SiC CVI; SI; RMI;

PIP
plasma wind

tunnel [106]

2D C/C carbon felts ZrC-SiC ICVI; RMI oxyacetylene
torch 0.24 0.00133 [107]

2D C/C carbon felts ZrC-SiC ICVI; RMI oxyacetylene
torch 0.21 0.00144 [108]

2D needled C/C
carbon fiber felts ZrC-SiC TCVI; PIP oxyacetylene

torch 0.40 0.00102 [109]

porous C/C preform ZrC-SiC PIP oxyacetylene
torch 2.29 0.0003 [110]

2.5D carbon fiber felts PyC ZrC-SiC TCVI; PIP oxyacetylene
torch 1.9 0.012 [111]

2.5D needled
carbon felts PyC ZrC-SiC TCVI; PIP oxyacetylene

torch 0.585 0.00133 [112]

2.5D needled integral
C/C preform ZrC-SiC CVD; RMI oxyacetylene

torch 0.02 3.3 × 10−4 [113]

2.5D needled C/C felts ZrC-SiC CVI; PIP plasma
generator 1.57 3.7 × 10−4 [114]

3D orthogonal braided
carbon fiber preform PyC ZrC-SiC CVI; RMI oxyacetylene

torch [115]

2D needled
C/C perform ZrC-SiC CVI; PIP;

RMI
plasma

generator 2.6 3.7 × 10−3 [116]

C/C preform ZrC-SiC RMI; PIP plasma
generator 0.0045 4.8 × 10−3 [117]

3D braided
carbon fibers

SiC/Zr-Si-
C/SiC PIP; CVD oxyacetylene

torch 27.4 0.0255 [118]

3D carbon
fiber preform ZrC-SiC CVD; PIP oxyacetylene

torch [119]

2D needled C/C felts ZrC-SiC PIP oxyacetylene
torch 37.5 2.48 × 10−3 [120]
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Table 2. Cont.

Composites Main Structure Interphase Matrix
(Coating)

Preparing
Method

Ablation
Method

Mass Ablation
Rate (mg·s−1)

Liner Ablation
Rate (mm·s−1) Ref.

C/ZrC-
SiC

C/C felt preform SiC-ZrC CVI; PIP Developed
personally 3 × 10−3 [121]

needled carbon fiber
integer preform ZrC-SiC CVI; PIP plasma flame 1.73 1.94 × 10−4 [122]

porous needling
C/C preform SiC-ZrC RMI; CVI oxyacetylene

flame 1.18 2.47 × 10−3 [123]

3D needle-punched
carbon fiber fabrics SiC-ZrC

slurry im-
pregnation;

CVI

arc-heated
air plasma 0.039 [124]

2D needle-punched
carbon felt PyC SiC-ZrC CVI; PIP;

ICVI; TCVI
oxyacetylene

torch 2.95 0.015 [125]

C/C preform SiC-ZrC RMI; ICVI oxyacetylene
torch 1.21 5.9 × 10−3 [126]

C/C preform SiC-ZrC CVI; PIP oxyacetylene
torch [127]

needle-punched
carbon felt PyC SiC-ZrC ICVI; PIP;

ECVI
oxyacetylene

flame 0.04 3.7 × 10−4 [128]

2.5D carbon fiber
preforms PyC ZrC-SiC CVI oxyacetylene

torch 0.147 9.8 × 10−3 [129]

2D needled carbon
fiber preform PyC ZrC-SiC TCVI oxyacetylene

flame 0.298 8.2 × 10−4 [130]

needled carbon felt ZrC-SiC CVI; PIP plasma
generator 0.558 0.01633 [131]

2D needled carbon felts PyC ZrC-SiC CVI; PIP oxyacetylene
torch 0.46 6.7 × 10−4 [132]

needled felt-structured
C/C preform SiC-ZrC RMI oxyacetylene

torch 0.29 2.48 × 10−3 [133]

C/C preform ZrC-SiC
liquid

sintering;
RIM

oxyacetylene
torch 0.87 2.8 × 10−4 [134]

C/C preform ZrC-SiC RIM oxyacetylene
torch 0.8 3.85 × 10−3 [135]

T300 fiber cloth ZrC-SiC PIP laser ablation 0.0748 [136]

2D C/C preform SiC/ZrC-
SiC

oxyacetylene
flame 1.2 [137]

carbon felts SiCnw/PyC/
ZrC-SiC CLVD oxyacetylene

torch 0.47 7.3 × 10−4 [138]

2.5D needling
carbon felt ZrC-SiC CLVD; PIP oxyacetylene

flame 1.22 1.07 × 10−3 [139]

2.5D needled carbon
fiber felts ZrC-SiC CLVD oxyacetylene

torch 0.39 5.2 × 10−4 [140]

2D carbon fiber cloths PyC SiC-ZrC CVI oxyacetylene
ablator 1.17 7.5 × 10−3 [141]

2D needled
C/C preform SiC-ZrC CVI oxyacetylene

torch 0.29 4.2 × 10−4 [142]

2D needle-punched
C/C preform SiC-ZrC PC oxyacetylene

flame 1.378 1.928 × 10−3 [143]

3D carbon fiber PyC SiC-ZrC CVD oxyacetylene
flame [13]

3D needle-woven
carbon fiber felt SiC-ZrC CVI oxyacetylene

torch 7.1 4.7 × 10−3 [144]

3D needle- carbon
fiber felt PyC-SiC SiC-ZrC CVI; RMI plasma torch [145]
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Table 2. Cont.

Composites Main Structure Interphase Matrix
(Coating)

Preparing
Method

Ablation
Method

Mass Ablation
Rate (mg·s−1)

Liner Ablation
Rate (mm·s−1) Ref.

C/ZrC-
SiC

2.5D needled
C/C preform ZrC/SiC CVD oxyacetylene

torch 0.84 [146]

2D needle-punched
carbon felts PyC ZrC-SiC CVI oxyacetylene

torch 0.343 4.67 × 10−4 [147]

C/ZrB2-
ZrC-SiC

3D carbon
fiber preform PyC ZrB2-ZrC-

SiC CVI; PIP oxyacetylene;
plasma torch 0.5; 0.13 1 × 10−3; 4 ×

10−5 [81]

needled C/ZrB2
preform ZrC-SiC

vacuum im-
pregnation;

PIP

plasma
generator 5.09 2.61 × 10−3 [148]

2D C/C preform ZrB2-ZrC-
SiC

CVD; PC;
SAPS

oxyacetylene
torch 0.23 6.5 × 10−5 [149]

2D needle punched
carbon fiber fabric PyC SiC-ZrB2-

ZrC TCVI; PIP oxyacetylene
torch [150]

needle punched carbon
fiber felts PyC SiC-ZrB2-

ZrC PIP; TCVI oxyacetylene
torch [151]

2D carbon fiber
reinforcement felts PyC SiC-ZrB2-

ZrC CVI; PIP oxyacetylene
torch 0.0252 4.15 × 10−4 [152]

carbon felts PyC ZrB2-ZrC-
SiC TCVI; PIP oxyacetylene

torch [153]

pitch-based
carbon fibers

ZrB2-ZrC-
SiC HP oxyhydrogen

torch [14]

plain weave
carbon fiber

ZrB2-SiC-
ZrC

Silicon melt-
infiltration

oxyhydrogen
torch [15]

2.5D needle punched
carbon fiber fabric

SiC-ZrB2-
ZrC TCVI; PIP

plasma and
compressed

air
[25]

Carbon fiber cloth ZrB2-
SiC/ZrC HP oxyhydrogen

torch 2.8 [154]

2D C/C preform ZrB2-SiC-
ZrC SAPS; RMI oxyhydrogen

torch 0.016 1.3 × 10−3 [155]

C/SiC-
ZrSi2

3D needled carbon felts PyC SiC-ZrSi2 CVI; RMI oxyacetylene
torch [156]

C/Zr2Si 3D needled carbon
fiber felts PyC Zr2Si RMI; CVI;

arc melting
economical
laser beam [157]

C/SiC-Si-
Zr

3D needled carbon
fiber felts PyC SiC-Si-Zr RMI; CVI economical

laser beam 0.0407 [158]

C/SiC/ZrO2 carbon fabric Ph/SiC/ZrO2 ball milling oxyacetylene
flame 70.848 0.031 [159]

4.1. Ablation Behaviors and Mechanisms of C/ZrB2-SiC Composites

In order to improve the ablation-resistant and oxidation-resistant properties of C/SiC
composites under complex circumstances and at elevated temperatures, ZrB2 is incorpo-
rated into the composite as the secondary phase of the matrix, which is called as C/ZrB2-SiC
composites [160]. During the ablation process, the composites primarily undergo the fol-
lowing chemical reactions, aside from those outlined in Equations (1)–(11).

2ZrB2(s) + 5O2(g)→ 2ZrO2(s) + 2B2O3(l) (15)

2ZrB2(s) + 5O2(g)→ 2ZrO2(l) + 2B2O3(g) (16)

ZrO2(s)→ ZrO2(l) (17)

ZrO2(l)→ ZrO2(g) (18)
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ZrO2(s) + SiO2(l)→ ZrSiO4(s) (19)

The ablation and oxidation behaviors of C/ZrB2-SiC composites are primarily af-
fected by complex chemical erosion and mechanical denudation [86,161]. Figure 5 provides
cross-section images of the C/ZrB2-SiC composite after ablation [35], illustrating the ac-
cumulation of a glassy layer on the outermost surface, which serves to protect the inner
material. Figure 6 provides the detailed ablation mechanisms. In the ablative process,
ZrB2 and SiC are oxidized to form SiO2, ZrO2, B2O3, and borosilicate, the evaporation of
which ultimately results in the porous surface layer. Between 450 ◦C and 1100 ◦C, these
low viscosity and fluid B2O3 and borosilicate easily cover the external surface of the carbon
fiber, forming a regular and dense oxidation scale. This is premised on the fact that the
melting point of B2O3 is 450 ◦C and its boiling point 1850 ◦C. However, at higher tempera-
tures, owing to the vapor pressure of the B2O3, a significant amount of B2O3 preferentially
evaporates from the surface, forming an enriched SiO2 scale, where the melting point of
SiO2 is 1670–1710 ◦C. Due to the lower oxidation temperature of ZrB2 and PyC, oxygen
tends to diffuse inward through the oxide scale and reacts with these elements. In addition,
the gradient of chemical potential and temperature within the composite encourages the
oxidation of internal ZrB2. The formed ZrO2 provides a pinning effect, preventing the
cracking and spalling of silica-scale glass. The formation of the SiO2-ZrO2 structure and
ZrSiO4 glass can further obstruct oxygen diffusion and also have good adhesion to the fiber.
Meanwhile, the formed gaseous B2O3 will migrate through the outer SiO2-rich scale layer.
Therefore, the SiO2-rich oxide scale layer and a porous ZrB2-SiC-Cf layer are formed. As
B2O3 evaporates, heat is dissipated and surface temperature of the composite decreases.
With the diffusion of oxygen, the final products of SiO2, ZrO2, borosilicate glass, ZrSiO4
and continuous integrated SiO2-ZrO2-SiC ceramic layer prevent fiber structure from further
ablation. Additionally, the escape of gaseous by-products, such as CO, CO2, SiO, and B2O3,
produce a more pronounced thermal barrier effect.
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Figure 5. (a) Cross section of C/ZrB2-SiC composite after ablation; (b) magnified view of the boxed
area in (a); (c) magnified view of the boxed area in (b); (d) EDS elemental map of the boxed area in (b);
and (e) oxide evolution upon 1 (1×) or 3 (3×) sequential thermal attacks. Reprinted with permission
from Ref. [35]. Copyright 2022, Elsevier.



Molecules 2023, 28, 6022 14 of 30Molecules 2023, 28, 6022 13 of 29 
 

 

 

Figure 6. Schematic diagrams of C/ZrB2-SiC composite ablation process mechanism at 2000 °C. Re-

printed with permission from Ref. [101]. Copyright 2020, Elsevier. 

4.2. Ablation Behaviors and Mechanisms of C/ZrC-SiC Composites 

Refractory carbide ZrC, with its high melting point of 3540 °C, relatively low density 

(6.7 g/cm3), thermal shock resistance, and chemical inertness, etc., is regarded as an out-

standing advanced ceramic, thus making it one of the most promising UHTCs. For this 

reason, it has been integrated into C/SiC composites and designed as C/ZrC-SiC compo-

sites suitable for application in extreme environments [162]. During the ablation process, 

the ablative performance of the C/ZrC-SiC composite is determined by a combination of 

chemical erosion, thermo-physical conditions, and mechanical denudation. Along with 

the reactions noted in Equations (1)–(11), there are other reactions that also occur in re-

sponse to external environmental temperature when they are subjected to ablation. 

2ZrC(s) + 3O2(g) → 2ZrO2(s) + 2CO(g) (20) 

ZrC(s) + 3CO2(g) → ZrO2(l) + 4CO(g) (21) 

ZrC(s) + 2O2(g) → ZrO2(s) + CO2(g) (22) 

ZrO2(s) → ZrO2(l) → ZrO2(g) (23) 

SiO2(s) → SiO2(l) → SiO2(g) (24) 

Figure 7 depicts the ablation behaviors of the C/ZrC-SiC composite [13]. It is evident 

that the ZrC and SiC ceramics are evenly dispersed and sintered within closely braided 

carbon fibers. During the ablation of the composite, as shown in Figure 7b,c, intense oxi-

dizing airflow persistently infiltrates through holes, exacerbating the oxidation reaction 

of ZrC and SiC, resulting in the gradual erosion and enlargement of the pores. Figure 8 

presents the ablation mechanism of the C/ZrC-SiC composite. The combined ablative and 

oxidative behaviors of ZrC and SiC contribute to the self-healing feature of the composite. 

ZrC is the source of the refractory ZrO2 phase. The formed continuous liquid SiO2, SiO2-

ZrO2 glassy layer, as well as ZrSiO4 act as effective barriers that obstruct the inward oxy-

gen diffusion. The stable molten liquid ZrO2 scale can prevent the fiber from ablation 

when the temperature is above 2700 °C. It can cover and seal cracks as well as pores, hin-

dering further in-depth oxygen diffusion into the oxidation-prone fiber. The singular ZrO2 

layer features a weak interfacial bond and can easily fall off. However, the glassy silica 

phases can permeate the gaps in the ZrO2 skeleton, stick to the central ZrO2 layer, and 

facilitate the sintering of porous ZrO2, consequently strengthening its intact surface. Sim-

ultaneously, the formed glassy ZrO2-SiO2 layer is generated on the surface, and a porous 

Figure 6. Schematic diagrams of C/ZrB2-SiC composite ablation process mechanism at 2000 ◦C.
Reprinted with permission from Ref. [101]. Copyright 2020, Elsevier.

4.2. Ablation Behaviors and Mechanisms of C/ZrC-SiC Composites

Refractory carbide ZrC, with its high melting point of 3540 ◦C, relatively low density
(6.7 g/cm3), thermal shock resistance, and chemical inertness, etc., is regarded as an out-
standing advanced ceramic, thus making it one of the most promising UHTCs. For this
reason, it has been integrated into C/SiC composites and designed as C/ZrC-SiC compos-
ites suitable for application in extreme environments [162]. During the ablation process,
the ablative performance of the C/ZrC-SiC composite is determined by a combination of
chemical erosion, thermo-physical conditions, and mechanical denudation. Along with the
reactions noted in Equations (1)–(11), there are other reactions that also occur in response
to external environmental temperature when they are subjected to ablation.

2ZrC(s) + 3O2(g)→ 2ZrO2(s) + 2CO(g) (20)

ZrC(s) + 3CO2(g)→ ZrO2(l) + 4CO(g) (21)

ZrC(s) + 2O2(g)→ ZrO2(s) + CO2(g) (22)

ZrO2(s)→ ZrO2(l)→ ZrO2(g) (23)

SiO2(s)→ SiO2(l)→ SiO2(g) (24)

Figure 7 depicts the ablation behaviors of the C/ZrC-SiC composite [13]. It is evident
that the ZrC and SiC ceramics are evenly dispersed and sintered within closely braided
carbon fibers. During the ablation of the composite, as shown in Figure 7b,c, intense
oxidizing airflow persistently infiltrates through holes, exacerbating the oxidation reaction
of ZrC and SiC, resulting in the gradual erosion and enlargement of the pores. Figure 8
presents the ablation mechanism of the C/ZrC-SiC composite. The combined ablative and
oxidative behaviors of ZrC and SiC contribute to the self-healing feature of the composite.
ZrC is the source of the refractory ZrO2 phase. The formed continuous liquid SiO2, SiO2-
ZrO2 glassy layer, as well as ZrSiO4 act as effective barriers that obstruct the inward oxygen
diffusion. The stable molten liquid ZrO2 scale can prevent the fiber from ablation when
the temperature is above 2700 ◦C. It can cover and seal cracks as well as pores, hindering
further in-depth oxygen diffusion into the oxidation-prone fiber. The singular ZrO2 layer
features a weak interfacial bond and can easily fall off. However, the glassy silica phases
can permeate the gaps in the ZrO2 skeleton, stick to the central ZrO2 layer, and facilitate
the sintering of porous ZrO2, consequently strengthening its intact surface. Simultaneously,
the formed glassy ZrO2-SiO2 layer is generated on the surface, and a porous interlayer is
formed by the ZrO2 skeleton and a few silica glasses, which is due to the evaporation of
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CO, CO2, SiO, and SiO2. The ZrO2-melting layer, the porous layer, and SiO2-rich layer
together constitute the comprehensive glassy ZrO2-SiO2, which inhibits the erosion of
oxidative gas. Moreover, the formation of continuous integrated SiO2-ZrO2-ZrC-SiC layer
safeguards the C/C preform from further ablation by acting as a thermal and oxygen
diffusion barrier [114].
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4.3. Ablation Behaviors and Mechanisms of C/ZrB2-ZrC-SiC Composite

To further improve the ablation resistance of the C/SiC composite at elevated tem-
peratures, UHTCs of ZrB2 and ZrC can be collectively incorporated into the composite
due to their high melting points of 3250 ◦C and 3540 ◦C, along with their low densities of
6.1 g/cm3 and 6.7 g/cm3, respectively, which will create a C/ZrB2-ZrC-SiC composite [163].
Compared to C/ZrC-SiC and C/ZrB2-SiC composites, this incorporation can yield better
hardness, fracture toughness, and flexural strength. Moreover, Equations (1)–(24) will occur
during ablation.

Figure 9 details the morphology of the C/ZrB2-ZrC-SiC composite both before and
after ablation, with a relatively uniform Zr element (Figure 9b). The vaporization of SiO
escape promotes the development of poriferous and lax structure (Figure 9c). The ablation
mechanisms of the C/ZrB2-ZrC-SiC composite are displayed in Figure 10. The ZrB2-ZrC-
SiC matrix undergoes oxidation to form molten oxide scales of ZrO2-SiO2, thus developing
a Zr-Si-O glass phase, which possesses high viscosity. This can flow and seal the pores
on the ablated surface, meanwhile most of the oxidation product B2O3 evaporates above
1650 ◦C. Concurrently, the evaporation and fusion of gases (COn, SiO2 and B2O3) can



Molecules 2023, 28, 6022 16 of 30

dissipate the surface heat of the substrate. Resultantly, many small pores are formed in
the glass layer owing to the gas diffusion and evaporation, while large pores are formed
as a result of matrix ablation and possibly pre-existing pores before ablation. Therefore,
oxygen diffuses into the interior via these channel pores. In addition, both the matrix and
the molten oxidation product can be stripped away by a high-velocity and high-pressure
flame [148]. The ablation of the C/ZrB2-ZrC-SiC composite predominantly rests on the
oxidation process and the mechanical ablation triggered by the flame.
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5. Ablation of the C/SiZM Composites

To further improve the ablative resistance of C/SiM composites in complex and
extreme circumstances, other transition metals except from Zr, such as Ta, Hf, Y, Ti, Mo,
Cr, La, etc., are also incorporated into the C/SiM composite [164–168], which is called a
C/SiZM composite (Z=Ta, Hf, Y, Ti, Mo, Cr, La, etc.). Table 3 showcases recent ablation and
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oxidation properties of C/SiZM composites and provides a summary of both historical and
recent ablation research results of C/C-SiC-Z composites.

Table 3. Materials, methods, ablation, and oxidation properties of the C/SiZM composites.

Added
UHTC Composites Main Structure Interphase Matrix

(Coating)
Preparing
Method

Ablation
Method

MR *
(mg·s−1)

LR *
(mm·s−1) Ref.

Si-Hf

C/SiC-HfC

2D needled
C/C felts SiC-HfC PIP; TCVI oxyacetylene

torch 2.5 1.2 × 10−4 [169]

3D
needle-punched

felt
PyC SiC-HfC CVI; RMI plasma wind

tunnel [170]

2D carbon
fabrics SiC-HfC SPS; PIP CO2 laser 12.6 [171]

C/C-HfC-SiC SiC and HfC
coating CVR; VPS ICP plasma

wind tunnel [172]

C/C-HfB2-
SiC

SiC-coated C/C
preform HfB2-SiC PC; in situ

reaction oxyacetylene 0.147 2.67 × 10−4 [173]

C/C-SiC-HfC 2.5D C/C
preform SiC-HfC

in situ
reaction;

CVD
oxyacetylene 2.05 1.93 × 10−3 [174]

C/SiC-HfC
3D

needle-punched
preforms

PyC SiC-HfC CVI; RMI;
PIP

oxyacetylene
torch 1.5 4 × 10−3 [175]

C/C-HfB2-
SiC

2.5D needled
carbon fiber felts PyC HfB2-SiC CVI; PIP;

HSLSI
oxyacetylene

flame 0.5 4.15 × 10−4 [176]

C/C-SiC-
HfB2-Si

2.5D C/C
preform SiC-HfB2-Si SP; GSI oxyacetylene

flame 0.07 7.2 × 10−4 [177]

C/C-SiC-HfC C/C preform (SiC-
HfC)4/SiC LPCVD; oxyacetylene

torch 0.64 5.3 × 10−4 [178]

C/SiHfBCN 2D carbon fabric SiHfBCN PIP CO2 laser beam [179]

SiCf/HfC-SiC 2.5D SiC
preform PyC HfC-SiC CVI; PIP oxyacetylene

torch 1.32 7.37 × 10−3 [180]

Si-Ta

C/TaB2-SiC 2D-C/C
preform TaB2-SiC PC; TCVI oxyacetylene

torch 4.2 × 10−3 [181]

C/TaSi2
3D carbon fiber

preform TaSi2
pressure
filtration plasmatron [182]

C/SiCnw-
TaSi2

carbon fiber
preform SiCnw-TaSi2

rapid
sintering

oxyacetylene
torch [12]

C/C-SiC-
TaSi2

2D SiC-coated
C/C preform SiC-TaSi2 SAPS; PC oxyacetylene

torch 0.4 9 × 10−4 [183]

C/C-SiC-TaC
needle-

integrated C/C
felts

PyC C-SiC-TaC CVI oxyacetylene
flame [184]

Si-Zr-La

C/C/-ZrC-
SiC-LaB6

2D C/C preform ZrC-SiC-
LaB6

SPS; SAPS oxyacetylene
torch [185]

C/C-SiC-ZrC-
La 2D C/C preform SiC-ZrC-La PC; SAPS oxyacetylene

torch [186]

C/C-SiC-
ZrB2-LaB6

3D C/C preform PyC SiC-ZrB2-
LaB6

PIP; CVI; plasma
generator 0.38 3.7 × 10−4 [187]

C/C-SiC-
ZrB2-La2O3

2D C/C preform SiC-ZrB2-
La2O3

PC; SAPS oxyacetylene
flame 0.558 1.67 × 10−5 [188]

C/C-ZrB2-
SiC-La2O3

2D carbon fiber
plain cloth PyC ZrB2-SiC-

La2O3
CVI; SI; PIP air plasma

flame [28]

C/C-SiC-ZrC-
La2O3

2D C/C preform SiC-ZrC-
La2O3

SAPS oxyacetylene
torch [189]
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Table 3. Cont.

Added
UHTC Composites Main Structure Interphase Matrix

(Coating)
Preparing
Method

Ablation
Method

MR *
(mg·s−1)

LR *
(mm·s−1) Ref.

Si-Zr-Hf

C/C-SiC-HfC-
ZrC 2D C/C preform SiC-HfC-ZrC TCVI; PIP oxyacetylene

torch [190]

C/HfC-ZrC-
SiC

2.5D needled
C/C preform HfC-ZrC-SiC RMI oxyacetylene

torch 1.5 1.1 × 10−3 [191]

C/C-HfC-
ZrC-SiC 3D C/C preform HfC-ZrC-SiC CVI; PC;

SAPS
oxyacetylene

torch 0.017 [192]

C/ZrC-SiC-
HfB2

short carbon
fiber

ZrC-SiC-
HfB2

pressureless
sintering

oxyacetylene
flame 2.46 3.51 × 10−3 [193]

Si-Zr-Mo

C/C-ZrB2-
MoSi2

C/C preform ZrB2-MoSi2
plasma

spraying
oxypropylene

flame 1.91 4.8 × 10−4 [194]

C/C-SiC-
ZrB2/MoSi2

2.5D SiC-coated
C/C preform

SiC-
ZrB2/MoSi2

SAPS; oxyacetylene
torch 0.44 1.67 × 10−3 [195]

C/C-Mo-
ZrB2-MoSi2-

SiC

2D C/SiC
preform PyC

SiC-ZrB2-
MoSi2-

SiC/Mo

HVOF;
CVI; SAPS CO2 laser beam [196]

C/SiOC-
MoSi2-SiO2-
SiC/ZrB2-
MoSi2-SiC

carbon fiber
needled felt

MoSi2-SiO2-
SiC/ZrB2-
MoSi2-SiC

PIP; slurry
and

precursor
infiltration

oxyacetylene
torch [197]

Si-Ta-Hf

C/HfC-
TaC/HfC-SiC

2D needled C/C
preform

HfC-
TaC/HfC-

SiC
SAPS oxyacetylene

torch [198]

C/C-Hf-Ta-Si 2.5D C/C
preform Hf-Ta-Si-C CVD; oxyacetylene

torch 0.03 1.17 × 10−4 [199]

C/C-SiC-HfC-
TaC

2D SiC-coated
C/C preform HfC-TaC PC; SAPS oxyacetylene

torch 0.35 1.05 × 10−3 [200]

Si-Zr-Ti

C/C-ZrC-TiC-
SiC

2.5D needled
C/C preform PyC ZrC-TiC-SiC reactive

infiltration
oxyacetylene

torch 2.6 8.2 × 10−4 [201]

C/C-SiC-ZrC-
TiC

needled C/C
fabrics PyC SiC-ZrC-TiC RMI; CVI oxyacetylene

torch 0.008 [202]

C/C-ZrC-
SiC/TiC

2.5D needled
C/C preform ZrC-SiC/TiC SAPS; SSP;

CVI;
oxyacetylene

flames 1 × 10−3 [203]

Si-Ti

C/SiC-
Ti3SiC2

carbon cloths PyC SiC-Ti3SiC2 LSI; CVI; SI oxyacetylene
torch 6.3 0.024 [204]

C/C-SiC-
Ti3SiC2

C/TiC preform SiC-Ti3SiC2 LSI oxyacetylene
flame 11.8 0.06 [205]

Si-Y

C/C-SiC-
Y2SiO5

2D needle
carbon fabric SiC-Y2SiO5

TCVI; PC;
SPS

oxyacetylene
torch 0.031 2.6 × 10−3 [206]

C/C-Y2SiO5-
SiC 2D C/C preform Y2SiO5-SiC PC; SPS oxyacetylene

torch 0.035 3.43 × 10−3 [207]

Si-Zr-Cr

C/C-ZrB2-
CrSi2-SiC-Si 2D C/C preform ZrB2-CrSi2-

SiC-Si/SiC PC corundum tube
furnace [208]

C/C-SiC-Cr-
ZrC 2D C/C preform SiC-Cr-ZrC TCVI;

SAPS
oxyacetylene

flame [209]

Si-Hf-Ti C/C-HfC-TiC-
SiC C/C HfC, TiC and

SiC coating VPS; CVR ICP plasma
wind tunnel [172]

Si-Ti-Ta C/C-SiC-TiC-
TaC

2/2 C/C twill
carbon cloth SiC-TiC-TaC MI; SPS; oxyacetylene

flame 3.9 0.0022 [210]

Zr-Hf C/C-HfC-ZrC C/C preform HfC-ZrC CVD; oxyacetylene
torch [211]

Hf-Ta-Zr C/HfC-
TaC(HfC-ZrC) C/C preform

HfC-
TaC/HfC-

ZrC
CVD; oxyacetylene

torch 0.63 2.1 × 10−4 [212]
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Table 3. Cont.

Added
UHTC Composites Main Structure Interphase Matrix

(Coating)
Preparing
Method

Ablation
Method

MR *
(mg·s−1)

LR *
(mm·s−1) Ref.

SiZrHfTiCr
C/C-

(HfZrTiCr)B2-
SiC-Si

C/C preform
(Hf1/4Zr1/4

Ti1/4Cr1/4)B2-
SiC-Si

SP; GRSI oxyacetylene
ablator 0.37 1.5 × 10−4 [29]

SiZrAlCr C/C-ZrC-SiC-
Al2O3-Cr

C/C-ZrC-SiC
preform

Al2O3-SiC-
ZrC-Cr

RMI; SI;
plasma
spray

oxyacetylene
torch 0.52 4.7 × 10−4 [213]

Si-Zr-V C/C-ZrC-SiC-
V0.9-Si0.1

3D needled
carbon preform

ZrC-SiC-
V0.9-Si0.1

RMI; oxyacetylene
torch 0.25 4.3 × 10−4 [214]

Si-Mo/Ti C/C-
(Mo,Ti)Si2-SiC

porous C/C
preform

(Mo,Ti)Si2-
SiC RMI oxyacetylene

torch 0.01 2 × 10−3 [215]

Si-Mo C/C-SiC-
MoSi2

porous C/C
preform SiC-MoSi2 VFI oxyacetylene

torch 1.34 3.5 × 10−3 [216]

SiZrMoTa C/SiCO-TaSi2-
MoSi2-ZrO2

carbon felts TaSi2-MoSi2-
ZrO2

sol-gel;
pyrolysis

oxyacetylene
flame 0.4 8.33 × 10−4 [217]

SiZrCrY
C/C-ZrSi2-

CrSi2-
Y2O3/SiC

2D SiC-coated
C/C preform

ZrSi2-CrSi2-
Y2O3/SiC SAPS; oxyacetylene

torch 0.16 1 × 10−3 [218]

SiZrCrAl C/C-ZrC-SiC-
Al-Cr

2.5D needled
C/C preform

ZrC-SiC-Al-
Cr CVD; RMI oxyacetylene

torch 0.02 2.5 × 10−4 [219]

Si-Zr-
La/Y

C/SiC-ZrC-
La2O3;

C/SiC-ZrC-
Y2O3

3D needled felt

SiC-ZrC-
La2O3;

SiC-ZrC-
Y2O3

CVI; RMI;
PIP

oxyacetylene
torch

1.19;
4.52

9.93 ×
10−3;

0.0178
[220]

Si-Mo-
(Ti/Al)

C/C-MoSi2-
SiC-(Ti/Al)

needle-punched
C/C preform PyC MoSi2-SiC-

(Ti/Al) CVI oxyacetylene
torch 0.01 2 × 10−3 [221]

Si-Mo-Hf-
W

C/ZrB2-SiC-
MoSi2;

C/ZrB2-SiC-
HfSi2;

C/ZrB2-SiC-
WSi2;

short carbon
fiber

ZrB2-SiC-
MoSi2;

ZrB2-SiC-
HfSi2;

ZrB2-SiC-
WSi2;

ball-
milling;

hot-
pressing

oxyacetylene
torch [222]

Si-Zr-Y C/C-ZrB2-
SiC-Y2O3/SiC C/C preform ZrB2-SiC-

Y2O3/SiC PC; APS muffle furnace [27]

Si-Zr-Sm
C/C-

ZrB2/SiC-
Sm2O3

C/C preform ZrB2/SiC-
Sm2O3

APS; IPS plasma torch 0.319 [223]

Si-Cu C/C-SiCW-
Cu

carbon fiber
bundle SiCW-Cu CVD; CVI; oxyacetylene

torch 4.56 8 × 10−3 [224]

Si-Nd C/C-Si-SiC-
SiO2-Nd2O3

SiC coated C/C
preform

Si-SiC-SiO2-
Nd2O3

CVI; laser
cladding laser-ablation [225]

Si-Al C/C-
Al20Si/graphite

3D needled C/C
preform Al20Si/graphite GCVI; combustion

chamber [226]

Si-Zr-Ta C/SiC-ZrB2-
TaxCy

carbon fiber
cloth mat

SiC-ZrB2-
TaxCy

RHP; PIP oxyacetylene
torch 1.33 1.9 × 10−4 [227]

Si-Zr-Nb C/SiC-NbC-
ZrC 2D C/C preform SiC-NbC-

ZrC SAPS oxyacetylene
torch 0.48 1.3 × 10−4 [228]

Si-La C/C-SiC-
La2O3

2.5D carbon
fiber felts PyC SiC-La2O3 PIP; CVI; plasma

generator 0.722 0.0333 [229]

SiTiZrHfNbTa C/(TiZrHfNbTa)
C-SiC

3D-needled
carbon fiber PyC/SiC (TiZrHfNbTa)C-

SiC PIP; CVI; air plasma
torch 2.60 2.89 × 10−3 [230]

Si-Zr-V C/C-ZrC-SiC-
V C/C preform ZrC-SiC-V RIM oxyacetylene

torch 2 7 × 10−4 [231]

Si-Zr-Cu C/C-SiC-ZrC-
Cu

needled carbon
fiber felts PyC SiC-ZrC-Cu CVI; PIP;

VPI
oxyacetylene

flame 3.4 3.5 × 10−3 [232]

Note *: MR refers to mass ablation rate; LR is liner ablation rate.
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Composites of C/SiM modified with Hf demonstrate remarkable thermal stability,
where the melting point of Hf approaches 2227 ◦C. During the ablation process, the follow-
ing chemical reactions take place:

2HfC(s) + 3O2(g)→ 2HfO2(s) + 2CO(g) (25)

HfC(s) + O2(g)→ HfO(g) + CO(g) (26)

HfC(s) + 2O2(g)→ HfO2(s) + CO2(g) (27)

2HfB2(s) + 5O2(g)→ 2HfO2(s) + 2B2O3(g) (28)

The ablation mechanisms of the C/SiC-HfC and C/SiC-HfB2 are provided in Figure 11.
The formation of SiO2-HfO2 protects the fiber from ablation during the initial ablation.
However, these ablative products lose their protective function over time owing to me-
chanical denudation and thermal chemical ablation damage. In fact, HfO2, SiHfxOy-based
layers (SiHf-O glass) and liquid SiO2 can protect the fiber from ablation.
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1773 K over time, while i,v,vi,vii signify the same process at 1973 K as time progresses, reprinted with
permission from Ref. [177], Copyright 2021, Elsevier.
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In terms of the ablative mechanisms of the Ta-added C/SiM composite, the formation
of a mosaic-structured Ta-Si-O glassy layer, alongside the SiO2 layer and Ta2O5 on the
surface of the C/C composite, inhibits oxides from damaging the fibers. Ta2O5, acting as
“pinning phases”, is beneficial to maintain the stability of TaB2-SiC coating and augmenting
its ablative resistance. In the case of the Zr-La added C/SiM composite, the oxide of La
promotes the liquid phase sintering of ZrO2, and generates a molten phase of La2Zr2O7.
Additionally, evolution of La2O3, La2Si2O7, La0.71Zr0.29O1.65, and micron-sized ZrO2-La2O3-
SiO2 liquid phase layers provide superb oxygen barrier protection for the composites.
When Zr-Hf is incorporated into C/SiM composites, the consequent dense, compact, and
continuously oxidized HfO2-ZrO2-SiO2 mixture layer is helpful for ablation protection.
Moreover, the addition of Zr-Mo to the C/SiM composite leads to the formation of SiO2-
ZrO2-Mo4.8SiC0.6 oxide protective barrier that impedes oxygen diffusion into the substrate
interior. For the Ta-Hf modified C/SiM composite, an integral scale constituted by Hf-Ta-
Si-O (HfO2-Ta2O5-SiO2 ceramic sheet) oxides act as oxygen insulator, and the formation
of micro-cracks mitigates thermal stress. For the Zr-Ti enhanced C/SiM composite, the
multiphase oxidation scale of Zr-Ti-Si-O glass provides exceptional resistance against the
ablation of the substrate.

As for other Ti, Y, Cr, Al, V, Mo, Sm, Cu, Nd, Nb, et al., added C/SiM composites, the
primary protective oxide layers TiO2, Y2O3, Cr2O3, Al2O3, V2O3 (V2O5), MoSi3 (Mo5Si3),
Sm2O3, CuxO, Nd2O3, NbO (NbO2 and Nb2O5) contribute to the anti-ablation resistance
of the substrate.

6. Conclusions and Future Perspectives

In this paper, ablation characteristics of carbon fiber-reinforced Si-based composites
has been exhaustively reviewed. The ablation mechanisms were comprehensively provided.
For the ablation of carbon fiber-reinforced Si-based materials, oxides of Si and other UHTCs
(Zr, Ta, La, Hf, Mo, Ti, Y, Cr, Al, V, Mo, Sm, Cu, Nd, Nb, et al.) with high melting points
can collaboratively protect the carbon fiber substrate from ablation, particularly at elevated
temperatures. The synergistic effect of SiO2 combined with the corresponding oxides of
UHTCs can potentially extend their usage to environments with higher temperatures. In
addition, over time, the gas oxidations gradually evaporate and a large number of pores and
cracks are formed on the surface. Consequently, the oxygen diffuses into the carbon fiber
substrate and causes oxidation. Ultimately, this results in the damage of the composites.
Meanwhile, thermo-mechanically, this can also result in the depletion of surficial coating.

However, following issues need further attention in the study of carbon fiber-reinforced
high-temperature ceramic composites to enhance their practical applications:

(1) The mechanical properties

When high-temperature materials are utilized in actual environments, consideration
must be given not only to their anti-ablation properties, but also to their mechanical
properties. Therefore, properties such as tension, compression and bending, etc. should
all be studied concurrently to provide an accurate assessment of their comprehensive
performance in the future.

(2) Selection of reinforcement

In order to further optimize performance under high-temperature conditions for
certain materials, an appropriate reinforcement structure can be reasonably selected. When
they are used as the primary structural component, 2D or 3D preforms with an integral
structure can be employed directly.

(3) Matrix modification

The use of a Si-based matrix is selected primarily due to the formation of glassy and
molten SiO2 at temperatures approaching to 1800 ◦C. Coincidentally, when the tempera-
tures exceed this figure, refractory metals can also be incorporated. This would result in
the production of a Si-relevant oxide together with other refractory metals. As a result,
the more stable and continuous protective dense oxide scale can be created, limiting the
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diffusion pathways, and ensuring the structural stability of the composites. Simultaneously,
the metal size and ratios used should also be considered, as different ratios can produce
different reaction products, and hence further affect the overall protective capacities of
the composite.

Finally, further research is required to understand which type of refractory materials
can offer the best oxidation resistance for the composite, and what kind of test methods are
best to evaluate the anticipated resistance abilities for their intended applications.
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