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Abstract: Atherosclerosis is a multifactorial, progressive, chronic inflammatory disease. Ultrasound
and magnetic resonance imaging are the most accurate predictors of atherosclerotic plaque insta-
bility (MRI). Cytokines such as osteopontin, osteoprotegerin, and metalloproteinase 9 could be
used as the most recent markers to identify and track the efficacy of anti-atherosclerotic therapy.
Patients with USG and MRI-verified unstable atherosclerotic plaque were included in the study.
Biomarker concentrations were measured and compared before and after PCSK9 inhibitor therapy.
Additionally, concentrations prior to treatment were correlated with MRI images of the carotid artery.
After treatment with alirocumab, the concentrations of MMP-9 (p < 0.01) and OPN, OPG (p < 0.05)
decreased significantly. Furthermore, the results of OPN, OPG, and MMP 9 varied significantly
depending on the type of atherosclerotic plaque in the MRI assay. In stable atherosclerotic plaques,
the concentrations of OPN and OPG were greater (p < 0.01), whereas the concentration of MMP9
correlated with the instability of the plaque (p < 0.05). We demonstrated, probably for the first time,
that alirocumab therapy significantly decreased the serum concentration of atherosclerotic plaque
markers. In addition, we demonstrated the relationship between the type of atherosclerotic plaque as
determined by carotid MRI and the concentration of these markers.

Keywords: PCSK-9 inhibitors; atherosclerotic plaque; carotid MRI; osteopontin; osteoprotegerin;
matrix metalloproteinases

1. Introduction

Cardiovascular diseases (CVD), such as coronary artery disease (CAD), peripheral
artery disease (PAD), and cerebrovascular disease, are one of the leading causes of death in
industrialized societies and a worldwide concern. Atherosclerosis, a multifactorial, chronic,
progressive inflammatory disease that affects the arteries throughout the body [1,2], is
the leading cause of cardiovascular disease. Numerous studies have demonstrated that
inflammation plays a crucial role in atherogenesis, as indicated by the presence of a large
number of inflammatory cells, primarily monocytes, macrophages, and T lymphocytes in
the atherosclerotic plaque [3,4]. Atherogenesis begins with the accumulation of plasma
lipoproteins, particularly low-density lipoprotein cholesterol (LDL-C), in the endothelium,
the activation of inflammatory cells, and the increase in collagen synthesis in vascular
smooth muscle cells. It is followed by the production of proinflammatory cytokines,
hydrolytic enzymes, coagulation factors, and adhesion molecules by activated macrophages
and T cells. They may play a role in the progression and instability of atherosclerotic
plaques [4–7]. High-risk or vulnerable plaques are associated with an increased risk
of plaque rupture, embolism not under control, and cardiovascular events. Changes
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in the plaque’s histological structure reveal that it has a large lipid core, a thin fibrin-
coated cover, wall clots or effusions within, and a high number of macrophages and other
inflammatory cells. Additionally, this type of plaque may exhibit ulceration [8,9]. Imaging
techniques such as ultrasonography and highly sensitive and specific magnetic resonance
imaging (MRI) are the most accurate at predicting when an atherosclerotic plaque will begin
to disintegrate [10,11]. Numerous previous studies [12–15] indicate that standard lipid-
lowering therapy with statins reduces intravascular lesions as measured by intravascular
ultrasound (IVUS). Not only is the inflammatory process detected in arterial plaque but also
in peripheral blood. Blood levels of inflammatory markers may be useful for estimating
cardiovascular risk and tracking disease progression. Serum concentrations of C-reactive
protein (CRP), interleukin-6 (IL-6), and LDL are highly correlated with clinical symptoms
of atherosclerosis and an increased risk of death from cardiovascular disease [16,17].

In the last century, medical imaging played a key role in assessing carotid arteries.
They allow visualization of the atherosclerosis plaque. The precision of recognizing the
pathology state exceeds 90% [18,19]. Magnetic resonance imaging is currently the most
sensitive method of diagnosing atherosclerotic lesions [10]. Carotid plaque imaging tech-
niques by MRI include black-blood and bright-blood imaging. Black-blood imaging is a
technique that uses double or quadruple inversion recovery in T1, T2, and proton density
sequences to suppress the signal from circulating blood. The lumen appears dark, allowing
for a more precise delineation of the vessel wall and plaque components. Bright-blood
is a technique for magnetic resonance angiography (in which the lumen appears to be
hyperintense); it utilizes gradient-recalled echo sequences (e.g., 3D time-of-flight). This
sequence is advantageous for enhancing the visibility of the fibrous cap and superficial
calcifications. The current recommendation for imaging and interpretation of carotid
plaques is the use of various contrast image sequences: T1, T2, proton density, 3D time-off
light, and postcontrast T1 sequences [20]. Gadolinium decreases the T1 time constant
and increases contrast resolution and signal-to-noise ratio (SNR) [21]. It results in a more
defined fibrous cap and lipid core, higher fibrous tissue intensity, and is associated with
neovascularization and macrophage infiltration. To minimize motion artifacts, all MRI
sequences are fat-suppressed and cardiac-triggered. MRI can be used to define the form of
carotid plaques as well as to identify and quantify plaque components such as the lipid-
rich necrotic core, fibrous cap thickness, intraplaque hemorrhage (IPH), and calcifications.
Multi-contrast MRI (T1, T2, proton density, and 3D time-of-flight) had a sensitivity of
81% and a specificity of 90% for detecting a thin or ruptured cap. The thickness of the
fibrous cap on T1-weighted (T1W) imaging, both pre-and post-gadolinium injection, also
correlates well with histology [22]. A retrospective investigation indicated an increased
risk of developing symptoms in patients with a previously detected burst fibrous cap by
MRI, while a prospective analysis discovered an increased risk of developing symptoms
in patients with a previously detected ruptured fibrous cap by MRI [23]. Multi-contrast
MRI correctly found IPH as a hyperintense signal on T1W turbo spin-echo pictures with a
sensitivity of 93% and a specificity of 96% and on T1W 3D gradient echo images (direct
thrombus MRI) with a sensitivity and specificity of 84% and 86%, respectively [24]. There is
a substantial correlation between IPH and cerebral ischemia symptoms in retrospective and
prospective investigations. IPH was related to considerable plaque progression during an
18-month period in asymptomatic patients [25]. Parmar et al. reported that type VI plaque
was associated with an increased risk of cerebral ischemia, which proves its instability [26].

However, researchers worldwide are constantly looking for other biomarkers to detect
vulnerable plaque, which could be used in the prevention of cardiovascular episodes and
also as markers used in monitoring the response to anti-atherosclerotic therapy. Examples
of these biomarkers are osteopontin (OPN), osteoprotegerin (OPG), soluble CD40 ligand
(sCD40L), metalloproteinase 9 (MMP-9), and myeloperoxidase (MPO). Myeloperoxidase
(MPO) is a protein that belongs to the family of heme peroxidases and is mainly expressed
in neutrophils and monocytes. MPO plays a major role in antimicrobial activity against
various pathogens, mainly by participating in phagocytosis. Elevated MPO plasma levels
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are strongly related to inflammation reactions and increased cellular oxidative stress [27,28].
Multiple studies show a strong correlation between MPO and CVD, including CAD and
PAD [29–31]. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in
extracellular matrix remodeling and are responsible for leukocyte recruitment to inflam-
matory spots, thus acting as important regulators of the inflammation process. Therefore,
excessive or imbalanced MMP-9 secretion is related to tissue damage in several inflam-
matory disorders [32]. MMP-9 plays a part in the progression of arteriosclerosis. MMPs
are detected in atherosclerotic plaques and in peripheral blood. Many studies show that
plasma levels of MMP-9 are associated with a high risk of plaque rupture and recurrent
cardiac events [33,34]. CD40 is a protein situated on the surface of antigen-presenting cells
that is activated by T-cell CD40 ligand. This interaction promotes the release of various
inflammatory cytokines due to the activation of endothelial cells [35]. Studies show a
correlation between the CD40/CD40L signaling pathway and the development and pro-
gression of atherosclerosis [36]. OPG is a soluble glycoprotein belonging to the TNF- α
(tumor necrosis factor α) receptor family with pleiotropic effects on bone metabolism. It
was originally discovered as a bone resorption inhibitor, and its expression and production
are regulated by various cytokines and hormones. Recently, studies have shown that OPG
is produced in vitro by a variety of tissues, including smooth muscle cells and endothelial
cells [37]. In patients with CAD, there is a link between OPG levels and inflammation
in the arterial wall [38]. OPN is a phosphorylated glycoprotein found mainly in bone
tissue and is responsible for bone formation and calcification. Studies showed OPN to be a
multifunctional protein that is upregulated in different inflammatory conditions, including
atherosclerosis, and is responsible for the calcification process of plaques [38]. Moreover,
many reports prove the correlation between plasma OPN levels and the severity of the
narrowing of the arteries underlain by CVD [39].

Protein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the newest class of
cholesterol-lowering drugs. The effect of PCSK9 is a decrease in the number of LDL recep-
tors (LDL-R). PCSK9 inhibitors act by inhibiting the circulating PCSK9, thereby increasing
LDL-R levels, which promotes the uptake of LDL by the liver and leads to a reduction
in LDL-C concentration in serum. In accordance with the guidelines of the American
Heart Association (AHA) and the European Society of Cardiology (ESC), they are used
as monotherapy or in combination with statins or ezetimibe to intensify lipid-lowering
therapy [40,41]. Recently, it was discovered that the lipid-lowering effect is not the only ef-
fect of action that PCSK9 inhibitors have. Pleiotropic properties such as anti-atherosclerotic,
plaque stabilization, anti-aggregation, anti-coagulant effect, and inflammation reduction
were described [42,43]. Several epidemiological studies have explored the relationship be-
tween PCSK9 and inflammation. These studies examined the relationship between PCSK9
and a number of conventionally important inflammatory markers, including white blood
cells (WBCs), fibrinogen, and hs-CRP (Table 1).

Table 1. Correlation of plasma PCSK9 levels with inflammatory markers in patients with no lipid-
lowering therapy (ACS, acute coronary syndrome; CAD, coronary artery disease; hs-CRP, high-
sensitive C-reactive protein; WBC, white blood cell count).

Author Study Design Inflammatory Marker Coefficient (r) p-Value

Gencer et al.
[44]/SPUM-ACS study

Multi-centre prospective cohort study
(2168 ACS patients) hs-CRP 0.077 0.006

Li et al. [45] Single-centre cross-sectional study
(251 stable CAD patients) WBC 0.167 0.008

Zhang et al. [46] Cross-sectional study (219 stable
CAD patients)

Fibrinogen
hs-CRP

0.211
0.153

0.002
0.023

Li et al. [47] Prospective study (552 CAD patients)
WBC

Fibrinogen
hs-CRP

0.077
0.181
0.101

0.014
<0.001
0.003
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Despite the fact that PCSK9 inhibitors are relatively new drugs available on the market,
their safety profile has been quite well known, and the results of clinical trials and meta-
analyses clearly indicate that they are well-tolerated drugs [48–51]. A meta-analysis of
25 RCTs showed only 1.9% of patients on evolocumab therapy discontinued therapy due to
severe adverse events, compared to 4.8% for aliroocumab in the long-term follow-up [52].
In a meta-analysis of 39 RCTs, including a total of 66,478 patients, Guedeney P et al.
found no difference between placebo and PCSK9 inhibitors for neurocognitive impairment,
rhabdomyolysis, or new-onset type 2 diabetes [53]. The most frequently reported side
effects were gastrointestinal upset, upper respiratory tract infections, and musculoskeletal
complaints, which were most often resolved during follow-up [54].

A new drug with a common mechanism of action—blocking the PCSK9
protein—inclisiran is a small interfering RNA (siRNA). The main action of siRNA is
post-transcriptional gene silencing. In addition to reducing LDL-C, inclisiran also reduces
the level of atherogenic lipoprotein A (LpA), reducing cardiovascular risk [55]. This effect
was not observed for statins and ezetimibe; the first lipid-lowering drugs for which it was
demonstrated were PCSK9 inhibitors. Over 50% reduction of LDL-C was demonstrated
during inliciran therapy [56]. Most of the reported adverse effects of inclisiran were mild
and disappeared during observation; they were limited to injection site reactions. Other
systemic side effects were observed, like infectious symptoms, e.g., musculoskeletal pain,
fever, fatigue, or nasopharyngitis [57]. Due to its specific mechanism of action, inclisiran
can be used in patients with chronic kidney disease or liver damage [58].

The aim of the study was to assess the effect of PCSK9 inhibitors in a 90-day interven-
tion on the serum levels of arteriosclerotic plaque markers such as sCD40L, OPN, OPG,
MMP 9, and MPO and the correlation between marker concentration and the results of a
carotid MRI examination.

2. Results
2.1. Comparison between the Study and the Control Group

There were no observed significant differences in terms of demographic data (age,
gender, smoking, and weight) between the study and control group (Table 2).

Table 2. Baseline characteristics of patients (values are mean ± SD unless indicated otherwise).

Control Group Study Group

Number of patients 12 16

Age, years 57 ± 5 58 ± 6

Body mass index 27.2 ± 2.6 27.8 ± 2.0

Women, % 37 38

BMI 27.4 ± 2.7 28.1 ± 2.2

WHO guidelines on physical activity, % 84 81

Smokers, % 26 25

Alcohol abuse No No

Systolic blood pressure, mmHg 132 ± 6 134 ± 5

Diastolic blood pressure, mmHg 84 ± 4 83 ± 4

White blood cell count, ×109/L 5.2 ± 1.1 8.0 ± 1.4

High-sensitivity C-reactive protein, mg/L 1.86 ± 0.96 2.84 ± 1.14

However, statistically significantly lower concentrations of total cholesterol (TC),
LDL-C, high-density lipoprotein cholesterol (HDL), and triglycerides (TG) (p < 0.001) were
observed in the control group. The concentrations of the tested arteriosclerotic markers
between the control group and the study group before treatment were compared. We
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observed that in the control group, concentrations of OPN (p < 0.01), OPG (p < 0.01),
MMP-9 (p < 0.05) were statistically significantly lower. There were no statistically significant
differences in sCD40L and MPO concentrations between these two groups (Table 3).

Table 3. Concentrations of plasma lipids and cytokines in study group before treatment versus
control group (values are mean ± SD unless indicated otherwise).

Control Group Study Group p Value

Total cholesterol, mg/dL 158.2 ± 10.6 242.7 ± 11.8 p < 0.001

Low-density lipoprotein
cholesterol, mg/dL 94.4 ± 8.7 181.2 ± 10.2 p < 0.001

High-density lipoprotein
cholesterol, mg/dL 47.1 ± 4.4 46.1 ± 4.3 p < 0.001

Triglicerydes, mg/dL 112.2 ± 9.6 198.6 ± 13.2 p < 0.001

Osteopontin, ng/mL 11.12 ± 4.30 15.32 ± 3.20 p < 0.01

Osteoprotegerin, pmol/L 4.23 ± 1.20 5.28 ± 1.11 p < 0.01

Metaloproteinase-9, ng/mL 255 ± 86 428 ± 82 p < 0.05

Soluble CD40 ligand, ng/mL 2.14 ± 0.80 3.69 ± 0.69 p > 0.05

Myeloperoxidase, ng/mL 426 ± 112 560 ± 96 p > 0.05

2.2. Changes in Serum Biomarkers

The effect of treatment with PCSK-9 inhibitors on the concentrations of the individ-
ual mediators mentioned above was estimated. There was observed, after treatment, a
statistically significant decrease in concentrations of MMP-9 (p < 0.01) and OPN, OPG
(p < 0.05). In order, there were no statistically significant differences in sCD40L and MPO
concentrations before and after treatment (Table 4). The concentration of arteriosclerotic
markers that were statistically significant depending on the subject group is presented
in Figure 1.
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Table 4. Comparison of arteriosclerotic marker levels between the study group before and
after treatment by PCSK9 inhibitors. sCD40L—soluble CD40 ligand; OPN—osteopontin;
OPG—osteoprotegerin; MMP-9—metalloproteinase 9; MPO—myeloperoxidase.

Marker Before Treatment After Treatment p Value

sCD40L (ng/mL) 3.69 ± 0.9 3.11 ± 0.55 p = 0.094
OPN (ng/mL) 15.32 ± 3.20 13.24 ± 3.18 p < 0.05
OPG (pmol/L) 5.28 ± 1.11 4.28 ± 1.02 p < 0.05

MMP 9 (ng/mL) 428 ± 82 362 ± 64 p < 0.01
MPO (ng/mL) 560 ± 96 460 ± 82 p = 0.082

2.3. Correlation of Concentrations of Arteriosclerotic Markers with Results of Carotid Artery
MRI Examination

We observed a significant difference in the results of OPN, OPG, and MMP 9 depending
on the type of atherosclerotic plaque in the MRI assay. In atherosclerotic plaques considered
more stable, the levels of OPN and OPG were higher (p < 0.01), while the levels of MMP9
concentration correlated with the instability of the atherosclerotic plaque (p < 0.05) (Table 5).

Table 5. Correlation of concentration arteriosclerotic markers with results of carotid arteries
MRI examination. sCD40L—soluble CD40 ligand; OPN—osteopontin; OPG—osteoprotegerin;
MMP-9—metalloproteinase 9; MPO—myeloperoxidase.

Type of Carotid Atherosclerotic Lesions:

Marker Type IV-V (n = 10) Type VI (n = 6) Control Group (n = 12) p Value

OPN (ng/mL) 15.86 ± 3.42 14.94 ± 3.02 11.12 ± 4.30 p < 0.01

OPG (pmol/L) 5.64 ± 1.18 5.02 ± 1.0 4.23 ± 1.20 p < 0.01

MMP-9 (ng/mL) 398 ± 60 468 ± 94 255 ± 86 p < 0.05

CD40L (ng/mL) 3.56 ± 0.62 3.81 ± 0.72 2.14 ± 0.80 p > 0.05

MPO (ng/mL) 522 ± 63 592 ± 104 426 ± 112 p > 0.05

3. Discussion

Atherosclerosis contributes to the onset and progression of cardiovascular disease.
CVD is the most common cause of death worldwide [59]. The group of cardiovascular
diseases includes stroke. It is at the top of the list of causes of death. Each year, 12.2 million
patients worldwide suffer a cerebral infraction, of which 62.4% are ischemic. It is estimated
that this issue will increase by a factor of two over the next decade. Approximately 87% of
ischemic strokes are attributed to modifiable risk factors, such as lipid levels [60]. One of the
most common underlying causes of stroke [61] is atherosclerotic disease, which typically
affects the proximal portion of the internal carotid arteries. Today, the healthcare system
faces challenges in terms of early diagnosis, early identification of pathological conditions
that may lead to this condition, and implementation of the appropriate treatment. Scientists
from all over the world were interested in a project aimed at discovering new, simple
diagnostic methods for atherosclerosis.

To the best of our knowledge, we assessed for the first time the appearance of
atherosclerotic plaque using carotid magnetic resonance imaging in relation to plasma
levels of plaque markers such as OPN, OPG, MMP-9, MPO, and sCD40l. We showed a
statistically significant higher level of OPG and OPN serum concentration in patients with
atherosclerotic plaques classified according to AHA in the MRI study as less unstable than
VI, containing possible calcification (types IV and V) [23]. Conversely, a higher level of
MMP-9 was present in patients with type VI atherosclerotic plaque, which according to the
AHA is described as unstable, containing a thrombus, and having intraplaque hemorrhage.
There was no correlation between the MRI examination and the concentrations of MPO
and sCD40l.
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In our work, the biochemical levels of atherosclerosis markers OPN, OPG, and MMP-9
showed statistically significant differences between the study group and healthy people in
the control group. In vivo overexpression of OPN in mice caused intensified atherosclerotic
plaque formation [62]. In our work, we proved that in patients with carotid atherosclerotic
plaque, the serum concentration of OPG was statistically significantly higher than in the
control group. A former study showed that serum OPN concentration is associated with
early carotid atherosclerosis [63]. Additionally, Golledge et al. observed significantly higher
OPN expression in carotid plaque after the endarterectomy of symptomatic patients [64].
The results of our study showed that a higher level of OPN concentration was present in
patients whose atherosclerotic plaque was more stable on MRI (Type IV and V according
to the AHA) [65]. Similar results have been reported by Polonskaya Y et al. They showed
that OPN levels are lower in unstable plaques in patients who undergo endarterectomy
during coronary bypass surgery [66]. In turn, findings by Kadoglou et al. suggest the
notion that OPN down-regulates plaque calcification and may promote plaque instability
as assessed by Gray-scale and color Doppler ultrasound examination [67]. Additionally,
patients with acute coronary syndrome had a higher serum concentration of OPN than
patients with stable coronary artery disease [68]. It could be said with full conviction
that OPN is involved in the process of developing atherosclerotic plaque [69]. According
to some studies, elevated serum OPG concentrations are associated with an increase in
morbidity and mortality from cardiovascular disease [70,71]. A prospective study showed
that osteoprotegerin is responsible for the progression of atherosclerosis in carotid arteries
and an increased incidence of cardiovascular disease [65,67,72,73]. OPG levels have been
linked to an increased risk of fatal strokes [74]. This action remains unknown. On the other
hand, animal models showed that mice lacking the OPG gene developed atherosclerosis
much faster [75]. In our survey, we proved that in patients with carotid atherosclerotic
plaque, the serum concentration of OPG was statistically significantly higher than in the
control group. Similar results were reported by Abedin et al., who reported OPG levels
were significantly higher in subjects with atherosclerosis in the aorta in their study, which
was performed on 2392 subjects [76]. In addition, Dekker had analogous observations on
742 patients at a coronary artery calcium CT examination in symptomatic patients [77]. In a
prospective study of patients with acute myocardial infarction, Cottin et al. announced an
association between OPG concentration and the intensity of CAD estimated by the SYNTAX
scale. A recent study showed high levels of OPG are independently associated with major
damage to the myocardium after ST-elevated myocardial infarction (STEMI) [78]. A recent
meta-analysis confirmed that higher levels of OPG are linked to a higher risk of death from
all causes and heart disease in people with chronic kidney disease [79–81]. We showed a
correlation between more calcified atherosclerotic plaque by MRI examination and a greater
serum OPG concentration. A similar observation was made by Strobescu-Ciobanu in the
study on patients with atherosclerosis confirmed by USG examination and histologically
assessed specimens after carotid endarterectomy. Their study proved that OPG is strongly
expressed in stable calcified plaques [82].

Macrophages and the metalloproteinase-9 (MMP-9) play a crucial role in the trans-
formation of an atherosclerotic plaque into an unstable one, particularly by weakening
the fibrous cap of the plaque [83]. A previous study demonstrated that patients with
ruptured plaques had elevated serum levels of MMP-9, and that MMP-9 was an inde-
pendent risk factor for plaque rupture [84]. In patients with carotid stenosis, elevated
serum accumulation of matrix metalloproteinase-9 was associated with doubling the risk
of stroke [85]. Olson et al. did not find a correlation between plasma MMP-9 concentration
and the presence of atherosclerotic plaque in the carotid artery [86]. We observed a higher
level of MMP-9 in a group with potentially rupture-prone atherosclerotic plaque type VI
as determined by MRI. Similar outcomes were achieved. Tan et al. found a correlation
between elevated serum MMP-9 concentrations and plaque instability, as measured by
ultrasound [87]. It is a known fact that higher PCSK9 plasma levels have been linked with
atherosclerosis progression via various mechanisms dependent on lipoprotein and also a
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pro-inflammatory state in plasma connected to circulating chemokines and cytokines [88,89].
It seems no studies have been performed so far that show the direct effect of PCSK-9 in-
hibitors on the concentrations of markers of plaque vulnerability like MMPs, OPN, and
OPG, but other studies support the hypothesis that PCKS-9 inhibitors have a stabilizing
effect on atherosclerotic plaque. Results from a single-arm mechanistic study showed
that after 6 months of PCSK9 inhibition with alirocumab, carotid plaque lipid content
was lower by 17% as assessed by MRI [90]. Additionally, the randomized controlled trial
with evolocumab proved a beneficial effect on the reduction of atherosclerotic plaques,
as assessed using IVUS [91]. There is evidence that the inhibition of PCSK9 improves
coronary endothelial function through non-invasive MRI methodology [92]. Moreover, a
study conducted by Otake et al. describes the positive effect of therapy with alirocumab on
the atherosclerosis plaque vulnerability assessed with optical coherence tomography [93].
In our study, after treatment with alirocumab, a decrease in concentrations of MMP-9, OPN,
and OPG was observed to be statistically significant. We were probably the first to describe
this relationship in vivo. However, a similar conclusion in animal models was reached by
Elsweid et al., who reported that polyconasol, a drug with an influence on lowering serum
PCSK-9 concentration, reduces OPN levels [94].

Our research has a few limitations. The major limitation is the small size of the control
group, but this is a pilot study that serves as a foundation for future investigation. The
lack of a placebo group represents the second major limitation. This is because it would
be unethical to delay PCSK-9 inhibitor treatment in this group of patients, who are at
a very high risk of CVD mortality. MRI follow-up of alirocumab-treated patients could
add value to this study. The short follow-up period of only three months may also be a
significant limitation.

4. Materials and Methods

The medical experiment was performed in the years 2019–2020. In our study, we
enrolled 16 patients (all of them were our clinical department patients), mean age of
58 +/− 6 years, diagnosed with dyslipidemia, and assessed unstable atherosclerosis based
on B-mode ultrasound common carotid intima-media thickness. The method of qualifying
patients for the study is shown in Figure 2.
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Subjects who fulfilled all the very detailed and narrow inclusion criteria were eligible
for study entry. In the control group, there were 12 participants who were matched by
age and sex, and all were healthy people. Each patient gave their informed consent in
accordance with the Declaration of Helsinki. All the information about the subjects was
anonymized. The study protocol was approved by the Bioethical Committee of the Medical
University of Silesia PCN-1-185/N/9/O 2019. All included subjects were treated with a
constant dose of alirocumab (150 mg) administered every two weeks at the same time of
day for 90 days.

4.1. Inclusion and Exclusion Criteria

Entry criteria were mixed dyslipidemia (former Frederickson hyperlipidemia type
2B)—plasma TC > 200 mg/dL, LDL > 135 mg/dL, TG > 150 mg/dL, with recognized
arterial hypertension and the presence of atherosclerotic plaque in the common carotid
artery confirmed by USG examination. Patients were excluded from the study in the case
of other types of dyslipidemias, as well as secondary causes of dyslipidemia in the course
of thyroid diseases; chronic pancreatitis; autoimmune disorders; nephrotic syndrome;
liver and biliary tract diseases; obesity (body mass index > 30 kg/m2); alcoholism; any
acute and chronic inflammatory processes; treatment for infection; cardiac disorders like
exacerbation of chronic heart failure and unstable coronary artery disease; myocardial
infarction or stroke in past medical history; treatment with other hypolipidemic drugs
(statins, fibrates, and ezetimibe) within 3 months before the study; simultaneous treatment
with other drugs that affect plasma lipid levels (i.e., polyunsaturated fatty acids, monacolin
K); and concomitant treatment with drugs that may affect inflammatory processes in the
vascular wall (including nonsteroid anti-inflammatory drugs and angiotensin-converting
enzyme inhibitors) within 3 months of the enrollment.

4.2. Arteriosclerotic Plaque Examination

The examination of the carotid arteries and assessment of complex intima media
thickness (C-IMT) in the extracranial segment was performed using B-mode ultrasound
with a linear probe at a frequency of 7.5–10 MHz. According to the Atherosclerosis Risk in
Communities Study (ARIC) [95], the C-IMT was evaluated 3 times, and the mean score was
taken into consideration. The measurement was performed in the distal common carotid
(1 cm proximal to the carotid bulb). For confirmation of atherosclerotic plaque in the carotid
artery, we assumed the thickness of the C-IMT complex was >1.5 mm or the presence of
plaque, in accordance with the guidelines (Figure 3). We decided to use Carotid MRI to
look at the structure of atherosclerotic lesions when there were signs of ruptured plaques,
such as fibrofatty; intraplaque hemorrhagic; echolucent appearance; irregular surface.
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4.3. MRI Protocol

Sixteen participants were investigated with Carotid MRI. The examination was per-
formed on a 1.5 T scanner (General Electric OPTIMA 450 w) with a HeadNeck 8-channel coil.
The protocol included TOF (time-of-flight), T2-weighted (2D FIESTA), and T1-weighted
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(3D TRICKS) sequences, with dynamic contrast enhancement at the following parameters:
1. 2D FIESTA sequence in axial, coronal and sagittal planes at slice thickness = 4 mm with
spacing = 1 mm, TR/TE = 4.4/min full, flip angle = 70◦, matrix 224 × 320, NEX = 1.0. 2. 3D
TOF in axial plane at slice thickness = 2.4 mm with overlap = 1.2 mm, TR/TE = min
full/min full, flip angle = 35◦, matrix 384 × 256, NEX = 1.0. Dynamic contrast enhanced
(DCE) images were acquired with intravenous injection (0.2 mmol/kg) gadolinium contrast
(Prohance) using the TRICKS sequence with parameters 3. 3D TRICKS in coronal plane
at slice thickness = 2.2 mm, TR/TE = 3.7/min full, flip angle = 20◦, matrix 352 × 224,
NEX = 0.75. Total scan time was up to 40 min. Based on MRI results, participants were
divided into subgroups according to AHA [65] modified criteria, and 10 were in the IV–V
class. This group consists of plaques with a lipid-rich or necrotic core, surrounded by
fibrous tissue with possible calcification. Moreover, 6 subjects were classified into the VI
category, which includes plaques with possible surface defects, IPH, or thrombus. Carotid
MRI was performed only once, before the start of the pharmacotherapy (Figure 4).
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4.4. Serum Arteriosclerotic Markers Analysis

The samples of venous blood were assembled twice, before starting therapy and
after 90 days. The blood was collected after an overnight 12 h fasting at 8 a.m. Plasma
lipids were assayed using routine laboratory techniques, and LDL levels were measured
directly. Plasma levels of interleukins, cytokines, and metalloproteinases were deter-
mined using commercially available enzyme immunoassay kits from Cloud-Clone Corp.,
Houston, TX, USA (Human CD40L—SEA064Hu 98, L170622821; MPO—SEA100Hu 94,
L190730464); Diaclone, Besancon, France (Human OPG ELISA Kit—950.030.091; Hu-
man OPN Elisa Kit—950.090.094); and BioVendor R&D, Brno, Czech Republic (Human
MMP-9—RD191439100CS), respectively. All laboratory tests were conducted on the control
group as well. Each experiment was performed on a single sample aliquot to prevent the
freeze–thaw effect.

4.5. Statistical Analysis

The collected data were processed via the Statistica TIBCO Software Inc., Palo Alto,
CA, USA, (2017) version 13.3 program, licensed by the Medical University of Silesia in
Katowice. We used the Shapiro–Wilk test to assess the normality of distributions. To fit a
normal distribution curve, a log transformation was used for the non-normal variables to fit



Molecules 2023, 28, 5928 11 of 15

a normal distribution curve. To compare quantitative variables, the t-test for independent
means and the t-test for dependent means were used. A Student’s paired t-test was used to
compare the means of variables within the same treatment group. For categorical variables,
χ2 test was used. In the case of non-compliance with the condition of the parametric
ANOVA test, its nonparametric equivalent, the ANOVA Kruskal–Wallis test, was used. We
assumed a p-value of less than 0.05 was statistically significant.

5. Conclusions

PCSK9 inhibitor therapy decreases the concentrations of metalloproteinase 9, osteo-
pontin, and osteoprotegerin. Additionally, significant differences in the results of OPN,
OPG, and MMP 9 depending on the type of atherosclerotic plaque in the MRI assay were
observed. In atherosclerotic plaques considered more stable, the levels of OPN and OPG
were higher, while the levels of MMP-9 concentration correlated with the instability of the
atherosclerotic plaque. Additional research is required to definitively assess the effect of
the novel lipid-lowering therapy on the levels of atherosclerotic biomarkers and plaque
rupture risk.
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