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Abstract: Apium graveolens is an indigenous plant in the family Apiaceae, or Umbelliferae, that
contains many active compounds. It has been used traditionally to treat arthritic conditions, gout,
and urinary infections. The authors conducted a scoping review to assess the quality of available
evidence on the overall effects of celery when treating neurological disorders. A systematic search was
performed using predetermined keywords in selected electronic databases. The 26 articles included
upon screening consisted of 19 in vivo studies, 1 published clinical trial, 4 in vitro studies and 2 studies
comprising both in vivo and in vitro methods. A. graveolens and its bioactive phytoconstituent, 3-n-
butylphthalide (NBP), have demonstrated their effect on neurological disorders such as Alzheimer’s
disease, Parkinson’s disease, stroke-related neurological complications, depression, diabetes-related
neurological complications, and epilepsy. The safety findings were minimal, showing that NBP is
safe for up to 18 weeks at 15 mg/kg in animal studies, while there were adverse effects (7%) reported
when consuming NBP for 24 weeks at 600 mg daily in human trials. In conclusion, the safety of A.
graveolens extract and NBP can be further investigated clinically on different neurological disorders
based on their potential role in different targeted pathways.

Keywords: celery; Apium graveolens; 3-n-butylphthalide; NBP; central nervous system; neurological
disorders; herbal medicin

1. Introduction

Neurodegenerative illnesses are defined as a loss of functionality and the eventual
death of nerve cells in the brain or peripheral nervous system [1]. One in three people
are estimated to experience a neurological condition at some point in their lives, making
them the second largest cause of mortality and the primary source of disability [2,3]. Most
available prevalence data are focused on dementia, as it is the highest contributing factor
towards neurodegenerative diseases. However, apart from the most common neurodegen-
erative diseases such as Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and
stroke [4], there are also a wide range of other neurological diseases such as prion disease,
motor neuron diseases, Huntington’s disease, spinocerebellar ataxia and spinal muscular
atrophy [5]. Anatomical (functional systems), cellular (neuronal groups), protein vulnerabil-
ity (structural change, biochemical modifications and altered physiological function), and
genetic changes all affect how these diseases develop. Persistent neuroinflammation often
occurs, and a neurological disease’s pathogenesis is often complex, with all these factors
interlinking and perpetuating each other [6]. Current therapeutic options for neurological
diseases mostly provide symptomatic support for the patients and caregivers, while a
successful cure is yet to be found. Early diagnosis is essential for treatment planning and
can help to optimize support for patients and their families in the long run [7]. Recent
reviews have been published regarding the use of herbal medicine for the treatment of
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neurodegenerative diseases [8,9]. Therefore, herbal treatments should be considered a
potential therapeutic candidate in order to tackle neurological disorders.

Celery is among the plants that have recently gained popularity in research [10,11].
Celery (A. graveolens) is an indigenous plant of the family Apiaceae, or Umbelliferae, origi-
nating in the Mediterranean [12,13]. It is most easily identified by its thick, very erect stem.
It is used as a food in most parts of the world. Celery contains many active compounds,
including polysaccharides (apiuman) [14], flavonoids (luteolin, apigenin) [15], phthalides
(sedanolide, 3-n-butyl phthalide) [16,17], furanocoumarins (bergapten, xanthotoxin) [18],
terpenes (d-limonene) [17], amino acids (L-tryptophan) [16], polyacetylenes (falcarinol,
falcarindiol) [19,20], and vitamins (alpha-tocopherol) [21]. One of its bioactive compounds,
known as butylphthalide, which, is a light-yellow viscous compound comprising a family
of optical isomers that includes l-3-N-butylphthalide (L-NBP), d-3-N-butylphthalide (D-
NBP), and dl-3-N-butylphthalide (DL-NBP), is known for its therapeutic value. Based on its
traditional use, A. graveolens has been known to relieve joint pain, gout, and urinary infec-
tions [22]. It has also been used traditionally to increase urine excretion, promote menstrual
discharge, and treat dengue fever and inflammation or pain in muscles or joints [23]. Based
on in vivo or in vitro studies, A. graveolens has shown its pharmacological efficacy with an-
timicrobial, antifungal, anti-parasitic, anti-inflammatory, anti-cancer, anti-ulcer, antioxidant,
anti-diabetic, anti-infertility, anti-platelet, anti-spasmolytic, hepatoprotective, cardioprotec-
tive, neuroprotective, cytoprotective, hypolipidemic, and analgesic activity [24]. There is a
need to review all relevant studies to assess whether celery has an effect on neurological
disorders. Despite the growing evidence, there have been no known published systematic
or scoping reviews narrating the effect of celery when treating neurological disorders.
Therefore, this scoping review aimed to collate and assess the quality of the currently
available scientific evidence on the overall potential use of celery in neurological disorders.

2. Results
2.1. Study Inclusion

A total of 208 records were identified from the initial search, with a final 26 articles
included [25–50]. One clinical study was identified, while the rest were 19 in vivo studies,
4 in vitro studies, and 2 studies employing both in vivo and in vitro methods. The study
selection process is presented in the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) flowchart (Figure 1).

2.2. Characteristics of Included Studies

Overall, the included studies focused on the efficacy of A. graveolens, with the majority
of studies investigating NBP as the main phytoconstituent and its derivatives and analogues
(n = 20); this was followed by extracts (n = 5), with one study not describing the intervention
in sufficient detail. The extracts were mostly sourced from the whole plant or the aerial
parts of A. graveolens, while a majority did not mention the source of the NBP and its
derivatives. Among the included studies, the in vivo studies were mainly focused on
Alzheimer’s disease (n = 4) and stroke-related neurological complications (n = 4), followed
by depression (n = 3), the general mechanisms of action of neurological disorders (n = 3),
diabetes-related neurological complications (n = 2), epilepsy (n = 2) and others (Parkinson’s
disease (n = 1), anxiolytics (n = 1), and neurotoxicity (n = 1)). In vitro studies were mostly
on Parkinson’s disease (n = 3), followed by others (diabetes (cognitive decline) and stroke in
support of in vivo findings (n = 2), and Charcot–Marie–Tooth disease (n = 1)). The clinical
study focused on therapy for Parkinson’s disease (n = 1).

Among the included studies, 4 out of 26 underwent the authentication process through
the voucher specimen deposition of the plant. In total, 4 out of 26 studies reported the
use of a qualitative analysis to determine the phytochemicals associated with A. graveolens.
In total, 3 out of 26 studies performed a quantitative analysis in order to determine the
composition of the associated phytochemicals in A. graveolens. Only one study reported [28]
using a standardized formulation of the methanolic extract of the whole A. graveolens plant.
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The routes of administration of the intervention included oral, intranasal, intravenous, and
intraperitoneal. Detailed information on the qualitative and quantitative phytochemical
analysis, as well as the standardization formula of the herbal interventions of all included
studies, are presented in the Supplementary Material: Table S3.
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2.3. In Vivo Studies

All of the 19 studies were in vivo studies, and 2 were supported by additional
in vitro findings, which further explored potential mechanisms of action. Four studies
conducted between the years 2010 and 2016 focused on Alzheimer’s disease using L-3-n-
butylphthalide (L-NBP), with an oral dosage of 15 mg/kg for a treatment duration of three
months or more. The findings showed that L-NBP improved synaptic functions; reduced
Aβ plaque load, oxidative stress, and microglia activation; and inhibited abnormal tau
hyperphosphorylation [33,34,39,45].

Another four studies were focused on stroke-related neurological disorders such as
cerebral ischemia reperfusion, focal ischemic stroke, and intracerebral hemorrhage using
either DL-3-n-butylphthalide (DL-NBP) or L-NBP; the study employed various doses and
routes of administration (intranasal, intraperitoneal and intragastric) for a duration of 2
to 14 days. The findings showed that DL-NBP significantly decreased neurological deficit
scores and increased the diameter of collaterals (arteriogenic effect), while L-NBP inhibited
the expression of tumor necrosis factor-alpha (TNF-α) and matrix metallopeptidase 9 (MMP-
9), thereby reducing inflammatory reactions due to intracerebral hemorrhage [30,37,43,44].

For depression-related neurological disorders, three studies used a crude 70% methano-
lic extract of A. graveolens or DL-NBP with dosages between 10 mg/kg and 500 mg/kg,
administered either orally or intraperitoneally for a durations of two weeks to six weeks.
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The findings for the methanolic extract of A. graveolens showed a significant improvement
in immobility and the climbing times at all treatment intervals, comparable with the flu-
oxetine treatment. In terms of the congnitive-enhancing effects using Morris water maze
and object recognition tests, A. graveolens increased the novel exploration time more than
the donepezil treatment (p < 0.05) in a non-dose-dependent manner [26]. The DL-NBP
showed significant findings with regard to the increased locomotor activity; the increased
sucrose preference in the sucrose preference test; the decreased immobility time in the
forced swimming test; and the increased number of crossing and rearing behaviors in the
open-field test [27,40].

An aqueous extract of A. graveolens and DL-NBP were studied for diabetic-related
neurological disorders between 20 mg/kg and 120 mg/kg for four to eight weeks. DL-
NBP showed neuroprotective effects in diabetes-associated cognitive decline through
hippocampal morphology normalization, by improving synaptic plasticity, and by reducing
neuronal apoptosis [36]. However, there was no mention of the dosage and duration of
the administration of the A. graveolens aqueous extract, which demonstrated only positive
results in the step-through latency test, with no significant improvements in the initial
latency and Y-maze test [35].

With regard to celery’s role in epilepsy, two studies [29,41] using either an aqueous
extract of A. graveolens or L-NBP at doses between 80 mg/kg and 1000 mg/kg administered
intraperitoneally showed increased minimal clonic seizure (MCS) latency and a significant
amelioration of epileptiform activity (p < 0.05) compared to the saline or vehicle (tween-80)
based on electroencephalography readings.

Other studies relating to celery’s potential in neurological disorders include those fo-
cusing on Parkinson’s disease, neurotoxicity, chronic cerebral hypoperfusion, chronic inter-
mittent hypoxia hypercapnia, anxiolytics, and perinatal effects [25,28,31,32,38,42]. Most of
its protective effects were related to improving oxidative stress [25,28,38] and the inhibition
of apoptosis or neuronal death via the upregulation of the CNTF/CNTFRa/JAK2/STAT3
signaling pathway [31], the activation of the SIRT1/PGC-1a signaling pathway [32] or the
upregulation of the TGF-β1/Akt/Wnt/β-catenin pathway [42]. The scientific evidence for
the pharmacological properties of A. graveolens and its phytoconstituent are described in
the tables and narratively, as follows (Table 1):

Table 1. Pharmacological properties of Apium graveolens in neurological disorders (in vivo).

Animal Intervention Details Disease Model Dosage, Duration, Route Effect/Mechanism Reference

Rat Details of celery not
mentioned Perinatal effect 300 or 600 mg/kg, 15 days,

oral

Protective effects of celery against
various lipopolysaccharide-induced

oxidative stresses
Abu-Taweel, 2020 [25]

Mice
Crude 70% methanol

extract of A.
graveolens

Depression 65, 125, 250, 375 and
500 mg/kg, 4 weeks, oral

Antidepressant-like effects of A.
graveolens in the forced swimming and

tail suspension tests, and the
cognitive-enhancing effect validated
in the Morris water maze and object

recognition tests

Boonruamkaew,
2017 [26]

Rat and
mice DL-NBP Depression

Rats: 10, 30, 100 mg/kg
Mice: 30 mg/kg

6 weeks, oral

Antidepressant effect of DL-NBP via
activation of BDNF/ERK/ mTOR

cascade in the cortex and involvement
of serotonergic system

Chen, 2021 [27]

Mice

70% methanol crude
extract of A.

graveolens whole
plant

Parkinson’s disease 125, 250, 375 mg/kg,
21 days, oral

Amelioration of behavioral
impairments, improvement in

oxidative stress parameters, decrease
in the activity of MAO-A and B, and
protection of dopaminergic neurons

by celery extract

Chonpathompikunlert,
2018 [28]

Rat Aqueous extract of A.
graveolens aerial part Epilepsy 100, 500, and 1000 mg/kg,

30 min, i.p

A. graveolens extract possesses
anticonvulsant activity and is

accompanied by an antioxidant effect
in the brain

Choupankareh,
2018 [29]
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Table 1. Cont.

Animal Intervention Details Disease Model Dosage, Duration, Route Effect/Mechanism Reference

Mice DL-NBP Ischemic stroke 40 mg/kg, duration and
route not mentioned

DL-NBP NBP exerts its
neuroprotective effects through

attenuating the cerebral infarct size
and neurological deficit score,

reducing cerebral edema and BBB
permeability

Li, 2019 [30]

Rats DL-NBP Chronic cerebral
hypoperfusion (CCH)

5 mg/kg, once daily,
21 days, intravenous

DL-NBP administration markedly
rescues memory deficits and

hippocampal neuronal death/
apoptosis by upregulating the
CNTF/CNTFRa/JAK2/STAT3
signaling pathway in CCH rats

Li, 2020 [31]

Rats DL-NBP
Chronic intermittent
hypoxia hypercapnia

(CIHH)
80 mg/kg, 2 weeks, oral

Neuroprotective effects of DL-NBP
under CIHH condition possibly

occurring through the inhibition of
apoptosis, promotion of

hypoxia-induced autophagy, and
activation of the SIRT1/PGC-1a

signalling pathway

Min, 2014 [32]

Mice L-NBP Alzheimer’s disease 15 mg/kg, 5 days/week,
18 weeks, oral

L-NBP reduces cerebral Aβ levels,
glial activation, oxidative stress,

cognitive impairment; regulates APP
processing toward the

nonamyloidogenic pathway; and
promotes APP release, thereby

precluding Aβ generation.

Peng, 2010 [33]

Mice L-NBP Alzheimer’s disease 15 mg/kg, 5 days/week,
12 weeks, oral

L-NBP is able to inhibit tau abnormal
hyperphosphorylation and improve

cognitive impairment in an APP/PS1
transgenic

Peng, 2012 [34]

Rat Aqueous extract of A.
graveolens

Diabetes (learning
memory)

Dosage, and route of
administration not

mentioned, 4 weeks

Chronic oral administration of celery
could enhance the consolidation and
recall capability of stored information

and does not affect spatial memory

Roghani, 2009 [35]

Mice DL-NBP Diabetes (cognitive
decline)

20, 60, 120 mg/kg,
8 weeks, oral

DL-NBP shows neuroprotective
effects and inhibits cognitive

impairment in diabetes by
normalizing hippocampal

morphology, improving synaptic
plasticity, and reducing neuronal

apoptosis

Wang, 2021 [36]

Mice DL-NBP Stroke

5 µL (total 80 mg/kg in
400 µL vegetable oil), 1 h
after the stroke onset and

once daily, 14 days,
intranasal

DL-NBP has potential arteriogenic
effects for stroke treatment through

restoration of local cerebral blood flow
and other sustainable positive

outcomes

Wei, 2021 [37]

Rat
Methanol extract of A.

graveolens whole
plant

Anxiety 125 and 250 mg/kg,
3 weeks, oral

Methanol extract of A. graveolens has
protective effect against

immobilization (stress-induced
anxiety-like behavior) without

memory loss.

Wongtawatchai,
2017 [38]

Mice L-NBP Alzheimer’s disease
10 and 30 mg/kg, 4 weeks,

route of administration
not reported

L-NBP significantly increases the
expression of

BDNF/TrkB/PI3K/AKT, in the brain
improving cognitive impairment

Xiang, 2014 [39]

Rat DL-NBP Depression 30 mg/kg, 14 days, oral

DL-NBP has antidepressive effects
involving the Nrf2 and NF-κB

pathways responsible for
neuroinflammation and oxidative

stress

Yang, 2018 [40]

Mice L-NBP Epilepsy 80 mg/kg, 14 days,
intraperitoneal

L-NBP reduces seizure severity and
aberrant electroencephalogram Ye, 2018 [41]

Rat NBP Neurotoxicity 40 and 80 mg/kg, 22 days,
oral

NBP administration could mitigate
the motor and cognitive impairment

caused by neurotoxicity and
mitochondrial damage

Yuan, 2022 [42]

Rat L-NBP Stroke 50 mg/kg, duration not
clear, intraperitoneal

L-NBP inhibits the expression of
TNF-α and MMP-9 reducing

inflammation, BBB damage and
intracerebral hemorrhage

Zeng, 2020 [43]
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Table 1. Cont.

Animal Intervention Details Disease Model Dosage, Duration, Route Effect/Mechanism Reference

Rat DL-NBP Stroke

60 mg/kg (pre-treatment);
80 mg/kg (post

treatment), 2 months
before stroke-induced

(pre-treatment), 1 week
post (post-treatment),

intragastric

DL-NBP exerts both preventive and
therapeutic effects on ischemic stroke
in hypertensive rats, but only exerts
therapeutic effects in normotensive

rats

Zhang, 2012 [44]

Mice L-NBP Alzheimer’s disease 15 mg/kg, 12 weeks, oral
L-NBP enhances synaptic

performance, decreases Aβ plaque
load, and inhibits microglia activation

Zhang, 2016 [45]

Abbreviation. BBB: Blood–brain barrier; BDNF: Brain-Derived Neurotrophic Factor; ERK: Extracellular signal-
regulated kinase; mTOR: mammalian target of rapamycin; MAO: Monoamine oxidases; TrkB: Tropomyosin
receptor kinase B; PI3K: Phosphatidylinositol-3 kinase; AKT: Serine/threonine-protein kinase; Nrf2: nuclear factor
erythroid 2-related factor 2; NF-κB: Nuclear factor-κB; CNTF: Ciliary neurotrophic factor; CNTFRα: CNTF receptor
alpha; JAK2: Janus kinase 2; STAT3: Signal transducers and activators of transcription 3; SIRT1: Silent information
regulator 1; PGC-1a: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; APP: Amyloid
precursor protein; PS1: Presenilin 1; TNF-α: Tumor necrosis factor-alpha; MMP-9: Matrix metalloproteinase-9.

2.4. Risk of Bias Assessment of In Vivo Studies

Figures 2 and 3 show the risk of bias assessment results for the 21 included in vivo
studies. The majority of studies have an unclear risk of bias in random sequence genera-
tion, allocation concealment, random housing, blinding, and the blinding of the outcome
assessment, as all these studies did not report on these domains.

All studies (100%) showed a low risk of bias in selective reporting, while more than
70% of the studies showed a low risk of bias for the baseline characteristics and attrition
bias (as incomplete outcome data). A further 10% of the studies were assessed as having a
high risk for other biases due to a lack of details regarding the origins of the test item and
the study funding.
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2.5. In Vitro Studies

In total, 4 out of the 26 included studies were in vitro studies and 2 were additional
in vitro findings from in vivo studies that further explored potential mechanisms of action.
Most in vitro studies (n = 3) focused on Parkinson’s disease in relation to neurological
disorders. NBP and its racemic (L-NBP/DL-NBP) showed protective effects in Parkin-
son’s disease cell models through reducing cytotoxicity, preserving the dendritic processes
surrounding cells, decreasing apoptotic cells, and inhibiting tau protein hyperphosphoryla-
tion. [46,47,49]. Another two studies [36,37] were supportive in vitro findings to the in vivo
studies for exploring the mechanisms of action in stroke and diabetes (cognitive decline)
models. One study [48] analyzed the effects of L-NBP on a hereditary disease known as
Charcot–Marie–Tooth disease (CMT), which harms the peripheral nerves. The scientific
evidence of the pharmacological properties of A. graveolens and its phytoconstituents are
described in the tables and narratively, as follows (Table 2):
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Table 2. Pharmacological properties of Apium graveolens in neurological disorders (in vitro).

Cell Intervention Details Disease Model Dosage, Duration Effect/Mechanism Reference

PC12 DL-NBP Parkinson’s
disease

0.01, 0.1, 1.0, 10 or 100
µM, 4 h

Accumulation of alpha-synuclein was
diminished by L-NBP, which also

decreased the formation of ROS and
NO which indicate cytoprotection

through inhibition of oxidative stress

Huang, 2010 [46]

PC12 NBP Parkinson’s
disease 0.1 M, 72 h

Groups that received NBP have a
majority of their dendritic processes

around maintained, indicating
neuronal cells protection

Liu, 2012 [47]

Rat hippocampal
neurons and

SH-SY5Y human
neuroblastoma

L-NBP Parkinson’s
disease 0.1, 1, 10 µM, 4 h

L-NBP guard neurons from harm
brought on by Aβ -induced damage,

possibly through preventing tau
protein hyperphosphorylation.

Peng, 2008 [49]

PC12 DL-NBP
Diabetes

(cognitive
decline)

10 µM, 24 h

DL-NBP possibly acts on Nrf2
signaling pathway to alleviates
oxidative stress and PI3K/Akt

pathways, which are essential to
enhance brain-derived neurotrophic

factor expression levels

Wang, 2021 [36]

iPSC-VPC DL-NBP Stroke 10 µM, 48 h
DL-NBP significantly increased the

expression of newly formed vascular
marker PDGFR, SERCA2 and GLUT-1

Wei, 2021 [37]

Spinal motor neuron
and SH-SY5Y human

neuroblastoma
L-NBP

Charcot–Marie–
Tooth

disease

10 and 100 µmol/L,
pre-treatment and

treatment

Protective effects of L-NBP against
mutation of HSPB8 caused by

mitochondrial dysfunction
Yang, 2017 [48]

Abbreviations. ROS: Reactive oxygen species; NO: Nitric oxide; Nrf2: nuclear factor erythroid 2–related factor 2;
PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; PDGFR: Platelet-derived growth factor receptors; SERCA2:
sarco/endoplasmic reticulum Ca2+-ATPase; GLUT-1: Glucose transporter 1, HSPB8: Heat shock protein B8.

2.6. Clinical Trial

One clinical trial was included. It is was prospective, single-center, parallel-group,
randomized controlled trial using DL-NBP as therapy for Parkinson’s disease. Patients
with idiopathic Parkinson’s disease were treated with 200 mg of DL-NBP, thrice daily for
24 weeks, alongside concomitant existing medications that patients were already taking.
The findings showed improvements in symptoms such as bradykinesia plus stiffness, based
on the non-tremor score, sleep quality, via the Pittsburgh sleep quality index scores, and
quality of life, by NBP therapy [50].

2.7. Safety Study

In total, 3 out of 26 studies contained safety findings; these were in vivo studies
(n = 2) [33,45] and one clinical trial [50]. One study using L-NBP at 15 mg/kg showed
no significant toxicity in mice after monitoring their general health for 18 weeks [33].
However, another study using L-NBP with a similar dose for 18 weeks reported that the
mice gradually died due to the poor physical condition of aging [45]. For the clinical
trial [50], it was reported that 3 adverse events out of 43 were directly associated with
the treatment in the NBP group at 200 mg three times a day for six months; these events
included itching and skin rash (n = 1), a slight elevation in the levels of alanine transaminase
(ALT) enzyme, and a mild gastrointestinal reaction.

3. Discussion

According to the Pan American Health Organization, neurological disorders account
for 533,172 deaths, 7.5 million years of life lost due to premature mortality, and 8.2 million
years lived with disability [51]. The included studies show that A. graveolens and its
compounds have potential applications in various neurological disorders, although most
of the reported studies were in the in vivo stage.

3.1. Parkinson’s Disease

Parkinson’s disease is the only application of the NBP compound, instead of a plant
extract, that has successfully reached the clinical trial stage. NBP has been shown to improve
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behavioral abnormalities in a Parkinson’s disease mice group; reduce oxidative stress via
reducing malondialdehyde levels and increasing glutathione peroxidase and the percentage
inhibition of oxygen; and protect the dopaminergic neurons by reducing the activity of
monoamine oxidase types A and B [28]. These findings were further supported by a study
that combined DL-NBP with mesenchymal stem cells, showing enhanced neuroprotection
in Parkinson’s disease caused by concussive head injury [52].

3.2. Alzheimer’s Disease

In Alzheimer’s disease studies, L-NBP has been shown to improve synaptic functions;
reduce Aβ plaque load, oxidative stress, and microglia activation; and inhibit abnormal tau
hyperphosphorylation, which plays a role in the Aβ tau synergy [45]. It is now thought that
there are two different types of interactions: major physical interactions between the two
proteins at the synapse, or indirect interactions caused by Aβ and tau’s effects on neuronal
physiology (activating kinases, preventing tau degradation, regulating excitability and
gene expression, and activating glia) in slowing the progression of Alzheimer’s disease [53].
Celery’s potential in treating Alzheimer’s disease needs to be further assessed by capturing
the spatiotemporal progression of Aβ and tau pathology and other disease characteristics,
as well as considering the contribution of complex genetic and environmental variables
that influence disease phenotypes [53].

3.3. Stroke-Related Neurological Disorders

In stroke, NBP has potential with its dual role; it has arteriogenic effects and the
ability to inhibit the expressions of TNF-α and MMP-9. Arteriogenic effects may benefit the
maintenance of pial collaterals, which are small arterial connections joining the terminal
cortical branches of the major cerebral arteries along the surface of the brain, and are
therefore important in supporting a functional brain environment [54]. Conversely, TNF-α
production is triggered by ischemia during stroke as an inflammatory response, leading to
the activation of MMP-9 expression related to secondary bleeding in the BBB [55]. These
collectively show the pleiotropic effects of NBP, which may be beneficial, given that the
pathogenesis of stroke is multifactorial and involves multiple pathways of neuroexcitotoxi-
city, neuroinflammation, structural damages, oedema in the BBB, oxidative damages, as
well as overall neurodegeneration.

3.4. Other Neurological Disorders

Other targeted pathways reported for the effects of A. graveolens in neurological dis-
orders include Nrf2 and NF-κB pathways; BDNF/ERK/mTOR (antidepressant); CNTF/
CNTFRa/JAK2/STAT3 (cerebral blood flow decreases); and SIRT1/PGC-1a (obstructive
sleep apnea). All these signaling pathways are essential contributors to chronic neuroinflam-
mation and oxidative stress in the brain. To further understand the complex transcriptional
regulation of brain function in various disease models, in-depth research on the effects
of celery and its bioactive constituents and their temporal effects on upstream regulators
and downstream effector signaling pathways in neuroinflammation and neuronal damage
needs to be carried out [56].

3.5. Celery’s Mechanisms of Action in Neurological Diseases

Celery and its bioactive compound play a role in oxidative stress, inflammatory re-
sponses, and neuronal apoptosis [57]. Most neurological disorders have three common
underlying mechanisms. The first is oxidative stress, which causes cellular damage in-
volving Nrf2 [58]. NBP is a known potent antioxidant in activating the Nrf2 enhanced
expressions of antioxidant enzymes [59,60]. These enzymes will reduce reactive oxygen
species (ROS) and prevent mitochondrial damage [61,62]. The second central mechanism is
prolonged and unregulated neuroinflammation related to NF-κB, with the production of
pro-inflammatory cytokines and chemokines associated with the self-potentiation of the
neuroinflammatory cycle. NBP plays a role in the downregulation of TNF-α and MMP-9 ex-
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pressions, leading to the inhibition of microglia activation via TLR4/NF-κB signaling, and
reducing inflammation [63–65]. The third pathway involves neurodegeneration through
apoptosis, autophagy, and necrosis. Neurodegeneration is significantly influenced by
oxidative stress and chronic neuroinflammation through the regulation of p53 activity. In a
molecular docking study, NBP showed its potential to suppress glial apoptosis by limiting
p53 degradation by inhibiting NAD(P)H quinone oxidoreductases [66]. In addition, an
animal study of Alzheimer’s disease supported NBP’s role in decreasing the expression of
p53 in the cortex, improving learning and memory abilities [67]. The role of celery’s action
in neurological diseases is summarized in Figure 4.
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3.6. Limitations

Most of the included studies have a similar limitation. Although the findings of
these studies support the role of A. graveolens in signaling pathways, they lack in under-
standing the molecular mechanism that contributes towards celery’s neuroprotective and
pharmacological effect. For example, NBP was studied on its neuroprotective role in BBB
disruption following ischemic stroke without conducting an in-depth study of the internal
relationship, possible targets, or effect of the molecular mechanism of NBP on protecting
the BBB after cerebral ischemic reperfusion [30]. When considering potential therapeutic
candidates for diseases of the central nervous system, the route of administration used to
deliver the drug to the brain is an important consideration. This is to ensure that the drug
interaction occurs on the specific targeted site. Based on our included studies, the routes of
administration include oral, intranasal, intravenous, and intraperitoneal. A distribution
study that evaluated the metabolic profile of NBP in rats via a radiochromatograph showed
that the delivery of NBP from the blood to the brain is limited by the BBB [68]. Therefore,
much research is needed to develop herb-based formulations with improved delivery using
exosomes, nanoparticles, active transporters or brain permeability enhancers, and other
non-invasive techniques [69]. As this is a scoping review, we did not perform meta-analyses
of the data. However, with time, when sufficiently homogenous literature is present for
any single neurological disorder, systematic reviews with meta-analyses may be performed
in the future.

4. Materials and Methods

A scoping review of the literature was conducted in accordance with the methodology
by Levac et al. [70]. The Preferred Reporting Items for Systematic reviews and Meta-
Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines were followed, which
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are a set of 20 essential items and 2 optional items that were created to help improve
the quality, completeness, and transparency of scoping reviews; this is presented in the
Supplementary material: Table S1 [71].

4.1. Review Objective

This scoping review was conducted to evaluate the worldwide scientific evidence on
the pharmacological properties and safety of A. graveolens plant for neurological disorders.

4.2. Inclusion and Exclusion Criteria
4.2.1. Type of Study

This review considered both clinical and preclinical (in vivo, in vitro) articles. Pro-
ceeding articles were excluded due to a lack of information for critical appraisal.

4.2.2. Type of Participants

This review included studies that either recruited human subjects with any neuro-
logical disorder, animal models or cell studies, all addressing both central and peripheral
systems.

4.2.3. Type of Intervention

This review considered any form of A. graveolens, including all plant parts and prepa-
rations including crude preparations, extracts, standardized extracts, finished products in
pharmaceutical forms (e.g., capsule, tablets, powder, liquid) containing A. graveolens as a
sole active ingredient, as well as its representative compounds.

To assess celery as a whole or as its constituents, as well as a single contributing
intervention, this review excluded studies using co-intervention in combination with celery.

4.2.4. Type of Outcomes

The following primary and secondary outcomes were selected prior to screening
and the selection of studies to facilitate a systematic assessment of the outcome measures.
These outcomes were selected based on the effects of the compounds on central and
peripheral nervous system disorders found in a published literature review and general
web search [72–77].

Primary Outcomes

Pharmacological properties of A. graveolens in neurological disorders.
Preclinical and clinical outcomes of A. graveolens efficacy studies.
Mechanism of action of A. graveolens in efficacy studies.

Secondary Outcomes

Safety: this included adverse events and safety monitoring information from clinical
studies, as well as toxicity and safety pharmacology studies from animals that were related
to applications in neurological disorders.

4.3. Search Strategy

The electronic databases MEDLINE, Web of Science, LILAC, and Cochrane Central
Register of Controlled Trials (CENTRAL) were searched for published studies from incep-
tion until November 2022. There were no restrictions applied in terms of the publication
period and language. In addition to database searches, the team screened the reference
lists and citations of retrieved articles to further identify studies for inclusion. In cases
of ambiguity, attempts were made to contact the authors of relevant articles that met the
inclusion criteria for this review.

The search strategies (Supplementary Table S2) were translated into the other databases
using the appropriate controlled vocabulary, as applicable. The general search terms used
were celery and neurological disorders and their synonyms.
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4.4. Study Selection

A pair of review authors independently screened titles and abstracts from the search
strategy according to the inclusion and exclusion criteria, with disagreements resolved via
discussion, with the help of a third author as an arbiter if required.

4.5. Data Extraction and Management

A pair of review authors independently coded all data from each included study using
a pro forma designed specifically for this review. The interventions defined in the study
were compared against our pre-defined intervention. Any disagreement among the review
authors was resolved by discussion leading to a consensus, with referral to a third review
author if necessary.

4.6. Data Analysis
Risk of Bias Assessment

Two review authors (XYL, TT) independently assessed each article included for risk
of bias in animal studies using the Systematic Review Centre for Laboratory animal Ex-
perimentation (SYRCLE) risk of bias tool. These authors scored the risk of bias in each
domain and the overall risk was reported using the Cochrane Review Manager (RevMan,
version 5.4) software [78]. Any disagreement among the review authors was resolved by
discussion leading to a consensus and involved a third review author if necessary.

5. Conclusions

In conclusion, A. graveolens, especially its phytoconstituent NBP, can be further investi-
gated regarding different neurological disorders based on its potential to have pleiotropic
effects on different targeted pathways for neurological pathogenesis. The safety of celery
extracts and NBP needs to be further established with better quality standards of reporting
for a meaningful evaluation of its dosage, efficacy, and safety before its application in future
clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28155824/s1, Table S1: PRISMA checklist; Table S2:
Search strategy for each electronic database; Table S3: Qualitative, quantitative and standardization
details of Apium graveolens interventions. Reference [79] is cited in the supplementary materials.
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