
Citation: Peng, D.; Zhang, Z.; Zhang,

J.; Yang, Y. Improving Photocatalytic

Activity for Formaldehyde

Degradation by Encapsulating C60

Fullerenes into Graphite-like C3N4

through the Enhancement of Built-in

Electric Fields. Molecules 2023, 28,

5815. https://doi.org/10.3390/

molecules28155815

Academic Editor: Marcello Brigante

Received: 13 June 2023

Revised: 7 July 2023

Accepted: 26 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Improving Photocatalytic Activity for Formaldehyde
Degradation by Encapsulating C60 Fullerenes into Graphite-like
C3N4 through the Enhancement of Built-in Electric Fields
Dongmei Peng 1,2,3, Zhongfeng Zhang 1,2,3,*, Jijuan Zhang 1,2,3 and Yang Yang 1,2,3

1 College of Furniture and Art Design, Central South University of Forestry and Technology,
Changsha 410000, China; pengdongmei202210@163.com (D.P.); t20050729@csuft.edu.cn (J.Z.);
yang193829@163.com (Y.Y.)

2 Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration,
Changsha 410004, China

3 Green Home Engineering Technology Research Center, Changsha 410004, China
* Correspondence: t19990735@csuft.edu.cn

Abstract: The photocatalytic degradation of formaldehyde by graphite-like C3N4 is one of the most
attractive and environmentally friendly strategies to address the significant threat to human health
posed by indoor air pollutants. Despite its potential, this degradation process still faces issues
with suboptimal efficiency, which may be attributed to the rapid recombination of photogenerated
excitons and the broad band gap. As a proof of concept, a series of graphite-like C3N4@C60 composites
combining graphite-like C3N4 and C60 was developed via an in situ generation strategy. The obtained
graphite-like C3N4@C60 composites exhibited a remarkable increase in the photocatalytic degradation
efficiency of formaldehyde, of up to 99%, under visible light irradiation, outperforming pure graphite-
like C3N4 and C60. This may be due to the composites’ enhanced built-in electric field. Additionally,
the proposed composites maintained a formaldehyde removal efficiency of 84% even after six cycles,
highlighting their potential for indoor air purification and paving the way for the development of
efficient photocatalysts.

Keywords: graphite-like C3N4/C60 composite; robust built-in electric field; charge transfer;
photocatalysis; formaldehyde degradation

1. Introduction

As the atmospheric environment continues to deteriorate, formaldehyde has emerged
as a critical indoor air pollutant that poses a serious threat to human health. It is commonly
discharged by industrial activities and building materials, and its impact on human health
is irreversible [1,2]. Even at low concentrations, long-term exposure to formaldehyde will
extremely damage the human nervous system and respiratory system. Due to growing
concern over the harmful effects of formaldehyde on human health, a variety of effec-
tive strategies have been developed to eliminate it rapidly. These methods, including
adsorption purification [3], thermal catalysis [4,5], biofiltration, and condensation [6,7], are
commonly used in indoor air purification. However, most of these approaches involve
merely adsorbing formaldehyde onto a filter medium without degrading the pollutants.
As a result, these air purifiers have several drawbacks, including low adsorption capacity,
the rerelease of formaldehyde into the air, and difficulties in regenerating adsorbents. Thus,
it is crucial to prioritize the exploration and development of effective solutions to eliminate
formaldehyde at low concentration levels, especially in indoor environments.

Photocatalytic oxidation is regarded as a versatile and promising strategy for air
purification credited to its low energy consumption, high efficiency, and lack of secondary
pollution; it can effectively mineralize formaldehyde to CO2 and H2O on inexpensive
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polymeric semiconductors under mild conditions [2,8–13]. The semiconductor graphite-
like C3N4, which is considered one of the most advanced metal-free photocatalysts, has
been widely applied for the photocatalytic degradation of formaldehyde due to its strong
oxidation ability, low cost-effectiveness, and long-term stability [14–18]. However, its large
band gap and limited light absorption capacity could result in the recombination of its
internal excited carriers, which would undermine its photocatalytic efficiency [19,20]. To
enhance the separation efficiency of photogenerated excitons, numerous strategies such as
semiconductor composites [9], elemental doping [21,22], dye sensitization [23,24], surface
engineering [25–28], and constructing heterojunctions [8] have been adopted to circumvent
these obstacles. Despite efforts to enhance the photocatalytic efficiency of graphite-like
C3N4, these strategies are limited by issues such as serious corrosion, high temperatures,
and tedious preparation steps. Therefore, there is an utmost urgency to discover and
develop a simple and efficient strategy for improving the photocatalytic efficiency of
graphite-like C3N4 (Scheme 1).
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Fullerenes, such as C60, are distinct forms of carbon with exceptional electronic charac-
teristics [29–34]. C60 is considered favorable for efficient electron transfer reduction due to
its closed-shell configuration [35,36]. The distinct structure of C60 makes it an outstanding
electron acceptor that effectively induces quick photoinduced charge separation while
experiencing comparatively slow charge recombination [37–39]. Wang et al. have provided
a comprehensive overview of the recent notable progress in the realms of hydrogenation
and oxidation facilitated by catalytic systems based on graphite-like C3N4 [40,41]. They
also discovered that an amalgamation of carbon nitride and carbon nanotubes displayed a
synergistic effect during optoelectronic conversion. Consequently, graphite-like C3N4 has
become a category of 2D nanomaterials resembling graphite, and its distinct structure offers
vast potential for utilization as a metal-free semiconductor that can govern photocatalytic
reactions. Huang et al. reported that the electrical performance of covalent organic frame-
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works (COFs) can be enhanced by encapsulating fullerenes into the channels of COFs via a
donor–acceptor interaction [42]. The improved electrical conductivity and carrier mobility
can promote efficient charge transfer, which is highly desirable in photocatalytic processes.

In light of the above, using an in situ generation approach, we developed a series of
photocatalytic composites, denoted as graphite-like C3N4@C60, wherein the guest molecule
C60 was encapsulated into the host graphite-like C3N4 framework. The resulting graphite-
like C3N4/C60@6:1 composite induced the formation of a strong built-in electric field, which
accelerated charge transport kinetics. In addition, this composite achieved a formaldehyde
degradation efficiency of up to 99% under visible-light irradiation, outperforming pure
graphite-like C3N4 and C60. Our study presents a pioneering approach for designing
photocatalysts based on graphite-like C3N4 and achieving efficient solar energy conversion.

2. Results and Discussion
Characterization of the Photocatalysts

The as-prepared specimens were characterized by FT-IR spectra to confirm their
structures (Figure 1a). The bands located at ~1610 cm−1 were ascribed to C=N stretching
vibration, whereas the other strong bands, at ~1243 and ~1398 cm−1, were ascribed to
C-N stretching vibration, matching the s-triazine ring in the graphite-like C3N4 well. The
FT-IR spectrum of the C60 was relatively weak, but two peaks were observed at ~1760 and
~1940 cm−1, corresponding to the C60′s internal modes. There was no obvious structural
variation between the graphite-like C3N4 and the 6 wt% C60/graphite-like C3N4 following
the deposition of the C60. However, the characteristic peaks of the graphite-like C3N4 in the
6 wt% C60/graphite-like C3N4, ranging from ~1200 to 1700 cm−1, were shifted, indicating
that there was a weak interaction between the C60 and the graphite-like C3N4. This may
have facilitated electron transfer and improved the photocatalytic activity of the composites
compared to the graphite-like C3N4.
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Figure 1. (a) FT-IR spectra of C60, g-C3N4, and g-C3N4/C60@6:1, obtained in transmission mode;
(b) XPS survey spectra of spectra of C60, g-C3N4, and g-C3N4/C60@6:1; (c) high-resolution XPS spectra
of C 1s for g-C3N4; (d) high-resolution XPS spectra of N 1s for g-C3N4; (e) high-resolution XPS spectra
of C 1s for g-C3N4/C60@6:1; and (f) high-resolution XPS spectra of N 1s for g-C3N4/C60@6:1.
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X-ray photoelectron spectroscopy (XPS) was conducted to verify the chemical compo-
sitions and determine the valence states of different species. The graphite-like C3N4 mainly
comprised the elements C, N, and O. Among them, the presence of O was attributed to
H2O and CO2 absorbed on the surface of the photocatalysts. All peak positions in the
XPS spectra of the graphite-like C3N4 and the 6 wt% graphite-like C3N4/C60 composite
were calibrated using C 1s at 284.6 eV as a reference (Figure 1b). The C 1s XPS spectrum
exhibited two peaks, with distinct binding energies, at 284.6 and 288.8 eV, which corre-
sponded to C-C and N-C=N, respectively. The N 1s XPS spectrum of the graphite-like C3N4
exhibited two distinct peaks at 400.5 and 401.7 eV, which might be attributed to C=N-C
and N(C)3, respectively, upon deconvolution. A comparison of the N 1s XPS spectrum of
the graphite-like C3N4 with that of the 6 wt% graphite-like C3N4/C60 indicated that the
binding energies of N (N-C=N) peak-shifted from 400.5 eV (graphite-like C3N4) to 399.8 eV
(6 wt% graphite-like C3N4/C60). This shift suggests that an interaction occurred between
the graphite-like C3N4 and the C60 (Figure 1c–f). The extremely weak peak at 404.8 eV was
ascribed to π excitation. Previous studies have demonstrated that a lower binding energy
of N 1s for composites is indicative of an increased electronic cloud density around the N
atoms of graphite-like C3N4. This effect is attributed to intermolecular electron diffusion
from conjugated polymers to the N sites of graphite-like C3N4 through intermolecular π-π
interactions.

The crystallinities for C60, graphite-like C3N4, and graphite-like C3N4/C60@6:1 were
characterized with X-ray diffraction. As can be clearly observed in Figure S1, the graphite-
like C3N4 and the graphite-like C3N4/C60@6:1 showed similar, prominent strong-intensity
peaks at 25.3◦, which correspond to the in-plane repeated units and the structural packing
motifs of the aromatic segments, respectively, indicating the successful preparation of
the graphite-like C3N4. The C60 displayed a cubic phase and could be indexed based
on its diffraction pattern, which demonstrated two peaks, at 10.7 and 15.5, attributed to
the (111) and (220) crystal planes, respectively. The deposition of C60 on the graphite-like
C3N4/C60@6:1 composite surface had no remarkable effects on the structure of the graphite-
like C3N4, as evidenced by the fact that the positions and intensities of the characteristic
peaks at 10.7◦ and 15.5◦, corresponding to the (111) and (220) crystal planes, respectively,
remained virtually unchanged compared with those of the bare graphite-like C3N4. These
observations indicate that the C60 was successfully deposited onto the graphite-like C3N4
without changing the crystal structure (Figure S1). The specific surface areas of the graphite-
like C3N4 and the graphite-like C3N4/C60@6:1 were explored using adsorption–desorption
isotherms performed at 77 K (Figures S2 and S3). Accordingly, the BET surface areas
of the graphite-like C3N4 and the graphite-like C3N4/C60@6:1 were determined to be
40.0 and 29.6 m2/g, respectively. However, the pore volume of graphite-like C3N4/C60@6:1
(0.082 cm3/g) was considerably lower than that of graphite-like C3N4 (0.093 cm3/g). This
difference shows that the pores of the graphite-like C3N4 were blocked or occupied by
C60 nanoparticles. The morphology of the graphite-like C3N4/C60@6:1 composite was
similar to that of the graphite-like C3N4, and there was no specific structure of C60 in the
graphite-like C3N4/C60@6:1 composite because of its limited concentration. Moreover,
the presence of dark spots with the lower transmission in the graphite-like C3N4/C60@6:1
composite indicated that there might have been some perturbation or disruption of the
C60 nanoparticles. However, this perturbation did not appear to have affected the overall
porous structure of the graphite-like C3N4. The small sizes of the C60 nanoparticles may
have allowed them to be easily incorporated into the graphite-like C3N4 nanosheets,
resulting in a well-dispersed composite (Figure 2).

UV-vis diffuse reflectance spectroscopy was utilized to characterize the optical prop-
erties of the C60, the graphite-like C3N4, and the graphite-like C3N4/C60@6:1. Both the
C60 and the graphite-like C3N4/C60@6:1 composite exhibited wide absorption edges, at
~700 nm, ascribing to the intrinsic band gap absorption of the C60. (Figure 3a). The graphite-
like C3N4/C60@6:1 composite showed obvious red-shift edges after the introduction of
C60, indicating that the graphite-like C3N4/C60@6:1 composite could broaden the spectrum



Molecules 2023, 28, 5815 5 of 11

to the visible region compared to the bare graphite-like C3N4. Based on the equation
Eg = 1240/λ, the band gaps of the graphite-like C3N4/C60@6:1 and the graphite-like C3N4
were determined to be 2.62 and 2.85 eV, respectively (Figure 3b). The smaller band gap for
the graphite-like C3N4/C60@6:1 indicates that it is more easily excited to generate free holes
and electrons. The lowest unoccupied molecular orbital (LUMO) levels of graphite-like
C3N4 and graphite-like C3N4/C60@6:1 were calculated using the Mott−Schottky method
to be −1.10 and −1.20 V versus those of Ag/AgCl, indicating that the as-prepared graphite-
like C3N4/C60@6:1 featured a more sufficient driving force for the reduction of O2 to O2

•−

(−0.48 V versus Ag/AgCl) compared to the graphite-like C3N4 (Figure 3c,d).
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Figure 3. (a) UV-vis diffuse reflectance spectra of C60, g-C3N4, and g-C3N4/C60@6:1. (b) Band
gaps of C60, g-C3N4, and g-C3N4/C60@6:1 determined with Kubelka-Munk-transformed reflectance.
(c) Mott-Schottky plots of g-C3N4 in 0.2 M Na2SO4 aqueous solution at 1000 Hz, 2000 Hz, and 3000 Hz.
(d) Mott-Schottky plots of g-C3N4/C60@6:1 in 0.2 M of Na2SO4 aqueous solution at 1000 Hz, 2000 Hz,
and 3000 Hz.
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The photocatalytic oxidation of formaldehyde was employed to assess the photo-
catalytic activity via the IR multi-gas monitor under UV-vis light irradiation for 1 h at
a wavelength range of 310–800 nm and an intensity of 2.9 mW/cm2. As displayed in
Figure 4a, the photocatalytic performance of the graphite-like C3N4/C60@6:1 composite in
HCHO degradation varied with different mass ratios of the composite material. With an
increase in the loading of the C60 on the graphite-like C3N4, the photocatalytic efficiency
increased from 40.2% to 96.4%, indicating that the incorporation of C60 can remarkably
enhance graphite-like C3N4 during photocatalytic HCHO degradation. As the amount
of C60 increases in a graphite-like C3N4/C60 composite, it could lead to a decrease in
photocatalytic activity due to shading effects that would reduce the amount of light that
would reach the graphite-like C3N4. Under the experimental conditions, the photocatalytic
efficiency of the C60 alone was found to be relatively low (14%). This observation suggests
that the incorporation of C60 into g-C3N4 will enhance photocatalytic activity for HCHO
degradation and can act as an efficient photocatalyst. Apart from its photocatalytic activity,
photochemical stability is also a crucial consideration for photocatalytic materials. In the
case of graphite-like C3N4/C60@6:1, the results of recycling experiments showed that the
composite material maintained its photocatalytic activity for the oxidation of the HCHO
over multiple cycles without any significant decline in activity (Figure 4b). Furthermore,
the control photocatalysis experiment showed that the catalyst was needed for formalde-
hyde oxidation, and light irradiation alone was not sufficient to degrade the formaldehyde
(not shown).
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•−; and
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To explore the photocatalytic mechanisms of formaldehyde degradation by graphite-
like C3N4/C60@6:1, radical detection was conducted using 5,5-dimethyl-1-pyrroline N-
oxide (DMPO) as an active species-trapping agent (Figure 4c). Under visible light and
dark conditions, absolute methanol was employed as a solvent to capture •OH and O2

•−,
respectively. Under the dark conditions, there were no characteristic EPR signals observed.
However, when the sample was irradiated with the visible light, characteristic DMPO-•OH
(hydroxyl radical) and DMPO-O2

•− (superoxide radical) peaks appeared. This suggests
that the interaction between photoinduced electrons and holes may result in the generation
of active •OH and O2

•− species. Based on the EPR experiments, the main reactive oxygen
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species involved in the photocatalysis were •OH and O2
•−. These reactive species were

produced when photoinduced charge carriers interacted with the H2O and O2 adsorbed on
the surface of the catalyst. When exposed to the visible light, the photocatalyst generated
photoinduced electrons, which reacted with the adsorbed O2 molecules to form O2

•−. This
radical then reacted with the H2O to produce •OH. Meanwhile, the surface •OH oxidized
formaldehyde into formate species. The valence band holes in the catalyst directly oxidized
the H2O and/or the −OH to form additional •OH. Eventually, the •OH further oxidized
the formate species into H2O and CO2.

In order to better understand how composites can better enhance photocatalytic ac-
tivity compared to pure graphite-like C3N4, a range of photoelectrochemical properties
was examined. The EPR signals of the graphite-like C3N4/C60@6:1 composite showed a
significant increase when exposed to visible light compared with those of pure graphite-like
C3N4. This indicates that these composites enable more effective production of unpaired
electrons and photoinduced charge carrier pairs in graphite-like C3N4. Thus, charge migra-
tion and separation are facilitated through the encapsulation of C60 into pure graphite-like
C3N4 (Figure 5a). The built-in electrical field is a critical factor for driving photogener-
ated holes and electrons to drift in reverse directions in photocatalysts, which, in turn,
dramatically accelerates exciton separation. The BIEF intensities of C60, graphite-like C3N4,
and graphite-like C3N4/C60@6:1 were estimated by employing the model established by
Kanata, and the results indicated that BIEF strength could be assessed with both surface
charge density and surface potential. The surface potentials were determined to be 10.8,
25.7, and 58.7 mV for the C60, the graphite-like C3N4, and the graphite-like C3N4/C60@6:1,
respectively. Moreover, the corresponding zeta potentials of the C60, the graphite-like
C3N4, and the graphite-like C3N4/C60@6:1 were −6.7, −16.1, and −36.1 V, respectively.
According to the open-circuit potential and zeta potential, the graphite-like C3N4/C60@6:1
(8.4) had the strongest built-in electric field, which exceeded those of the C60 (0.1) and the
graphite-like C3N4 (1.5). This significant increase in the built-in electric field indicates a
strong driving force for achieving the efficient separation of excitons (Figure 5b).
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ues for C60, g-C3N4, and g-C3N4/C60@6:1; (c) transient photocurrent responses for g-C3N4 and
g-C3N4/C60@6:1; (d) Nyquist plots for g-C3N4 and g-C3N4/C60@6:1; (e) photoluminescence de-
cay traces for g-C3N4 and g-C3N4/C60@6:1; and (f) photoluminescence spectra of g-C3N4 and
g-C3N4/C60@6:1.
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The vital role of encapsulated C60 in the charge mobility was further explored. As
expected, the graphite-like C3N4/C60@6:1 exhibited a higher photocurrent intensity than
that of the pure graphite-like C3N4, which implied accelerated production and separa-
tion of photoinduced electron-and-hole pairs at the graphite-like C3N4/C60@6:1 interface
(Figure 5c). Electrochemical impedance spectra were employed to explore the transfer of
photogenerated charge carriers. Semicircular Nyquist plots showed a remarkable decrease
in radii upon the deposition of C60 on graphite-like C3N4, indicating a significant enhance-
ment in the rate of charge transfer (Figure 5d). These findings have demonstrated that
the electrochemical impedance of graphite-like C3N4 is optimized when it is combined
with C60.

Transient fluorescence was conducted to illustrate the separation behaviors of pho-
toinduced electron-and-hole pairs by calculating the excited-state lifetimes of graphite-like
C3N4 and graphite-like C3N4/C60@6:1. The graphite-like C3N4/C60@6:1 composite demon-
strated a longer transient fluorescence lifetime (3.02 ns) compared to the pure graphite-like
C3N4 (1.87 ns), indicating that graphite-like C3N4/C60@6:1 has a higher potential for
efficiently achieving the photocatalytic degradation of gaseous HCHO (Figure 5e). A sig-
nificantly lower photoluminescence intensity of the graphite-like C3N4/C60@6:1 could
be observed compared with that of the graphite-like C3N4, which, in principle, suggests
that graphite-like C3N4/C60@6:1 is more effective in the separation and transfer of photo-
generated charge carriers and the suppression of photogenerated exciton recombination
(Figure 5f).

3. Materials and Methods
3.1. Materials

Urea (98%) and C60 (98%) were supplied by Aladdin. Toluene and other conventional
reagents were obtained from d from Beijing HWRK Chem Co., Ltd., (Beijing, China). All
solvents and chemicals were used directly without any further purification.

3.2. Preparation of Graphite-like C3N4

With reference to the prior literature, 20 g of urea was placed in a crucible and heated
to 550 ◦C for 5 h. The graphite-like C3N4 was obtained as powdery yellow granules and
was used directly without further treatment.

3.3. Preparation of Graphite-like C3N4@C60 Composites

To prepare a mixture of C60 in the toluene (50 mL), the as-prepared graphite-like
C3N4 (200 mg) was added. After stirring, the mixture was treated ultrasonically for 1 h.
After the removal of the toluene under vacuum, the residues were rinsed with ethanol and
dried to obtain gray graphite-like C3N4@C60 composites. Different graphite-like C3N4@C60
composites were synthesized, with the weight ratios of C60:graphite-like C3N4 ranging
from 0 to 8 wt%.

3.4. Photocatalytic Degradation of Gaseous Formaldehyde

Approximately 300 mg of composites was evenly dispersed in 30 mL of distilled water,
followed by sonication for 30 min. The resulting suspension was transferred into three
surface dishes with 6 cm diameters, followed by drying at 60 ◦C for 12 h. The surface dishes
were placed in a reactor, and the reactor was left in a closed system. Then, formaldehyde
was injected using a microsyringe and the initial concentration of formaldehyde was set
at about 120 ± 20 ppm. The concentrations of formaldehyde were measured online using
an IR multi-gas monitor (INNOVA Air Tech Instruments Model 1412) under UV-vis light
irradiation for 1 h at a wavelength range of 310–800 nm and an intensity of 2.9 mW/cm2.
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4. Conclusions

In summary, various graphite-like C3N4 and C60 composites were developed via an
in situ generation strategy. The efficiency charge separation and photocatalysis for the
resultant composites were tuned by simply varying the weight ratios between the C60
and the graphite-like C3N4. It was found that the graphite-like C3N4/C60@6:1 composite
exhibited the strongest built-in electric field, thus realizing efficient charge separation and
rendering superior photocatalytic efficiency for formaldehyde degradation compared to
the graphite-like C3N4 and the C60. Overall, this research has offered valuable insights
into the design and development of novel synergistic systems for practical applications,
particularly in the field of photocatalysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28155815/s1. Figure S1. XRD for C60, g-C3N4, and
g-C3N4/C60@6:1. Figure S2. Nitrogen adsorption and desorption isotherms of g-C3N4, and g-
C3N4/C60@6:1 at 77 K. Figure S3. pore size distribution for g-C3N4 and g-C3N4/C60@6:1.
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