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Abstract: Antimetabolites, especially 5-fluorouracil, are commonly used clinically to treat breast,
colon, and other cancers. However, their side effects and inefficiency in monotherapy have prompted
further searches for new combinations. Thus, the anticancer effect of 5-fluorouracil (5-FU) and the
sulforaphane analogue, 4-isoselenocyanato-1-butyl 4′-fluorobenzyl sulfoxide (ISC), were tested in
in vitro and in vivo models of triple-negative breast cancer (TNBC) as a new option for this treatment-
resistant and aggressive type of breast cancer. A synergic interaction between 5-FU and ISC was
observed in the TNBC in vitro model MDA-MB-231 cell line, which led to enhanced antiproliferative
effects. The results of in vitro studies were confirmed by in vivo tests, which demonstrated stronger
tumor growth inhibition and additive interactions between 5-FU and ISC in the murine TNBC
model. Moreover, the results of the body mass and blood analysis showed the safety of the tested
combination. The mechanistic study revealed that the combined treatment triggered apoptosis and
necrosis, as well as inhibited cell migration.

Keywords: antimetabolites; isoselenocyanate; 5-fluorouracil; sulforaphane; anticancer effect

1. Introduction

The antimetabolite 5-fluorouracil(5-FU) is a fluoropyrimidine analog (Figure 1). It is a
chemotherapy drug used for the treatment of cancers such as colon, head and neck, and
breast cancer, including triple-negative breast cancer (TNBC) that is aggressive, therapy
resistant, and lacking specific drug targets. TNBC is widely known to be a high metabolic
group, and antimetabolic drugs (e.g., 5-FU) are regarded as effective in inhibiting TNBC
cell growth [1].
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Figure 1. Structural formulas of 5-fluorouracyl 1 and 4-isoselenocyanato-1-butyl 4′-fluorobenzyl
sulfoxide 2.

Eighty percent of the 5-FU dose is mainly metabolized in the liver into an inactive
form. Approximately 3% of the original dose of 5-FU is metabolized to active metabolites:
5-fluorodeoxyuridine monophosphate (5-FdUMP), 5-fluorodeoxyuridine triphosphate (5-
FdUTP), and 5-fluorouridine triphosphate (5-FUTP), which elicit both clinical and toxic
effects. 5-FdUMP and 5-FdUTP damage DNA, while 5-FdUMP forms a temporary complex
with thymidylate synthase (TS) and leads to deoxynucleotide imbalances and an increase
in levels of deoxyuridine triphosphate. 5-FdUTP is incorporated into DNA instead of
deoxythymidine triphosphate. 5-FUTP incorporates into cytoplasmic or nuclear RNA and
hampers RNA and protein synthesis, which leads to cell death [2,3].

5-FU is commonly administered in combination with other classic anticancer drugs
(e.g., platinum-based drugs, taxanes) [4]. Due to insufficient efficacy and the development
of multidrug resistance to 5-FU or its combinations, new therapies are being developed.
Although targeting nucleotide metabolism is the main goal of many research groups, other
ideas have also been developed, e.g., 5-FU was combined with bevacizumab or cetuximab
in metastatic colorectal cancer, which exploited the potential effectiveness of the nucleotide
analog in enhancing immunotherapy. Interestingly, 5-FU also influences the immune
system cells’ response by selectively killing myeloid-derived suppressor cells, and by
enhancing T cell-dependent antitumor immunity [5].

In order to enhance the efficacy and reduce the toxicity of 5-FU, combinations of
this drug with natural compounds such as curcumin, genistein, Manuka honey, and sul-
foraphane have been tested [6–8]. As was shown in in vivo models, natural compounds
exhibit favorable properties and, used in combination with anticancer drugs, synergistically
induce cancer cell death. Further, by altering antioxidant enzymes, they also attenuate
a toxic effect in normal cells, e.g., sulforaphane was shown to hamper the cardiotoxicity
of doxorubicin [9]. Our earlier in vitro study showed that sulforaphane is an effective
modulator of 5-FU activity. It acts synergistically with 5-FU in breast and colon cancer
cells [10,11]. Moreover, the antagonistic type of interaction between compounds was
revealed in normal cells [12].

To find safe and more effective anticancer agents, we tested the organofluorine isose-
lenocyanate analogs of sulforaphane and among which 4-isoselenocyanato-1-butyl 4′-
fluorobenzyl sulfoxide (ISC) 2 (Figure 1) exhibited the most beneficial properties. It bears
the 4-fluorobenzyl substituent bonded to the sulfinyl sulfur atom, which is connected with
the isoselenocyanate moiety (in place of the isothiocyanate group present in the original
sulforaphane), via an alkyl chain, consisting of four methylene groups. We found ISC
to exert a significantly higher cytotoxic effect against the breast cancer cell lines than the
original sulforaphane, while being less toxic for the human nonmalignant model of a
normal cell line [13]. Based on the promising sulforaphane influence on 5-FU activity and
ISC encouraging anticancer ability, its combined effects with 5-FU were investigated in
in vitro and in vivo TNBC models.

We showed the synergic anticancer effect of 5-FU and ISC combined treatment in
in vitro model. Combined treatment induced apoptosis and blocked cell migration. The
in vivo study confirmed a beneficial interaction between compounds that led to tumor
growth inhibition and showed the systemic safety of the studied combination.
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2. Results
2.1. In Vitro Model
Cell Growth and Type of Interaction

The changes in cell growth after combined treatment and after alone treatment were
examined using an MTT assay. The studies were conducted on MDA-MB-231cells, which is
the most commonly used cell line to study triple-negative breast cancer [14].

As shown in Figure 2A, the combined treatment’s effects on the cells were stronger
than the effects of both compounds used alone. The most significant differences between
combined and alone treatments were observed when 19.3 µM and higher 5-FU concen-
trations were used in the combined treatment. Combined treatments at the three highest
concentrations exhibited at least a 70% decrease in cell number, and those effects were
about 4 to 5 times stronger than the effect of the alone treatments (Figure 2A).
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Figure 2. (A) Cell growth changes after 5-FU and ISC alone and combined treatments; * Tukey’s
test vs. alone administrations of ISC and 5-FU, p < 0.05 (B) values of CI and DRI with respect to fa;
(C) apoptosis detection after ISC and 5-FU alone and their combined treatment (apoptosis/necrosis de-
tection after combined treatment, yellow arrow—necrotic cell, blue arrow—early apoptotic cell, green
arrow—late apoptotic cell, red arrow—apoptotic body; green—FITC-stained phosphatotydyloserine
(hallmark of early apoptosis), red—PI stained cell nuclei of late apoptotic/necrotic cells (D) cell migra-
tion in control cells (CTRL), ISC alone treatment, 5-FU alone treatment and after combined treatment
(ISC + 5-FU). The wound areas (µm2) are presented in the upper right corner of each picture.

On the basis of the MTT results, the types of interaction were defined using the
Chou–Talalay method (Figure 2B). The type of interaction was defined in relation to fa
(fa—fraction of the cells affected). The value of fa indicates the drop in cell growth, e.g.,
when cell growth decreased by 70%, the fa is equal to 0.7. The type of interaction was
determined based on the Combination Index value: synergism (CI < 0.9), antagonism
(CI > 1.1), and an additive effect (CI = 0.9–1.1). In tested cases, values of CI were typical for
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synergism and decreased when the value of fa increased. At a fa of 0.7, the CI was equal to
0.8, whereas at fa = 0.9, the CI was equal to 0.5.

The Chou–Talalay method allows the dose-reduction index (DRI) value to be deter-
mined. The DRI determines by how many folds the concentration of compounds admin-
istered in synergic combination may be reduced, compared to alone administration at a
given effect level. In the case of all tested combined treatments, DRIs obtained for ISC were
near 2. Interestingly, the DRI of 5-FU increased dependently on fa. At a fa of 0.68, the DRI
was 10.2, while for a fa of 0.97, the DRI value was 27.9.

At the next stage of study, to characterize the cytotoxic effect of the combined treatment,
the apoptosis/necrosis detection experiment was conducted using Annexin V-FITC/PI
staining. The early apoptotic cells are stained with AnnexinV-FITC because the plasma
membrane loses its asymmetry, and phosphatidylserine translocates from the inner left to
the outer one. Late apoptotic or necrotic cells are stained with AnnexinV-FITC and PI due
to the high permeability of damaged plasma membrane.

The study was performed after 24 h of incubation. The most intensive changes were
observed after 24 h of sequential treatment (Figure 2C). Cells exhibiting the hallmarks of an
early stage (green staining membrane) and the late stage of apoptosis (green staining and
red staining) were detected in the cell culture. Moreover, apoptosis detection was performed
via observation of apoptosis bodies. In addition, we also noticed necrotic cells (only red
staining cells, Figure 2C). Necrotic cells were mainly detected after combined treatment.
After 5-FU alone treatment, the least changes were observed (a only few apoptotic cells),
while after ISC alone treatments, the apoptotic and necrotic cells were noticed (Figure 2C).

Because TNBC is a highly metastatic type of cancer, the effect of combination treatment
on cell migration was also investigated with a wound healing assay. As shown in Figure 2D,
after the combined treatment as well as alone ISC treatment, the motility of the MDA-MB-
231 cells was the most significantly inhibited. In those cases, the wound areas were similar.
In the control cells and cells treated with 5-FU alone, the wound’s closure was practically
complete after 24 h, and there was no evidence of the wound after 48 h.

2.2. In Vivo Studies
2.2.1. Tumor Growth and Metastasis in Lung

The observed beneficial properties of combining 5-FU with ISC in in vitro conditions
encouraged us to perform studies in the mammary gland carcinoma 4T1 (TNBC) animal
model. The 4T1 cells were inoculated orthotopically in to BALB/c mice. When the tumors
were palpable, mice were randomly divided into uniform groups and the compounds
administration was performed (ISC at the dose of 50 mg/kg i.p., and 5-FU at the dose of
100 mg/kg i.v.). Taking into account the immunomodulatory properties of sulforaphane, a
syngeneic model where mice have a fully functional immune system was chosen. In the
case of xenografting human cells, we would have to use a mouse model with impaired
immune function and thus omit one of the potential mechanisms of sulforaphane activity.

The anticancer activity of the studied compounds and their combination was evaluated
based on tumor volume change and the number of metastases counted.

As shown in Figure 3A, tumor growth kinetics (mean of tumor volume (TV) signifi-
cantly decreased after 5-FU alone treatment and after combined treatment in comparison
to the control group. After 27 days of the experiment, TV after combined treatment was
2 times smaller in comparison to the untreated group. Tumor growth inhibition (TGI)
observed after 5-FU alone treatment was at a level near 40–50%. The value of TGI after
combined treatment was near 60%, whereas ISC alone treatments reduced tumor volume
by 20% (Figure 3B). Based on the experimental TGI and the value of the hypothetical TGI,
the type of interaction between the tested compounds was determined. The quantitative
analysis of the interaction type between ISC and 5-FU showed a primarily additive effect.
In turn, after 24 days, synergism was noticed and the hypothetical TGI values were lower
than the value of TGI calculated based on the experimental results (Table 1).
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* Mann–Whitney U test vs. control; p < 0.05.

Table 1. Experimental and theoretically calculated tumor growth inhibition (TGI, %).

Day TGI Hypothetical TGI

13 59.8 63.9

15 55.0 59.3

17 56.8 61.3

20 51.9 51.1

22 51.6 55.3

24 50.9 49.5 *

27 50.5 52.2
* Synergistic effect of ISC and 5-FU (experimental TGI exceeds theoretically calculated TGI).

At the end of the experiment (Day 27), the metastatic activity was tested. Animals
were sedated for blood collection and then sacrificed for lung collection. The number of
metastases was counted in lungs fixed with 5% (v/v) paraformaldehyde in PBS. All tested
treatments decreased the number of metastases in the lung in comparison to the control
group. After the 5-FU alone treatment and after combined treatment, similar effects were
observed, and the number of metastases in the lung dropped by 50% in comparison to the
control (Figure 3C).

2.2.2. Biochemical Tests and Blood Count

To determine the safety of the tested compounds, blood morphology (Table 2), bio-
chemical parameters of blood (Table 3), and total body and organs’ (liver, spleen, heart, and
lung) weight change (Figure 4) were examined.
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Table 2. Blood count.

Group

Unit Healthy Mice Control 5-FU ISC ISC + 5-FU

Leukocytes [103/µL] 5.9 ± 1.5 * 216 ± 95 3.4 ± 1.6 * 208 ± 89 4.9 ± 2.8 *,†

Lymphocytes % 80.3 ± 5.4 * 14.4 ± 3.6 85 ± 6.4 * 17.3 ± 4.3 77.3 ± 8.1 *,†

Monocytes % 4.4 ± 1 * 7.5 ± 0.6 2.7 ± 1 * 10.4 ± 0.9 * 2.1 ± 0.4 *,†

Granulocytes % 15.3 ± 6 * 78.2 ± 4 12.2 ± 5.9 * 72.3 ± 4.9 20.6 ± 7.8 *,†

Erythrocytes [106/µL] 8.1 ± 1.4 8.7 ± 0.6 6.9 ± 1 * 8.8 ± 0.5 6.3 ± 1 *,†

Hemoglobin [g/dL] 13.8 ± 0.7 * 18.6 ± 1.3 14.2 ± 2.7 * 18.6 ± 1.1 12.8 ± 1.8 *,†

Hematocrit % 39.2 ± 1.68 * 46.4 ± 2.5 33.5 ± 5 * 47.4 ± 3.5 30.4 ± 4.2 *,†

MCV [fL] 48.3 ± 0.9 * 53.3 ± 2.6 48.5 ± 0.7 * 54 ± 1.6 48.7 ± 4.2 *,†

Platelets [103/µL] 482.0 ± 26.8 680.0 ± 123.0 971.0 ± 243.0 770.0 ± 97.0 1512 ± 356 *,†,‡

*—Tukey’s test vs. control p < 0.05, †—Tuckey test vs. ISC alone treatment p < 0.05, ‡—Tuckey test vs. 5-FU alone
treatment p < 0.05.

Table 3. Biochemical parameters of mice blood.

Group

Unit Control 5-FU ISC ISC + 5-FU

ALT U/L 27.0 ± 11.5 17.4 ± 3.2 23.2 ± 6 17.6 ± 2.9

AST U/L 159.5 ± 55.1 95.5 ± 27.6 154.9 ± 66.9 80.9 ± 15.9 †,*

Creatinine µmol/L 6.5 ± 1.8 5.6 ± 2.9 6.5 ± 1.1 6.4 ± 2.1

Urea mmol/L 6.0 ± 0.5 6.7 ± 1.4 5.9 ± 1 6.4 ± 1.4

Creatinine kinase [CK] U/L 1137.7 ± 772.3 983.6 ± 448.6 1428.2 ± 1018.3 785.3 ± 248.5

CK-MB
[myocardial CK] U/L 394.0 ± 171.9 271.6 ± 60.5 378.2 ± 109.8 234.5 ± 52.7 *

* Tuckey test vs. control p < 0.05, † Tuckey test vs. ISC alone treatment p < 0.05.
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Blood count tests showed significant differences after treatment with 5-FU alone
and after combination treatment compared to untreated mice bearing TNBC (Table 2).
The exception was the platelet count study. An increase in platelet counts was observed
in mice receiving the combination treatment. The level was three times higher than in
healthy mice and significantly different from treatment with ISC and 5-FU alone. In the
case of TNBC-bearing mice, the level of leukocytes was elevated (this is observed in mice
bearing 4T1 cells), and the ratio of the level of lymphocytes to the level of granulocytes
was altered in comparison to healthy mice. The treatment with 5-FU alone as well as
combined treatment with 5-FU and ISC inhibited leukocytosis and fully recovered normal
lymphocytes-granulocytes ratio. In groups receiving 5-FU (alone and in combination), a
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decreased number of erythrocytes and a decreased level of hemoglobin and hematocrit
were observed in comparison to the control mice, as well as in the group treated with
ISC + 5-FU, also in comparison to healthy mice.

To assess the function of the liver, kidney, and heart, biochemical tests were conducted
(Table 3). Combined treatment enhanced 5-FU’s capability to lower the level of hepatic
enzyme AST (aspartate aminotransferase) and ALT (alanine aminotransferase) compared
to control mice. The level of the myocardial CK-MB isoform was also lowest in the group
receiving ISC with 5-FU. In the case of creatinine, CK, and urea, no significant changes after
5-FU, ISC, and their combination treatments were observed. The analysis of CK showed
very large differences between the mice in each group.

The tested types of treatments showed no toxic effects in mice, as no significant
changes were observed in the weight and welfare of mice at the tested range concentrations.
Only in the group receiving ISC with 5-FU was a slight decrease in body weight observed;
however, this did not exceed 6% and was observed a short time after 5-FU injection (D9
and D23). An examination of organ mass showed that smaller spleens and smaller lung
weights were observed in mice receiving 5-FU and the combination of ISC and 5-FU (5-FU
effect) in comparison to the control. This is consistent with a lower number of leukocytes
and number of metastases in the lung in groups receiving 5-FU.

3. Discussion

Antimetabolites (e.g., 5-FU) are one of the oldest groups of chemotherapy drugs used
to treat solid tumors. 5-FU is commonly applied in combination with drugs from other
classes of cancer chemotherapy agents, including alkylating agents, plant alkaloids, an-
timetabolites, anthracyclines, and topoisomerase inhibitors [3]. Due to the toxicity of those
combined treatments and their insufficient anticancer activity, a search for new therapeutic
options is still ongoing. For instance, 5-FU was combined with natural compounds, e.g.,
sulforaphane and quercetin, to modify its metabolism or cytotoxicity [11,15,16].

The anticancer effect of the combined treatment of ISC (organofluorine isoseleno-
cyanate analogue of sulforaphane) and 5-FU has not yet been studied. In this study, their
combination was examined in in vitro and in vivo models of TNBC.

The results of the in vitro study showed the synergic anticancer activity of the com-
bined treatment in MDA-MB-231 cells. The effect of the combination of 5-FU and ISC was
more potent than the effect of using both compounds alone and, in consequence, led to a
drop in the effective concentration after applying compounds in combination in comparison
to alone treatment. In cases of the most effective combined treatments, we observed a 10-
or 20-fold (DRI = 10 or 20) reduction in the 5-FU dose. In clinical cases, reducing the dose
of 5-FU is crucial to the success of chemotherapy due to the reduction in the drug’s side
effects, which often limit therapy [16].

The mechanistic study revealed that the synergy of anticancer action resulted in the
induction of apoptosis and necrosis. After the combined treatment, we observed fewer
cells in the population; further, the microscopic study showed that combined treatment
more strongly induced cell death than alone treatments with 5-FU or ISC. Commonly,
apoptosis is still considered to be the main model of cell death in response to anticancer agents.
Antimetabolites (e.g., 5-FU, gemcitabine) and their combined treatments with other drugs or
natural compounds induce apoptosis (e.g., sulforaphane, apigenin, bufalin) [17–20]. When
apoptosis is aborted, some clinically applied drugs can induce alternative cell deaths,
e.g., necrosis (e.g., cisplatin) or autophagic cell death (e.g., tamoxifen) [21,22]. Of the
two, necrosis is the least desirable because it triggers inflammation. The inflammation
promotes cancer development by eliciting mitogenic or pro-survival cytokines production.
Additionally, the inflammatory response damages normal tissue. On the other hand, the
inflammation provokes the recruitment of cytotoxic immune cells to the tumor site and
increases the effectiveness of chemotherapy [23,24]. Some studies have explored necroptosis
(i.e., programmed necrosis) in order to induce cell death in drug-resistant breast cancer
cells [25–28]. Both apoptosis and necrosis as a mechanism of increasing the effectiveness of
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anticancer drugs after their combination with natural compounds were demonstrated after
combined treatment, e.g., diosmin with 5-FU in colorectal cancer cells and berberine with
cisplatin in ovarian cancer cells [29,30].

The observed promising properties in in vitro conditions were verified in the mam-
mary gland carcinoma 4T1 (TNBC) animal model. The experiments showed that the tumor
growth inhibition was a result of additive interactions of combination components: 5-FU
and ISC. Simultaneously, 5-FU alone treatment and combined treatment decreased the
number of metastases by 50%, suggesting a dominating 5-FU effect. 5-FU is known to
exhibit anti-metastatic efficacy in the 4T1 TNBC animal model [31]. Interestingly, we have
shown in an in vitro model that this combined treatment permanently inhibits MDA-MD-
231 cell migration, albeit in a similar way to after ISC alone treatment. Differences between
in vivo and in vitro tests can be the result of another metabolism or other factor presented
in the mouse organism.

At the last stage of study, the safety of the treatments was evaluated. All tested types of
treatment were shown to be safe in vivo, despite the observation of some changes. First, we
observed depletion of the spleen weight. VanderVeen et al., observed that during treatment
with 5-FU, the weight of the spleen decreased and, consequently, the number of circulating
leukocytes decreased [32]. The changes in the number of leukocytes were also revealed in
our study after 5-FU alone treatment and after combined treatment, as well as in both cases
at the same level, indicating that this is the effect of 5-FU. Another observed alteration after
the combined treatment was a drop in lung weight, which was similar in the 5-FU group
and combined treatment group. This effect of 5-FU was described earlier by Hashemzehi
et al., after losartan and 5-FU combined treatment [33]. This phenomenon is often seen
with drugs that reduce lung metastasis because reducing the number of the metastatic foci
in the lungs reduces the weight of the lungs [31].

Our animal studies showed that the number of thrombocytes was elevated after
combined treatment with ISC and 5-FU. In patients with breast cancer, an increase in the
number of thrombocytes is disadvantageous because it is connected with poor prognosis
and exerting an influence on apoptosis resistance, as well as the promotion of metastasis
and the invasion of cancer cells [34–36]. Our studies showed that, in this case, the level of
platelets was not the pivotal factor associated with metastasis. Despite a significant increase
in the thrombocytes level after combined treatment in comparison to 5-FU or ISC alone
treatments, the number of metastases in the lung was at the same level as after the 5-FU
alone treatment.

In conclusion, our results revealed that ISC positively modulates the anticancer activity
of common antimetabolite 5-FU. The combined treatment can be regarded as a promis-
ing anticancer strategy for highly aggressive and invasive triple-negative breast cancer
treatment. ISC and 5-FU act synergistically in the in vitro model, and an additive type of
interaction was observed in the in vivo model. Importantly, this combination was shown
to be non-toxic in animals.

Bringing together the results obtained herein as well as the results of previous works,
the distinct and promising potential of ISCs and other isothiocyanates to modify the action
of antimetabolites is seen. In our opinion, further study on the combination treatment
of ISCs with various antimetabolites in a triple-negative breast cancer model should be
conducted in parallel with advanced mechanism-of-action research to fully understand the
role of isothiocyanates in modulating the action of antimetabolites.

4. Materials and Methods
4.1. Cells and Reagents

The breast cancer cell lines MDA-MB-231 and 4T1 were obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA). Cells were grown in IMDM (MDA-
MB-231, Cytogen, GmbH Bienenweg, Berlin, Germany) or RPMI 1640 w/Gluta Max (4T1,
Gibco, Grand Island, NY, USA). Mediums were supplemented with 10% fetal bovine serum
(Gibco, Grand Island, NY, USA), 1% antibiotics solution (10,000 U/mL of penicillin and
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10 mg/mL of streptomycin, 25 µg/mL of amphotericin B (only for MDA-MB-231 cells)
(Sigma Aldrich, St. Louis, MO, USA)), and 1% nonessential amino acids (only for MDA-
MB-231, Sigma Aldrich). To detect mycoplasma contamination, MycoAlert Assay Control
Set, (Lonza, Verviers, Belgium) was used. 5-FU was obtained from Sigma Aldrich. ISC was
synthesized by the Centre of Molecular and Macromolecular Studies Polish Academy of
Sciences, Division of Organic Chemistry [13].

4.2. Cell Growth Assay

Cell growth was determined using the MTT (3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl-
tetrazolium bromide) assay. Cells in the logarithmic phase of growth were used. When
the cells reached 75% confluence, they were treated with increasing concentrations of com-
pounds or their combination. A sequential scheme of experiments was applied, meaning
that the cells were incubated for 24 h with ISC, followed by 72 h treatment with 5-FU. In
the same experiments, the cells were treated with each of the compounds alone at concen-
trations corresponding to the concentrations tested in the combined treatment. At the end
of the experiment, the medium was removed and the 0.25 mg/mL MTT (Sigma Aldrich)
inserted. The absorbance was measured using the microplate scanning spectrophotometer
(PowerWave X, BioTek, Winooski, VT, USA) at a wavelength of 570 nm with background
subtraction at 690 nm.

4.3. Quantitative Analysis of Interactions

The Chou–Talalay method was used to quantitatively analyze the interactions. We
tested concentrations that represented the multiplicity IC50 of the compounds. The quan-
tification was based on the results of the MTT assay. To determine the type of interaction,
the Combination Index (CI) was quantified:

CI = D1comb./D1alone + D2comb./D2alone (1)

D1comb. or D2comb.—concentrations of compound 1 or 2 that exert the certain effect in
the combined treatment.

D1alone or D2alone—concentrations of compound 1 or 2 used in the alone treatment
that exert the same effect as in the combined treatment.

DRI = Dcomb./Dalone (2)

Dcomb.—concentration of compound used in the combined treatment.
Dalone—concentration of compound used in the combined treatment.
Both concentrations have the same effect.
The value of the CI, CI > 1.1, CI < 0.9, and CI = 0.9 ÷ 1.1 indicates antagonism,

synergism, and additive effects, respectively. CI and DRI were calculated using CompuSyn
software (ComboSyn, Paramus, NJ, USA).

4.4. Identification of Apoptosis and Necrosis

For microscopy analyses, the cells were stained with the FITC Annexin V Apoptosis
Detection Kit I (BD Biosciences Company, San Jose, CA, USA). An amount of 5 µL/mL of
FITC Annexin V and 5 µL/mL PI were added on each well. The fluorescence was excited
with 488 nm and PI 543 nm lasers, respectively, and was collected with 520 nm and 600 nm
filters, respectively, using a confocal microscope (Olympus, Shinjuk, Tokyo, Japan) Living
cells (AnnV−/PI−), early apoptotic cells (AnnV+/PI−), late apoptotic cells (AnnV+/PI+),
and necrotic cells (AnnV−/PI+) were distinguished. The study was performed after 24 h
of incubation. The assessment included sequential treatments with 2.75 µM of ISC and
38.6 µM of 5-FU, and the administration of compounds alone at concentrations equal to
those used in the combination treatment.
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4.5. Wound Assay

Cells were seeded in 8-well Nunc plates at a density of 2 × 105 cells/mL. After 48 h,
wounds were made by scraping across the confluent cell monolayer with a plastic 200 µL
micropipette tip and rinsed several times with media. The cells were incubated in media
with 5-FU, ISC, and their combination. Cells that migrated into the wound surface were de-
termined under the microscope at various time points (0, 24, 48 h). The assessment included
sequential treatments with 2.75 µM of ISC and 38.6 µM of 5-FU, and the administration of
compounds alone at concentrations equal to those used in the combination treatment. The
results were visualized by an inverted confocal microscope (Olympus IX70, Shinjuk, Tokyo,
Japan) using differential interference contrast (DIC)/(Nomarski interference contrast) to
better visualize unstained cells.

4.6. Animals

Female BALB/c mice were purchased from the Experimental Medicine Centre, Medi-
cal University of Bialystok, Poland. At 5–6 weeks of age, the animals were housed 3–4 per
cage in an air-conditioned room at a temperature of 21–23 ◦C and humidity of 50%. All
animal procedures were carried out in accordance with the Directive of The European Par-
liament on the protection of animals used for scientific purposes (2010/63/EU of European
Parliament) and were approved by the Local Ethics Committee for Animal Experiments of
the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy PAS in Wrocław,
12 Weigla St., 53-114 Wrocław. Number of permits for animal experiments 34/2019.

4.7. Tumor Growth

Mice were injected orthotopically with 2 × 105 of 4T1 murine breast cancer cells in
50 mL of PBS saline. When tumors were palpable (mean size reached 40 mm3), the mice
were randomly divided into four groups (n = 8): control group, 5-FU alone treatment
group, ISC alone treatment group, and combined treatment group. 5-FU (100 mg/kg m.c.)
was administered intravenously (1× a week; Day 9, Day 23). ISC (50 mg/kg m.c.) was
administered intraperitoneally (1× week; Day 9, Day 16, Day 23). Mice were sacrificed on
Day 28. During autopsy, the heart, liver, lungs, and spleen were weighed.

Tumor size and animal weight were measured three times a week. Based on tumor
size measurements (caliper, Mitutoyo Corp., CD-15DCX, Kanagawa, Japan), tumor volume
(TV) and tumor growth inhibition (TGI%) were calculated:

TV = a2b/2 (3)

a—shorter diameter; b—longer diameter.

TGI = 100 − TV1/TV2100 (4)

TV1—average tumor volume of treated mice.
TV2—average tumor volume of untreated control mice.

4.8. Determination Type of Interaction

The type of interaction between ISC and 5-FU indicated a comparable value of experi-
mental TGI and the value of the calculated hypothetical tumor growth inhibition HTGI [4].

HTGI (%) = 100 − ((100 − TGI5-FU) × (100 − TGIISC))/100 (5)

TGI5-FU—experimental TGI for 5-FU alone.
TGIISC—experimental TGI for ISC alone.
A synergistic interaction was observed when the experimental TGI was greater than

HTGI. Antagonism was noticed when the experimental TGI was smaller than HTGI. An
additive effect was found when the value of the experimental TGI and HTGI were comparable.
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4.9. Blood Analysis

Blood samples were collected in 1 mL vials with EDTA2KEDTA2K, and a blood
morphological analysis was performed using the Mythic18 (Orphee) hematology analyzer.
Then, the blood was centrifuged (2400× g, 12 min, 4 ◦C) into plasma isolation and stored
at −80 ◦C. A biochemical analysis was performed on the plasma using the Cobas c111
biochemistry analyzer (Roche, Basilea, Switzerland), and the following parameters were
determined: ALT, AST, creatinine, urea, creatine kinase (CK), and CK-MB isoenzyme.

4.10. Metastatic Foci Quantification

The lungs were fixed in 4% paraformaldehyde. A blinded macroscopic count for
metastatic foci on the surface of lung tissue was performed [37]. Only visible macroscopic
metastases in the lungs were counted.

4.11. Statistical Analysis

Data are presented as the mean value ± standard deviation (S.D.). p < 0.05 was
considered statistically significant.

The results of the MTT assay and blood analyses were carried out using a one-way
analysis of variance (ANOVA), followed by a post hoc Tukey’s test, which was used to
compare pairs of group means. The analyses were performed with GraphPad Prism 7
(GraphPad Software, Inc., La Jolla, CA, USA).

The results of in vivo studies (expect blood analysis) were analyzed by employing
STATISTICA version 10 (StatSoft, Inc., Tulsa, OK, USA) using the Mann–Whitney U test.
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synthesis: T.C. and P.K.; investigation, M.M. (Małgorzata Milczarek), M.M.-G., M.Ś. and K.W.;
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