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Abstract: Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients’
lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from
Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best
anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially
characterized its composition. The mice model of ulcerative colitis was established after free drinking
of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg
and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in
UC mice, including a physiologically significant reduction in disease activity index and pathological
damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory
process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and
increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1β, TNF-α, and
NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile,
TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides
new ideas for developing TBEA into a new drug to treat UC.
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1. Introduction

UC is a typical inflammatory bowel disease (IBD), characterized by persistent inflam-
matory lesions in the mucosa and submucosa of the colon and rectum, which is persistent
and prone to recurrent attacks [1]. The main clinical features of UC are diarrhea with blood
and mucus, abdominal pain of varying degrees caused by rectal contraction, and even
systemic toxicity in severe cases [2]. Most studies have shown that the host immune system,
genetics, gut microbiome, and environment all play important roles in the pathogenesis
of UC. Damage to the intestinal mucosal barrier disrupts the balance of four interrelated
biological, mechanical, chemical, and immune barriers. Induced by such imbalance, the
body produces severe chronic inflammatory response and even increases the risk of colon
cancer [3]. Glucocorticoids, 5-aminosalicylic acid (5-ASA), and immunosuppressants are
commonly used clinically to control UC inflammation and relieve symptoms. However,
relapse after drug withdrawal, long-term efficacy decline, adverse reactions, and other
problems related to these drugs remain to be solved [4]. A lack of long-term effective thera-
peutic drugs leads to some patients undergoing resection [5]. Therefore, the development
of mild and effective treatment drugs is crucial.

Traditional Chinese medicine (TCM) is a kind of traditional medicine system with
a long history and wide application. It is based on unique Chinese cultural theories and
powerful practices and is characterized by multi-targeting and low side effects, which gives
it a great advantage in the treatment of many chronic diseases [6]. Studies have shown

Molecules 2023, 28, 5783. https://doi.org/10.3390/molecules28155783 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28155783
https://doi.org/10.3390/molecules28155783
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-5871-4888
https://doi.org/10.3390/molecules28155783
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28155783?type=check_update&version=2


Molecules 2023, 28, 5783 2 of 18

that TCM plays an active role in improving intestinal flora, repairing the intestinal barrier,
and maintaining intestinal health [7]. Recently, the potential efficacy and mechanisms of
action of many TCM approaches for UC have been confirmed using scientific experiments.
Zhang et al. demonstrated that Bilobalide from Ginkgo biloba could alleviate the severity
of UC by improving physiological indices and pathological damage in UC mice, reducing
inflammatory factor levels by inhibiting MAPK and Akt/NF-κB pathway activation and
enhancing the intestinal barrier, as well as regulating intestinal flora [8]. A review sum-
marized the most commonly used Chinese decoctions and medicines for the treatment
of UC as Bai-Tou-Weng-Tang, Shen-Ling-Bai-Zhu-San, Coptis chinensis Franch., Atractylodes
macrocephala Koidz., Fisch. and Astragalus membranaceus (Fisch.) Bge [9].

Terminalia bellirica fruit (TBF), a member of the Combretaceae family, is widely used in the
Tibetan system of medicine and occupies an important position in TCM. The TCM system
describes TBF as playing a role in clearing heat, detoxifying the blood as an astringent,
nourishing the blood, and improving diarrhea and dysentery [10]. Modern studies suggest
that it mainly contains tannins, flavonoids, terpenoids, steroids, and lignans and has
pharmacological effects such as antioxidant, antidiabetic, anti-inflammatory, antibacterial,
and anticancer [11,12]. The current therapeutic approaches for UC, reported as being
available, mainly target features of inflammation, oxidative stress, intestinal mucosal
barrier damage, and intestinal flora disorders [13]. It has been shown that TBF extract can
inhibit LPS-induced inflammatory response in macrophages by affecting the MAPK/NF-κB
pathway [14]. Therefore, research on the use of TBF to alleviate UC has a broad prospect.
In addition, more in-depth in vivo studies on the anti-inflammatory effect of TBF are
worth conducting.

This study used LPS-stimulated macrophages to select TBF extracts with optimal
anti-inflammatory effects. Importantly, 5-ASA can alleviate mild to moderate ulcerative
colitis and is a well-established drug for clinical utilization. Therefore, in this study, we
used dextrose sodium sulfate (DSS)-induced ulcerative colitis mouse model as the research
object and 5-ASA as the positive control drug to explore the alleviating effect of TBEA on
inflammation and oxidative stress in UC mice. We compared the therapeutic effects with
5-ASA as well as the underlying molecular mechanisms, including the signal pathways
involved and gut microbiota regulation.

2. Results
2.1. HPLC Chromatogram

A comparison of the HPLC results for TBF 95% ethanol extract (TBFE) and five extract
fractions of TBF showed that TBFE and TBEA were richer in various active substances than
the other four extracted fractions (Figure 1), which may contribute to higher pharmacologi-
cal activities. Comparing the peak retention times for the experimental sample with those
for the mixed standards, it was tentatively determined that the extracted TBEA mainly
contained gallic acid, corilagin, chebulagic acid, and chebulinic acid (Figure 2), confirming
that the TBEA used in the experiments contains these active ingredients of TBF.

2.2. Effect of TBFE and Five Extract Fractions on Macrophage Viability and In Vitro
Anti-Inflammatory Activity

The MTT method was used to assess whether the extracts had an effect on the viability
of macrophage RAW264.7. Figure 3A shows that, except for the petroleum ether extract,
the extracts were less toxic to cells at concentrations below 50 µg/mL. The calculated
IC50 values for each extraction fraction were obtained as TBFE, 198.151 µg/mL; TBPE,
74.847 µg/mL; TBFD, 568.706 µg/mL; TBEA, 158.599 µg/mL; TBNB,285.772 µg/mL; and
TBFW, 205.324 µg/mL. Based on this result, safe concentrations were selected, and the
experimental samples were screened using an in vitro anti-inflammatory activity assay
during the experiments. The amount of NO produced by the cells after LPS stimulation
was significantly increased in all treatment groups (p < 0.001) (Figure 3). The IC50 value of
each extract fraction for inhibition of NO production was obtained as TBEA, 18.941 µg/mL;
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TBNB, 28.029 µg/mL; TBFE, 38.304 µg/mL; TBFD, 54.508 µg/mL; TBAP, 63.372 µg/mL;
and TBPE, 75.930 µg/mL. Figure 3B–G shows that the reduction in NO production after
inducing an inflammatory response in the cells was better in the TBEA-treated group than
in the other treated groups, indicating that TBEA had the best in vitro anti-inflammatory
activity among these extract fractions.
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Figure 1. The HPLC chromatograms of TBFE and five extract fractions of Terminalia bellirica: A, 95%
ethanol extract (TBFE); B, petroleum ether extract fraction (TBPE); C, dichloromethane extract fraction
(TBFD); D, ethyl acetate extract fraction (TBEA); E, n-butanol extract fraction (TBNB); and F, aqueous
phase extract fraction (TBFW).
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Figure 3. Effect of TBFE and five extract fractions on macrophage viability and in vitro anti-
inflammatory activity. (A) Effect of six extracts on cell viability. (B) Effect of TBFE on LPS-induced
NO content production by RAW264.7. (C) Effect of petroleum ether extract fraction (TBPE) on
LPS-induced NO content. (D) Effect of dichloromethane extract fraction (TBFD) on LPS-induced NO
content. (E) Effect of ethyl acetate extract fraction (TBEA) on LPS-induced NO content. (F) Effect of
n-butanol extract fraction (TBNB) on LPS-induced NO content. (G) Effect of aqueous phase extract
fraction (TBFW) on LPS-induced NO content. ### p < 0.001 compared with the control group, and
** p < 0.01, *** p < 0.001 compared with the LPS group. Note: 5-ASA, 5-aminosalicylic acid. Data
represent mean ± SD, n =3.

2.3. Amelioration of Physiological Characteristics and Colonic Injury in UC Mice with TBEA

In this study, TBEA, the component with the best anti-inflammatory activity in vitro,
was selected as the best extract type for in vivo anti-ulcerative colitis activity, in which
TBEA low-dose (TBEA-L, 50 mg/kg) and TBEA high-dose (TBEA-H, 100 mg/kg) were
established. UC causes significant lesions in the colon, including congestion, edema, easy
bleeding, and erosion, as can be observed in Figure 4A. Some swelling and congestion
were observed in the colon tissue of the DSS group but not in the other groups, revealing
that TBEA can prevent colonic injury. According to Figure 4B, the DSS group showed a
significant shortening in colon length (p < 0.001). There was no statistically significant
effect on colon length after TBEA treatment. As shown in Figure 4C, mice in the 5-ASA
and TBEA-H groups showed significant improvement in colon weight compared with
the DSS group (p < 0.05, p < 0.01). Still, the TBEA-L treatment did not show any effective
improvement in colon weight, which is inferior to the TBEA-H treatment. Starting from the
fourth day of the experiment, the body weight of mice in the DSS group began to decrease.
At the end of the experiment, the TBEA-H group showed the least reduced body weight
among all the treatment groups compared to the control group (Figure 4D). DAIs climbed
in all the treatment groups from day 1 to day 7, in which the DSS group climbed at the
fastest speed while the TBEA-H group climbed at the slowest speed (Figure 4E).

UC inflicted severe damage to the colon, with inflammatory mucosa infiltration and
massive loss of crypt and cup cells. Figure 5A shows the colon of the control group
mice with neatly arranged crypt fossa, intact cup cells, and no inflammatory infiltration.
However, Figure 5B shows the opposite phenomenon in the DSS group mice. After TBEA
treatment, both the high-dose group and the low-dose group showed a significant reduction
in the damage caused by DSS inflammation (p < 0.001) (Figure 5F). The above results suggest
that TBEA may alleviate UC by ameliorating intestinal damage.
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(A) Macroscopic pictures of colons. (B) Colon length. (C) Colon weight. (D) Changes in body
weight of mice. (E) Changes in DAI. TBEA-L, TBEA-low dose (50 mg/kg); TBEA-H, TBEA-high dose
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group, and * p < 0.05, ** p < 0.01 compared with the DSS group (n = 8).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 4. Changes in physiological characteristics of experimental mice from the five groups. (A) 
Macroscopic pictures of colons. (B) Colon length. (C) Colon weight. (D) Changes in body weight of 
mice. (E) Changes in DAI. TBEA-L, TBEA-low dose (50 mg/kg); TBEA-H, TBEA-high dose (100 
mg/kg); 5-ASA, 5-aminosalicylic acid (200 mg/kg). ### p < 0.001 compared with the control group, 
and * p < 0.05, ** p < 0.01 compared with the DSS group (n = 8). 

UC inflicted severe damage to the colon, with inflammatory mucosa infiltration and 
massive loss of crypt and cup cells. Figure 5A shows the colon of the control group mice 
with neatly arranged crypt fossa, intact cup cells, and no inflammatory infiltration. How-
ever, Figure 5B shows the opposite phenomenon in the DSS group mice. After TBEA treat-
ment, both the high-dose group and the low-dose group showed a significant reduction 
in the damage caused by DSS inflammation (p < 0.001) (Figure 5F). The above results sug-
gest that TBEA may alleviate UC by ameliorating intestinal damage. 

 
Figure 5. Representative images and pathology scores of HE staining in colonic tissue. HE staining 
results for the (A) control group, (B) model group; (C) 5-ASA group; (D) TBEA-L group; and (E) 
TBEA-H group. (F) Pathology score for the HE staining of the above groups. TBEA-L, TBEA-low 
dose (50 mg/kg); TBEA-H, TBEA-high dose (100 mg/kg); 5-ASA, 5-aminosalicylic acid (200 mg/kg). 
### p < 0.001 compared with the control group, *** p < 0.001 compared with the DSS group (n = 8). 

2.4. TBEA Reduces the Level of Oxidative Stress in the Colonic Tissue of UC Mice 
Tissue damage is closely related to oxidative stress, and excessive free radicals in the 

body can damage tissue integrity. To further verify the alleviating effect of TBEA on in-
testinal injury in UC mice and the relationship with oxidative stress, we measured the 
levels of indicators related to oxidative stress in the colonic tissues of each group. Com-
pared with the control group, DSS resulted in increased levels of malondialdehyde (MDA) 
and myeloperoxidase (MPO) (p < 0.01) and significantly decreased levels of GSH and cat-
alase (CAT) (p < 0.001). Colonic glutathione (GSH) and CAT levels increased in TBEA-
treated mice (p < 0.05), with CAT levels in the TBEA-L group close to those in the control 
group (Figure 6A,B). The MDA levels in the TBEA-H group were the same as those in the 
control group (Figure 6C). The MPO levels in the TBEA-H treatment group were almost 
halved compared with the DSS group (Figure 6D). It was suggested that TBEA 

Figure 5. Representative images and pathology scores of HE staining in colonic tissue. HE staining
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(E) TBEA-H group. (F) Pathology score for the HE staining of the above groups. TBEA-L, TBEA-low
dose (50 mg/kg); TBEA-H, TBEA-high dose (100 mg/kg); 5-ASA, 5-aminosalicylic acid (200 mg/kg).
### p < 0.001 compared with the control group, *** p < 0.001 compared with the DSS group (n = 8).

2.4. TBEA Reduces the Level of Oxidative Stress in the Colonic Tissue of UC Mice

Tissue damage is closely related to oxidative stress, and excessive free radicals in
the body can damage tissue integrity. To further verify the alleviating effect of TBEA
on intestinal injury in UC mice and the relationship with oxidative stress, we measured
the levels of indicators related to oxidative stress in the colonic tissues of each group.
Compared with the control group, DSS resulted in increased levels of malondialdehyde
(MDA) and myeloperoxidase (MPO) (p < 0.01) and significantly decreased levels of GSH
and catalase (CAT) (p < 0.001). Colonic glutathione (GSH) and CAT levels increased in
TBEA-treated mice (p < 0.05), with CAT levels in the TBEA-L group close to those in the
control group (Figure 6A,B). The MDA levels in the TBEA-H group were the same as
those in the control group (Figure 6C). The MPO levels in the TBEA-H treatment group
were almost halved compared with the DSS group (Figure 6D). It was suggested that
TBEA significantly improved the level of oxidative stress in UC mice, which in turn had a
protective effect on the intestine.
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2.5. TBEA Reduces Pro-Inflammatory Cytokine Contents in the Colonic Tissue of UC Mice

Oxidative stress and inflammation can interact with each other, and we measured
the levels of pro-inflammatory cytokines in mouse colonic tissues. In the DSS group, we
observed a dramatic increase in NO content and IL-6 and IL-1β expressions in the colonic
tissues of UC mice compared with the control group (p < 0.01) (Figure 7A–C). The IL-6
content in the TBEA-H group was lower than that in the control group (Figure 7B), while
the IL-1β content in the TBEA-L group decreased by more than half compared to that in
the DSS group (Figure 7C). The mRNA expression levels of IL-1β, IL-6, and TNF-α in the
colonic tissue were significantly increased in the DSS groups compared with their control
groups (p < 0.001) and were effectively reduced with TBEA treatment (Figure 7D–F). The
above results confirm the excellent inhibitory effect of TBEA on the inflammatory response
in UC mice in vivo.

2.6. TBFE Inhibits the IL-6/JAK2/STAT3 Inflammatory Signaling Pathway

Some pathways may regulate the alteration of inflammatory factors, and we examined
the expressions of proteins related to the IL-6/JAK2/STAT3 inflammatory signaling path-
way using western blotting. As shown in Figure 8A–D, DSS induced a significant increase
in the expression of IL-6, p-JAK2/JAK2, and p-STAT3/STAT3 proteins in the colon of UC
mice compared with the control group (p < 0.001). The expression of SOCS1 protein was
reduced to half of that in the DSS group after the low-dose TBEA (50 mg/kg) treatment
(Figure 8E), while the content of SOCS3 treated with a high dose of TBEA (100 mg/kg)
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could reverse the decrease in protein content caused by DSS to almost the control level
(Figure 8F). This pathway may be one of the key pathways involved in anti-UC mechanisms
caused by TBEA.
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2.7. Influences of TBEA Treatment on Intestinal Flora

We used 16S rDNA high-throughput sequencing to detect rat intestinal flora. The
VEEN plot (Figure 9A) shows that a total of 2315 operational taxonomic units (OTUs)
were identified in the three groups, implying a strong core microbiota in this experimental
mouse. Compared with the control group, the total number of OTUs decreased in the
DSS group, and the number of OTUs increased after TBEA treatment. The number of
OTUs specific to each group was 102 in the control group, 142 in the DSS group, and 723
in the TBEA group. It can be seen that the number of unique OTUs of mouse intestinal
microorganisms was increased after TBEA treatment, which effectively prevented the
alteration of mouse intestinal flora. The largest number of identical OTUs was 226 in the
TBEA and control group among the three, suggesting that TBEA increased the similarity
between the intestinal flora of mice with enteritis and normal mice.
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α-Diversity indices are often used to characterize the richness and homogeneity of
sample species to fully assess microbial communities’ diversity. The Chao1 index and Simp-
son index represent the abundance and diversity of intestinal flora, respectively. Figure 9B
shows that TBEA treatment had no significant effect on the abundance of intestinal flora in
UC mice. At the same time, the Simpson index for the three groups showed no significant
differences (Figure 9C). However, the DSS group’s mean value for both the Chao1 index
and the Simpson index was higher than those for the control and TBEA groups.

β-Diversity is used to reflect the differences in microbiota composition between sam-
ples. This study used principal component analysis (PCA) to analyze the databases in
descending order. If the samples had a similar functional composition, then they were
closer in the descending plot. The results showed that the intestinal flora composition of
mice in the control and DSS groups were extremely different. Still, the composition of the
TBEA group was close to that of the control group (Figure 9D), which indicated that TBEA
could slow down intestinal flora disorder in UC mice.

Figure 9E shows the distribution of the top 10 groups of bacteria at the class level
in terms of richness in the different groups of mice. Bacteroides and Clostridia were the
dominant taxa at the class level in all groups. Compared with the control group, DSS-treated
mice had an increased abundance of Clostridia and decreased abundance of Bacilli in the
intestine. TBEA moderated the above changes. Figure 9F shows the distribution of the top
10 genera in terms of abundance for the different groups of mice, where harmful bacteria
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such as Paraprevotella increased after DSS induction. In contrast, the beneficial bacteria
Helicobacter and Ligilactobacillus decreased. TBEA treatment reduced the abundance of the
above-mentioned harmful bacteria while increasing the abundance of beneficial bacteria.

To identify bacterial taxa that differed significantly between groups, the linear dis-
criminant analysis effect size (LEfSe) method was used to detect the intestinal flora of
mice. As shown in Figure 10A, there were 31 distinctly different species in the three groups.
Combined with the horizontal clade of Top100 genera in Figure 10B, we observed that
the DSS-induced changes in the gut microbiota of UC mice were mainly concentrated in
Firmicutes and Bacteroidota. In contrast, TBEA treatment changed the composition and
population structure of the gut flora.
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3. Discussion

Based on the available clinical and experimental evidence, it was determined that in-
testinal homeostasis and inflammatory responses exacerbate each other, affecting intestinal
barrier function and promoting intestinal disorders and inflammatory responses [15]. The
intestinal flora is critical in intestinal homeostasis and the inflammatory response, mainly
associated with inflammatory factors and oxidative stress [16]. The current clinical treat-
ment for UC mostly uses 5-ASA, thiopurines, integrin-targeted biologics, and Janus kinase
inhibitors to provide relief. However, patients are prone to drug intolerance, resulting in
15% of patients needing surgical treatment [17]. The pursuit of treatment drugs that are
safe and effective with fewer side effects is essential.

TBF is a widely distributed ethnomedicine that can be used to treat various diseases.
It was observed that TBF can affect ulcers caused by gastric mucosal damage by promoting
mucosal recovery and reducing inflammatory cells [18], proving its anti-ulcer activity.
Pandey et al. suggested that TBEA at a dose of 100 mg/kg inhibited up to 72% of castor
oil-induced diarrhea in rats within four hours [19]. In addition, studies have stated that
TBF can alleviate liver injury and hepatic necrosis caused by oxidative stress and reduce
dysfunction, tissue damage, and arthritis produced by inflammatory factor aggregation [20].
All the above-described pharmacological effects of TBF are consistent with the possible
mechanisms we proposed, confirming the potential of TBF and TBEA to treat UC.

During the characterization of TBEA, we identified some active substances. Gallic acid
was one of the most distinct peaks in the TBEA qualitative profile. Gallic acid (GA) has
been shown to have anti-inflammatory activity by inhibiting LPS-induced production of
NO, prostaglandin E2, TNF-α, and IL-6 in macrophages in vitro [21,22]. A study confirmed
that GA was capable of reversing the pathological process in acute inflammation in vivo
experiments [23]. Yu et al. found that GA inhibits DSS-induced inflammatory response in
ulcerative colitis by acting on the inflammasome NLRP3 [24], and they also determined
that TBEA contains chebulagic acid and chebulinic acid, both of which are known to have
beneficial effects in relieving inflammatory response, according to previous studies [25,26].
Therefore, we speculate that these compounds may be the main active components of
TBEA that exert anti-UC effects. However, identifying which active ingredient has the best
anti-UC effect needs further analysis.

Terminalia chebula extract can treat colitis in mice by alleviating physiological indicators
such as diarrhea, bloody stools, weight loss, and colon damage [27], consistent with our
study’s findings that TBEA alleviates the physiological indicators mentioned above. It is
supposed that Terminalia chebula and Terminalia bellirica have similar pharmacological activi-
ties because they come from the same genus and contain similar chemical compositions. In
addition, we found that colon weight tended to decrease after DSS induction. At the same
time, the 5-ASA- and TBEA-H-treatment groups showed a significant recovery in colon
weight that exceeded the control group’s level. This interesting phenomenon is similar
to the findings of Cao [28], Ma [29], and Fay, C.N. [30] et al. However, the reason for this
phenomenon is unknown and thus requires further research.

The inflammatory response stimulates the release of large amounts of reactive oxygen
species (ROS) from inflammatory cells, neutrophils, and macrophages, leading to oxida-
tive stress. The increase in ROS, in turn, stimulates the production of pro-inflammatory
cytokines. Therefore, oxidative stress is a marker for detecting UC [31]. Based on our
experimental results, TBEA may alleviate UC by improving intestinal oxidative stress
and reducing the inflammatory response. Egyptian scholars found that hydroxytyrosol
can relieve UC by enhancing oxidative stress and reducing inflammatory factors [32]. In
addition, Panax quinquefolius polysaccharide and the ethanol extract of Piper wallichii also
treat UC mainly by reducing inflammatory response [33,34].

In UC patients, the body contains pro-inflammatory and anti-inflammatory cytokines,
which maintain the body’s homeostasis and influence immune cell activation and the
integrity of tissue structure [35,36]. As pro-inflammatory cytokines, IL-6 and IL-1β play an
important role in promoting the development of UC, with significantly elevated levels of
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both in UC patients [37]. TNF-α is a hallmark of DSS-induced UC and can upregulate IL-6
and IL-1β expression [38]. Jiang et al. demonstrated that oyster polysaccharides inhibited
TNF-α activity from attenuating the inflammatory response and alleviating UC [39]. In
addition, peanut skin procyanidins extract and peanut skin procyanidins were proven to
inhibit the colon’s inflammatory response and oxidative stress by downregulating TNF-
α [40]. This is sufficient to suggest the importance of this inflammatory cytokine. Our
study showed the same results that TBEA was able to reduce the severity of UC disease by
inhibiting the production of TNF-α.

Interleukin-6 (IL-6) is an important pro-inflammatory cytokine. It has been demon-
strated that there is an increase in the level of IL-6 when the body suffers from UC [41],
which is consistent with our study. After measuring the content of IL-6 in the colonic tissues
from TBEA-treated UC mice, we observed that TBEA significantly inhibited its production.
Moreover, Lactobacilli, which became more abundant after TBEA treatment in this exper-
iment, was proved to affect the secretion of IL-6 production [42]. Therefore, we believe
that IL-6 is the key cytokine in alleviating UC with TBEA and suggest analyzing its down-
stream cytokines to investigate the anti-UC mechanism of TBEA treatment. The JAK/STAT
pathway, which is one of the critical signaling pathways in autoimmune diseases, can
act on a variety of cytokines [43,44]. STAT-3 is phosphorylated as a substrate of JAK2,
regulating gene transcription and expression of inflammatory cytokines and promoting
further inflammation [45]. The suppressor of cytokine signaling-1 (SOCS 1) is a key in-
hibitor of cytokine signaling, and its expression is regulated by phosphorylated STAT3 [46].
SOCS3, in turn, affects this pathway by inhibiting JAK2 activity [47]. Clinical trials have
demonstrated that enhancing the intestinal barrier function by affecting the IL-6/STAT3
signaling pathway can attenuate UC-induced intestinal injury [48]. Clinical trials using JAK
inhibitors as therapeutic agents for IBD and UC are also unfolding. For example, research
on the PAN-JAK inhibitor TD-1473, which can exert anti-UC effects by regulating JAK2, is
in phase III of the clinical study [49]. Various TCMs, such as Gegen Qinlian decoction [50]
and Chrysanthemum morifolium polysaccharide [51], have been suggested to alleviate UC
through this pathway. Our study results showed that TBEA inhibited the activation of
JAK2 and STAT3 while increasing the level of SOCS3 in colonic tissues, further inhibiting
the signaling of this pathway. The above suggests that the anti-UC activity of TBEA may be
attributed to its ability to inhibit this signaling pathway in an inflammatory environment.

The intestinal microbiome is a key determinant of intestinal health and is directly asso-
ciated with the integrity of the intestinal epithelial barrier layer [52]. We assessed the effect
of TBEA administration on the gut microbiome. At the class and genus level, we observed
an increased abundance of UC-associated Actinomycetes and Bacteroidetes species and a
relative decrease in Lactobacillus. TBEA treatment increased the abundance of Lactobacillus
in the intestine. Lactobacilli are often considered beneficial probiotic thick-walled phylum
microorganisms whose products inhibit the production of inflammatory factors, including
IL-Iβ, IL-6, and TNF-α. Lactobacilli may also promote beneficial shifts in the composition
of the intestinal flora, producing antibiotic compounds that may prevent the colonization
of the intestine by potentially pathogenic bacteria [53]. The above observations suggest
that TBEA may stabilize intestinal homeostasis by reducing the abundance of harmful flora
in the intestine and suppressing inflammation by beneficial bacterial species products. It
provides a basis for TBEA to treat UC by regulating intestinal flora.

4. Materials and Methods
4.1. Chemicals

TBF (Sample number:20211216) was obtained from Yunnan Province, China. It was
authenticated by Dr. Gao Zhou at the Hubei University of Technology and then stored
in a dry 4 ◦C environment. DSS was produced by MP Biomedicals (molecular weight:
36,000–50,000, Solon, OH, USA), and 5-aminosalicylic acid(5-ASA) was provided by Shang-
hai Yien Chemical Technology Co., Ltd. (Shanghai, China). The occult blood test kit,
MDA, CAT, GSH, MPO, and nitric oxide assay kit were purchased from the Beyotime
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Institute of Biotechnology. Enzyme-linked immune sorbent assay (ELISA) kits for IL-6 and
IL-1β, were produced by Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China).
ChamQ Universal SYBR qPCR Master Mix (Q711-02) and HiScript III RT SuperMix for
qPCR (+gDNA wiper) (R323-01) were bought from Vazyme Biotech Co., Ltd. (Nanjing
China). Anti-p-STAT3 (AB267373) and AntiSOCS1 (AB280886) were from Abcam Co., Ltd.
(Shanghai, China). Anti-IL-6 (GB11117), Anti-JAK2 (GB11325), Anti-p-JAK2 (GB114585),
Anti-SOCS3 (GB113792), Anti-STAT3 (GB11176), and Anti-ACTIN (GB15001) were from
Servicebio Co., Ltd. (Wuhan, China). Horseradish peroxidase-conjugated anti-rabbit IgG
was purchased from Servicebio Biotechnology (Wuhan, China). The other analytical grade
solvents including 95% ethanol were supplied by Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China).

4.2. Preparation and Evaluation of the TBF Extracts

Dried TBF was crushed using a grinder and then sieved through a 200 mesh. Then,
the TBF power was extracted using ultrasonication with 95% ethanol three times for 30 min
each. The supernatant obtained after filtration was evaporated with a rotary evaporator
to obtain TBFE. TBFE was dissolved in deionized water and extracted successively with
petroleum ether, dichloromethane, ethyl acetate, and n-butanol to obtain various fractions,
including the aqueous phase.

4.3. High-Performance Liquid Chromatography Analysis

An HPLC analysis was performed on the various TBF fractions. TBFE and five
extract fractions were diluted with 1 mg/mL of methanol. The samples were filtered
through a 0.22 µm microporous membrane and injected into a 5C18-MS-II (5 µm particle
size, 4.6 × 250 mm, COSMOSIL) HPLC column. The mobile phase was 0.1% formic acid
aqueous solution (v/v) as eluent A and acetonitrile as eluent B. The gradient program was
0~5 min, 5% B; 5~15 min, 5~15% B; 15~20 min 15% B; 20~ 35 min, 15~20% B; 35~45 min,
20~60% B; 45~50 min, 60~5% B; and 50~55min, 5% B. The mixes for the preparation of
the standards for chebulic acid, gallic acid, corilagin, chebulagic acid, ellagic acid, and
chebulinic acid were 1 mg/mL, 2 mg/mL, 1 mg/mL, 2 mg/mL, 1 mg/mL, and 2.5 mg/mL,
respectively. Absorption of 100 µL, 100 µL, 100 µL, 200 µL, 100 µL, and 200 µL were mixed
in the above sequence, respectively, and characterized under the same chromatographic
conditions as the experimental samples.

4.4. Cell Viability Determination

Mouse mononuclear macrophages RAW264.7 (No. GDC0143) were obtained from the
China Center for Type Culture Collection (Wuhan University, Wuhan, China) in RPMI 1640
medium containing 15% fetal bovine serum (FBS) and 1% penicillin–streptomycin solution
and placed at 37 ◦C in a 5% CO2 incubator.

Cell viability was determined using an MTT assay. Logarithmic growth phase cells
were prepared as cell suspensions, inoculated into 96-well plates at a density of 1× 104/mL,
and divided into blank, control, and experimental groups, where the blank group had no
cells. After 24 h of incubation, the supernatant was aspirated, and 100 µL of TBFE and five
extract fractions solutions at concentrations of 0–200 µg/mL were given to the experimental
and blank groups. At the same time, the corresponding volume of culture medium was
added to the control group. After 24 h of incubation, MTT at a final concentration of
1 mg/mL was added to the experimental and control groups, and no MTT was added to
the blank group. The supernatant was discarded after 4 h of incubation, and then 100 µL of
DMSO was added to all groups. The reaction was performed for 30 min under light-proof
conditions, and the absorbance was measured at 570 nm using a microplate reader. The
cell survival rate was calculated as Cell survival rate = (OD experimental group-OD blank
group/OD control group-OD blank group) × 100%.
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4.5. NO Content Determination

Cells were inoculated in 96-well plates with RAW264.7 at a density of 5 × 105. The
cells were divided into control, LPS, 5-aminosalicylic acid (5-ASA), and extract experi-
mental groups. After 24 h of normal incubation, the supernatant was discarded. Drugs at
5–40 µg/mL concentrations were added to each group, and the control and LPS groups
were added with culture solution. After incubation for one hour, LPS with a final concen-
tration of 1 µg/mL was added to all subjects except the control group. Greiss reagent was
added and kept for 20 min with protection from light after 24 h incubation. The absorbance
was measured at 540 nm using microplate reader standardization, and the standard curve
of sodium nitrite determined the concentration of NO in the supernatant of each group.

4.6. Animals and Experimental Design

Forty male C57BL/6 mice (6–8 weeks old, 20 ± 5 g) were purchased from the Hubei
Provincial Center for Disease Control and Prevention. All mice were placed in a constant
temperature environment at 25 ◦C and fed water and standard chow for 3 d to acclimatize to
the environment. To determine the optimal dose to be administered in animal experiments,
the equivalent human amount (3–9 g) at the time of administration was calculated by
referring to the Chinese Pharmacopoeia, which was converted to the applicable dose
in mice according to the human–mouse drug dose conversion principle [10]. The final
amounts of TBEA for mice were determined to be 50 mg/kg and 100 mg/kg, respectively,
of which 100 mg/kg was converted from the human dose of 6 g of TBF. The mice were
weighed and recorded before the beginning of the experiment and randomly divided into a
control group, model group, 5-ASA group (200 mg/kg), TBEA low-dose group, and TBEA
high-dose group, with eight mice in each group. The mice in the control group were given
water, while the other group was given 2.5% DSS solution instead of water for 6 d. From
day 1 to day 6, 5-ASA and two doses of TBEA were treated with intragastric gavage in the
positive control and TBEA groups, respectively. On day 7, DSS was replaced with drinking
water in the model group, while the treatment with 5-ASA in the positive control group
and TBEA in the TBEA groups was continued. On day 8 of the experiment, the mice were
sacrificed using CO2, and the colon samples were rapidly obtained after saline rinsing and
measuring the length and weight. A 1 cm colon length was fixed in 4% paraformaldehyde,
while the other portion was stored at −80 ◦C for further analysis. All animal experiments
were supervised and approved by the Animal Care and Use Committee at Hubei University
of Technology (HBUTLL20230033, Wuhan, China).

4.7. DAI

During the experiment, the body weight and fecal consistency were recorded daily
for each group of mice, and the feces were collected and measured using the o-toluidine
method to detect the occult blood. The mean values for the three indexes were calculated
according to the relevant criteria [54–56] listed in Table 1 to obtain the final DAI.

Table 1. Criteria for scoring DAI.

Score Rate of Weight Change Stool Formation Occult Blood Status

0 0% Normal No color development within 2 min
1 1–5% Soften Change from light green to green after 10 s
2 5–10% Loose Change from light green to blue–brown
3 10–15% Unshaped Change from blue–brown to black–brown
4 >15% Diarrhea Immediately turns blue–black–brown

4.8. Histological Analysis of the Colon

Distal colon specimens were fixed in 4% paraformaldehyde for 48 h, dehydrated in an
ethanol gradient, paraffin-embedded, sectioned to 5 µm, and stained with hematoxylin and
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eosin (H&E). Three different experimenters performed the histological scoring, according
to Table 2, which was summarized from relevant references [57–59].

Table 2. Histological scoring.

Score Inflammatory Factor Infiltration Epithelial Cell Integrity

0 Normal Normal
1 Local inflammatory infiltration of crypts Partial loss of cup cells
2 Inflammatory infiltration to the base of the crypt Partial disappearance of the crypt
3 Inflammatory infiltration into the mucosa Large absence of crypt fossa
4 Inflammatory infiltration into the submucosa The disappearance of crypt fossa

4.9. Determination of Oxidative Stress-Related Indicators in the Mice Colon

The colon tissue from each group of mice was randomly selected and homogenized
with 0.9% saline at 10,000× g; the supernatant was obtained after centrifugation for 10 min.
The protein concentration was determined using the BCA protein concentration assay kit.
GSH, CAT, MDA, and MPO contents were measured according to the kit’s instructions.

4.10. Measurement of Colonic Inflammatory Factor Levels in Mice

The contents of IL-6 and IL-1β in colonic tissues were determined using an enzyme-
linked immunosorbent assay (ELISA). The colon tissues from mice in each group were
randomly obtained and homogenized with 0.9% saline, and the supernatant was obtained
after centrifugation at 5000× g for 10 min. According to the instructions for the IL-1β and
IL-6 ELISA kits, the content of inflammatory factors in the colonic tissue from each group
of mice was measured. The NO content in the tissues was also determined according to the
instructions provided for the NO kit.

4.11. Analysis of Inflammatory Factors using qPCR

The total RNA from each group of mice was extracted using TRIzol. The purity and
concentration of the extracted RNA were determined using NanoDrop2000 (Thermo Fisher
Scientific, Waltham, MA, USA). The cDNA samples were synthesized with RNA reverse
transcription using the HiFiScript cDNA Synthesis Kit. UltraSYBR Mixture was prepared
for real-time PCR reaction system for quantitative analysis. The reaction mixture was made
by mixing 0.2 µL of upstream primer (10 µM), 0.2 µL of downstream primer (10 µM), 1 µL
of the diluted sample, 3.6 µL of ddH2O, and 5 µL of UltraSYBR mixture (2×). The primers
used for qRT-PCR are listed in Table 3, and these primers were synthesized by Tsingke
Biotechnology Co., Ltd. RNA expression levels were quantified using a real-time system
(Applied Biosystems, Foster City, CA, USA). The thermal cycling conditions were set at
the manufacturer’s recommendation of 40 cycles. Each gene’s cycle thresholds (Ct) were
recorded and normalized with the Ct value of β-actin using the 2-∆∆CT method.

Table 3. Primers used in qPCR.

Target Gene Upstream Primer (5′-3′) Downstream Primer (5′-3′)

IL-6 GAGTCACAGAAGGAGTGGCTAAGGA CGCACTAGGTTTGCCGAGTAGATCT
IL-1β TGCCACCTTTTGACAGTGATG CATCTCGGAGCCTGTAGTGC

TNF-α GCATGGTGGTGGTTGTTTCTGACGAT GCTTCTGTTGGACACCTGGAGACA
β-actin GCAGGAGTACGATGAGTCCG ACGCAGCTCAGTAACAGTCC

4.12. Western Blot Analysis

A Western blot was used to detect the expression of IL-6, JAK2, p-JAK2, STAT3, p-
STAT3, SOCS1, and SOCS3 proteins in colon tissues. Colon tissues from each group were
homogenized, and RIPA reagent was added to lysate cells. After a 20 min wait, the super-
natant was obtained using centrifugation at 12,000× g for 10 min. Protein quantification
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was performed using the BCA method. Equal amounts of proteins (20 µg per sample)
were electrophoresed on 10% sodium dodecyl sulfate–polyacrylamide gel, followed by
immunoblotting to transfer proteins to polyvinylidene difluoride (PVDF) membranes. The
membranes were closed with 5% skim milk for two hours at room temperature and washed
with TBST thrice for 20 min. The membranes were incubated with the primary antibody
overnight at 4 ◦C, washed with TBST, and incubated with the secondary antibody to detect
the protein bands using an electrochemiluminescence (ECL) system. The grayscale value
for each band was determined using Image J software, and the ratio of each protein to the
internal reference (β-actin) was used as the relative expression of each protein.

4.13. Gut Microbiota Analysis and 16S rDNA Sequencing

Mouse feces were collected from the control, DSS, and TBEA-H groups, and the
total DNA from each sample was extracted using a CTAB reagent. Then, 2% agarose gel
electrophoresis was used to determine the purity and concentration of DNA, which was
finally amplified at a concentration of 1 ng/µL. Bacterial 16SrDNA in the V3-V4 region was
amplified with universal gene primers: 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′). Sequences were clustered into operational
taxonomic units (OTUs) with 97% agreement using the clustering program USEARCH
(version 7.0) with double-indexed amplification and sequencing methods on the NovaSeq
sequencing platform. Species annotation analysis was performed using the Mothur method
with the SSUrRNA database of SILVA138.1, and the community composition of each sample
was counted at the phylum and genus levels, respectively. Finally, the data for each sample
were homogenized, and the Chao1 and Simpson indices were calculated using Qiime
software (Version 1.9.1). R software (Version 4.1.2) was used to plot te PCA and perform
inter-group variation analysis of the Beta diversity index.

4.14. Statistical Analysis

SPSS 22.0 software was used for one-way analysis of variance (ANOVA) followed
by Fisher’s least significant difference test for multiple comparisons. Differences between
groups were considered statistically significant at p < 0.05.

5. Conclusions

In this study, we investigated the alleviating effect of TBEA on UC and its mechanism
of action using a DSS-induced UC mouse model. Our results showed that TBEA mainly con-
tains chebulic acid, gallic acid, corilagin, chebulagic acid, ellagic acid, and chebulinic acid.
TBEA reduced weight loss and diarrhea and improved intestinal damage in UC rats. The
mechanism of action underlying TBEA’s anti-UC activities is mainly involved in antioxidant
capacity enhancement, inflammatory response suppression, IL-6/JAK2/STAT3 signaling
pathway inhibition, and gut microbiota regulation. In summary, TBEA can be used as a
medicinal plant to alleviate UC and can be applied as a novel anti-UC drug candidate.
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