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1 Electrochemical measurements 

  All of the electrochemical measurements were carried out on a CHI660E electrochemical 

workstation. In a three-electrode configuration, a standard Hg/HgO was used as the reference electrode, 

a slice of Pt foil was acted as the counter electrode. The work electrode was prepared by coating the 

homogeneous slurry containing active material, carbon black and PVDF (5 wt.% NMP solution) in a 

ratio of 8:1:1 onto a piece of graphite paper and dried at 80 °C for 24 h. The single electrode 

measurements were conducted in 2 mol L-1 KOH aqueous electrolyte. The electrochemical impedance 

spectroscopy (EIS) was performed in the frequency range from 0.01 to 100 kHz with an amplitude of 

10 mV at open circuit potential. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) 

were conducted at room temperature. The specific capacitances derived from GCD (Cg, F g-1) results 

were calculated by means of equation (S1): ܥ௚ = ௜୼௧௠୼௏                               (S1), 

where i, Δt, m and ΔV are the current density (A), discharge time (s), mass of active material (g), and 
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voltage window (V), respectively.  

The asymmetric supercapacitor (SC) was assembled using N-doped carbon nanofibers supporting 

Fe3C/Fe2O3 nanoparticles hybrid architecture composite (NCFCO) anode and activated carbon (AC) 

cathode and the electrochemical performances were measured in a two-electrode system in 2 mol L-1 

KOH aqueous electrolyte. The masses of active material in the anode (m-, g) and cathode (m+, g) were 

determined according to the following equation: ௠శ௠ష = ஼ష∆௏ష஼శ∆௏శ                              (S2), 

where C+ (F g-1) and C- (F g-1) are the specific capacitances, ΔV+ (V) and ΔV- (V) are the voltage 

windows of anode and cathode, respectively. The energy density (E, Wh kg-1) and power density (P, 

W kg-1) of the as-assembled device were computed in terms of equation (S3) and (S4) individually: ܧ = ஼௱௏మ଻.ଶ                                (S3), ܲ = ா௱௧                                 (S4). 

2 Characterizations 

  The morphology was characterized on a scan electron microscope (SEM, Hitachi S1510) equipped 

with energy dispersive X-ray spectroscopy (EDS, Oxford). The phase structure was examined by X-

ray diffraction (XRD, Rigaku, Smartlab) and Raman spectroscopy (Horiba, Xplora Plus). The 

elemental composition and chemical valence on the surface of the samples were tested by X-ray 

photoelectron spectroscopy (XPS, Escalab 250Xi). The specific surface area (SSA) and pore size 

distribution were calculated on a physical analyzer (Micromeritrics, ASAP 2020 Plus) applying 

Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) model based on N2 

adsorption-desorption isotherms at 77 K, respectively.  
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Figure S1 Low (a) and High (b) magnification SEM images of the electrospinning nanofiber 

precursor before annealing. 

 

 

Figure S2 EDS spectrum of NCFCO. 
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 Figure S3 High resolution C1s spectra of NCFC (a), NCFCO (b) and NCFO (c).    

 

 
Figure S4 High resolution N1s spectra of NCFC (a) and NCFO (b). 
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Figure S5 High resolution O1s spectra of NCFC (a) and NCFO (b). 

 

 
Figure S6 High resolution Fe2p spectra of NCFC (a) and NCFO (b). 
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Figure S7 CV curves of NCFC (a), NCFCO (b) and NCFO (c) at different scan rates. 

 

 
Figure S8 CV curves of AC at different scan rates. 
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Figure S9 GCD curves of NCFC (a), NCFCO (b) and NCFO (c) at different current densities. 

 

 
Figure S10 GCD plots of AC at different current densities. 
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Table S1. SSA, pore volume and average pore diameter of NCFC, NCFCO and NCFO. 

 NCFC NCFCO NCFC 

SSA / m2 g-1 215.9 210.7 21.6 

Pore volume / cm3 g-1 0.136 0.124 0.078 

Average pore diameter / nm 1.85 1.97 11.8 

 

Table S2. Specific capacitances of NCFCO and previously reported Fe-based oxides/carbides. 

Materials Current 

density / A g-1 

Specific 

capacitance / F g-1 

Reference 

FexCy/Fe/carbon nanofibers 1 340 [1] 

Fe2O3/Fe3C/N-doped carbon nanosheet 0.5 240 [2] 

Fe2O3/MXene 1 486.3 [3] 

Carbon coated Fe3O4/carbon cloth 1 463 [4] 

Fe3O4/N-doped carbon nanosheets 0.5 522.7 [5] 

Fe3O4/graphene/carbon cloth 1 406 [6] 

Fe2O3/carbon 1 221.5 [7] 

Fe2O3/MXene 1 182 [8] 

Carbon/Fe/Fe2O3 0.1 177 [9] 

Fe3C/N-doped carbon  2 325 [10] 

NCFCO 2 590.1 This work 
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