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Abstract: Alzheimer’s disease (AD) is a prevalent degenerative condition that is increasingly affecting
populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main
active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It
has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition,
tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory
properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive
overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and
the underlying molecular mechanisms associated with these effects. Additionally, we will discuss
the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent
anti-AD effects in vivo may be a direction for further research.

Keywords: Alzheimer’s disease; American ginseng; ginsenosides; pathogenic mechanism; molecular
mechanism

1. Introduction

American ginseng (AG) refers to the dried root of Panax quinquefolium L., which is a
perennial herb naturally found in southeast Canada and northern United States. It was
introduced and cultivated in China since the 1980s [1]. Unlike Panax ginseng C. A. Mey., AG
has a cool property, a slightly sweet and bitter taste, making it suitable for treating various
conditions such as qi deficiency, yin deficiency, internal heat, deficiency heat, tiredness,
asthma, phlegm, and dry mouth and pharynx. Pharmacological studies have demonstrated
the multiple beneficial effects of AG, including hypoglycemic [2], immunomodulatory [3],
anti-hypertensive [4], anti-fatigue [5], anti-oxidant [6], and anti-tumor [7] effects, as well as
effects on the nervous system such as enhancing learning and memory [8]. It can be used to
treat diabetes mellitus [9], hypertension [10], cancer [11], acute myocardial infarction [12],
myocardial ischemia [13], gastrointestinal disorders [14], etc. AG has a long history of use
and is widely distributed in China, and its components and contents may differ slightly
due to varying growth environments [15–17]. To date, various compounds including gin-
senosides, polysaccharides, flavonoids, fatty acids, polyalkynes, volatile oils, amino acids,
carbohydrates, vitamins, and trace elements have been isolated from AG, and ginsenosides
and polysaccharides are widely acknowledged as the primary active constituents [18,19].
Studies have demonstrated that ginsenosides possess hypoglycemic [20], anti-tumor [21],
cardioprotective [22] and neuroprotective properties [23]; they can also inhibit aging pro-
cesses as well as improve sleep quality and learning and memory impairments [24]. On the
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other hand, polysaccharides exhibit a range of beneficial effects, including immunomodula-
tory, anti-oxidant, anti-viral, and anti-inflammatory properties [25].

Alzheimer’s disease (AD) is a highly prevalent neurodegenerative disorder primarily
affecting the elderly population. Presently, approximately 35 million individuals world-
wide are impacted by this disease, and it is projected to rise to 70 million by 2030, with
China accounting for approximately 30% of the cases [26–28]. The clinical manifestations of
AD encompass progressive memory loss, cognitive dysfunction, behavioral abnormalities,
and profound social impairment, ultimately resulting in fatality [29]. Nevertheless, the
pathogenesis of AD remains unclear to date [30]. It has been reported that its onset is asso-
ciated with various factors such as genetics and environment, there are many descriptive
hypotheses for its mechanism including amyloid hypothesis, tau hypothesis, cholinergic
hypothesis and inflammation hypothesis [31]. For a long time, the FDA has approved only
four drugs for the treatment of AD. These medications consist of three cholinesterase in-
hibitors (donepezil, galantamine, and rivastigmine) and an N-methyl-D-aspartate receptor
antagonist (memantine) [32]. In recent years, Chinese-approved sodium oligomannate and
FDA-approved adacunumab were used to slow the progression of AD [32]. Until 6 January
2023, the lecanemab, a better alternative for adacunumab, received accelerated approval
from the FDA for the treatment of AD [33].

Moreover, Durk et al. treated AD patients with 1α,25-Dihydroxyvitamin D3 and
observed a significant decrease in amyloid β-protein (Aβ) in their brains, particularly in
the hippocampal region; additionally, cognitive memory was improved in patients [34].
Furthermore, specific anti-diabetic medications, such as pioglitazone and low doses thereof,
have demonstrated the ability to improve Aβ clearance. This is achieved through the
upregulation of low-density lipoprotein receptor-related protein 1 (LRP1) expression in the
microvasculature of the human hippocampus [35]. Treatments for AD have encompassed
small-molecule drugs to biopharmaceuticals; however, these drugs do not show a sub-
stantial effect on its pathogenesis. Consequently, developing drugs that can both improve
symptoms and reverse the disease process remains an essential task in AD treatment,
mining from natural products is a viable option to pursue this goal.

AG has been studied for many years in China to improve learning and memory,
resulting in the preparation of various related Chinese patent medicines. For example,
oral liquid of AG and oral liquid of AG and cordyceps can enhance learning and memory
ability, as well as improve memory impairment; likewise, the capsule of AG and royal jelly
can be used to treat symptoms such as neurasthenia, improve sleep quality, and reduce
forgetfulness [36]. Furthermore, AG can improve cognitive function in mouse models of
AD [37], ginsenoside Rb1 has been shown to treat AD by increasing Aβ degradation, de-
creasing tau phosphorylation and inhibiting apoptosis [38]. On the other hand, ginsenoside
Rd serves as a therapeutic agent for AD by modulating nerve growth factor and facili-
tating nerve regeneration through pathways involving anti-inflammatory, anti-oxidant,
and anti-apoptotic effects [39]. Compared to approved anti-AD drugs, AG has a number
of advantages including fewer side effects, easy acceptance among patients and multiple
targets [40,41]. In recent years, research on AG has become increasingly detailed; this may
result in further possibilities for its use in treating AD. Additionally, on 2 January 2020
China’s National Health Commission and State Administration for Market Regulation
listed AG as a medicinal and food homologous product which could potentially promote
its wider use for prevention and treatment of AD. This review aims to provide a compre-
hensive summary of the pathogenesis of AD, as well as the molecular mechanisms and
biological activities of ginsenosides in AD in their potential role against AD; furthermore,
it will discuss potential prospects for using AG against this disorder.

2. Pathogenic Mechanism of Alzheimer’s Disease

AD has multiple pathogenic mechanisms, including abnormal Aβ deposition, tau
hyperphosphorylation, cholinergic damage, mitochondrial dysfunction, oxidative stress
(OS), neuroinflammation and insulin signaling disorders [42] (Figure 1). Among these,
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two hypotheses, namely the amyloid cascade hypothesis and the tau hyperphosphoryla-
tion hypothesis, are widely accepted as the primary pathogenic mechanisms [43]. These
pathogenic mechanisms will be summarized in the following sections.
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2.1. Amyloid Cascade Hypothesis

The amyloid hypothesis, introduced in 1991, posits that Aβ plays a pivotal role in
the pathogenic cascade of AD [44]. The build-up and impaired clearance of Aβ in the
brain result in the development of amyloid plaques, particularly within the hippocampus
and basal segments. These plaques are neurotoxic and can eventually lead to neuronal
dysfunction and apoptosis, resulting in AD [43,45].

Within the brains of individuals with AD, a significant portion of amyloid precursor
proteins (APP) is cleaved by β-secretase, leading to the production of β-CTF. Subsequently,
γ-secretase cleaves β-CTF to yield varying lengths of Aβ, predominantly Aβ40 and Aβ42,
which are commonly known as Aβ oligomers (AβOs) [43,46]. The prevailing belief is that
these AβOs are secreted into the extracellular space and gradually accumulate, leading to
the formation of amyloid plaques. However, the precise mechanisms underlying plaque
formation are still not fully understood [47]. AβOs are considered the initiating factors for
various pathological changes in AD, and their accumulation has been observed in the brain
tissue of both AD patients and AD mice in a correlated manner [48]. Increased concentra-
tions of AβOs have also been observed in the cerebrospinal fluid of both individuals with
AD and mice models of the disease [49,50].

Furthermore, AβOs can trigger a variety of biological processes, including neuroin-
flammation, oxidative damage, insulin resistance, and synaptic degeneration as well as loss,
all of which are associated with the progression of AD [48,51]. Research has demonstrated
that exposure to AβOs can stimulate the assembly and activation of NLRP3 inflammasomes
in brain microglia and astrocytes. This activation subsequently leads to the activation of
caspase-1, followed by the secretion of IL-1β and IL-18 [52]. Alternatively, OS is accentuated
in brain regions enriched for Aβ1-42 in AD patients; however, this is not present in brain
regions deficient for Aβ1-42 [51]. Moreover, AβOs can internalize into cells via multiple
receptors resulting in mitochondrial dysfunction [53]. On the other hand, AβOs have the
ability to bind to and internalize within insulin receptors (IR), resulting in elevated levels of
neuronal p(Ser)-IRS1 and p-JNK. These molecular changes contribute to the development
of insulin resistance and subsequently impact the progression of AD [54].
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2.2. Tau Hyperphosphorylation Hypothesis

The tau hyperphosphorylation hypothesis is currently recognized as one of the mech-
anisms underlying AD pathogenesis, which clarifies that hyperphosphorylated tau protein
is insoluble and accumulates to form neurofibrillary tangles (NFTs). NFTs are extensively
accumulated within neurons, leading to detrimental effects on neuronal structure and
function. This chronic damage includes the development of lesions and ultimately leads
to neuronal death, which is closely associated with the progression of AD [55–58]. Clin-
ical data have provided additional evidence indicating a strong and positive correlation
between the degree of tau hyperphosphorylation and the severity of clinical symptoms
observed in individuals with AD [59].

Tau protein, which is encoded by the MAPT gene, is primarily localized within the
axons of neural cells, and it serves as a microtubule-associated protein [60,61]. It has been
proposed that the hyperphosphorylation of tau protein in AD may be attributed to the
upregulation of protein kinase activity or the downregulation of phosphatase activity [62].
Several key kinases have been implicated in this process, including glycogen synthase
kinase-3β (GSK-3β), cyclin-dependent kinase-5 (CDK5, particularly the CDK5/p25 com-
plex), mitogen-activated protein kinases (MAPKs) such as p38, Erk1/2, and JNK1/2/3, as
well as protein kinase A (PKA) [63,64]. Activation of these kinases has been observed in
the brains of AD patients. Among these kinases, GSK-3β is recognized as a crucial factor
in the pathological mechanisms of AD and exhibits widespread expression within the
hippocampal region [65]. Research studies have consistently shown that increased levels of
GSK-3β in hippocampal neurons result in both hyperphosphorylation of tau protein and
subsequent neuronal loss [65,66]. Inhibition of GSK-3β activity has been shown to increase
synaptic plasticity, reduce synaptic dysfunction, consolidate memory, rescue cognitive
and memory deficits [67], thus plays a role in preventing and alleviating AD. Moreover,
activation of GSK-3β increases production and accumulation of Aβ [65,66,68], suggesting
it may be a key target in the potential links between AD pathogenesis.

On the other hand, phosphatases are mainly responsible for tau protein dephosphory-
lation. Studies have reported a significant decrease in the activity of protein phosphatase 1
(PP1) and protein phosphatase 5 (PP5) by approximately 20% in the brains of AD patients,
whereas protein phosphatase-2A (PP2A) exhibits an even greater reduction of approx-
imately 50% [62]. Among these phosphatases, PP2A is responsible for more than 70%
of cellular phosphatase activity. Inhibition of PP2A has been associated with neuronal
apoptosis, hyperphosphorylation of tau protein, and deficits in spatial memory; thus, it is
known as the core phosphatase during tau dephosphorylation associated with AD [62,69].

2.3. Cholinergic Hypothesis

The cholinergic hypothesis was one of the initial theories proposed to elucidate the
underlying causes of AD [70]. This hypothesis is based on the absence of cholinergic
neurotransmitter release from the nucleus basalis of Meynert (NBM), which has extensive
fiber connections with other brain regions, and its efferent fibers reaching multiple sites
such as the frontal lobe, parietal lobe, temporal lobe, and amygdala. Cholinergic transmitter
projections from the NBM to the amygdala can promote memory formation [71]. As a
consequence, the decline in learning and memory abilities, which is observed in AD, may
be attributed to the impairment of cholinergic neurons caused by neurotransmitter defects
and reduced activity in the cholinergic system [72].

Clinical studies have revealed reductions in cholinesterase activity, as well as decreased
synthesis, release, and uptake of acetylcholine (ACh) in regions of the brain associated with
cognitive function, such as the hippocampus and cortex, in AD patients [73]. In addition,
in vitro experiments have revealed that memory impairment in transgenic mice can be
attributed to cholinergic synaptic dysfunction [74]. Similarly, ACh deficiency has been
found to disrupt extramicroscopic projection neurons in the prefrontal cortex of AD mice,
resulting in short-term memory impairment [75]. Consequently, it is believed that restoring
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or improving cholinergic system activity could potentially improve learning, cognitive and
memory abilities of AD patients.

Currently, the primary form of treatment for AD continues to be cholinesterase in-
hibitors. However, clinical trials have shown that donepezil is capable of significantly
improving memory compared to placebo, but this effect is not sustained in the long-term,
making cholinesterase inhibitors a symptomatic treatment for AD [32,76].

2.4. Oxidative Stress Hypothesis

OS refers to an imbalance between the production of free radicals and the body’s
capacity to neutralize their harmful effects [77]. Neurons within the brain are espe-
cially susceptible to OS due to their abundance of polyunsaturated fatty acids, limited
levels of glutathione, elevated iron metal concentration, and dependence on oxidative
metabolism [77,78]. The accumulation of oxidative stressors, such as mitochondrial dys-
function, metal accumulation, tissue damage, aging and neuroinflammation [77,79], can
lead to excessive free radical production and dysregulation of the redox balance system.
Consequently, this process can lead to the generation and accumulation of Aβ and hy-
perphosphorylated tau protein, causing damage to cell structures, synaptic function, and
ultimately, neuronal apoptosis [80–82]. All of these factors collectively contribute to the
development of AD.

Commonly employed markers of OS include lipid peroxidation products, protein oxi-
dation, and nucleic acid oxidation [83]. Research findings have consistently demonstrated
significant increases in isoprostanes (lipid peroxidation products) in the frontal/temporal
pole, cerebrospinal fluid, urine, and plasma of AD patients. Similarly, elevated levels of
protein carbonyls (protein oxidation products) have been observed in the hippocampus,
parietal lobe, and middle/superior temporal gyrus. Additionally, heightened levels of
8-hydroxydeoxyguanosine and 8-hydroxyguanosine (nucleic acid oxidation products) have
been detected in both mitochondrial and nuclear DNA within the brain. These findings
collectively contribute to a clear association between OS and AD [84,85].

The PI3K/AKT signaling pathway has been recognized as a critical player in OS
within the context of AD [86]. Studies have reported a reduction in the activation of this
pathway in the brains of individuals with AD [87]. Activation of PI3K/Akt signaling can
activate GABAB receptors, thus reducing OS damage to neuronal cells [88]. Furthermore,
FoxO3a, which acts as a downstream target of the PI3K/Akt signaling pathway, exhibits the
ability to mitigate the generation of protein oxidation and lipid peroxidation products, thus
offering neuronal protection [80,89]. As such, FoxO3a is considered a potential therapeutic
target for the treatment of AD and may even act directly with PGC-1α gene, a key positive
regulator of oxidative metabolism, exhibits a noteworthy reduction in AD patients’ brains,
consequently decreasing OS [89,90]. Therefore, conducting additional research on the
PI3K/AKT signaling pathway holds promise for unraveling the mechanisms underlying
AD and facilitating the development of precise therapeutic interventions.

2.5. Neuroinflammatory Hypothesis

Neuroinflammation is the third core neuropathological feature of AD and its corre-
lation with amyloid plaque deposition and NFTs has been widely acknowledged [91]. It
has been reported that neuroinflammation can promote the formation of Aβ and NFTs,
as well as neuronal toxicity and death [92]. On the other hand, Aβ has the ability to
trigger the activation of microglia and astrocytes, leading to the release of inflammatory
cytokines [93]. Consequently, this cascade amplifies the inflammatory responses within the
brain. Interestingly, proper inflammation is beneficial for tissue repair and rapid clearance
of harmful stimuli; however, sustained inflammatory responses can lead to nerve damage
and neuronal death, ultimately resulting in the development and progression of AD [93,94].

Numerous studies have confirmed the chronic inflammation of the nervous system
that accompanies the pathogenesis of AD, with increased levels of inflammatory markers
being associated with cognitive decline in the brain of AD patients [95]. Additionally, a
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large number of microglia and astrocytes are found adjacent to neurons, plaques, as well
as pathological neurofibrillary tangles in AD patients and produce inflammatory factors
and cytotoxins [96]. Toll-like receptor (TLR) expression is also elevated on microglia and
neurons in AD brains; this event initiates the activation of NF-κB signaling pathways,
which subsequently result in an excessive production of pro-inflammatory factors, thereby
inducing chronic inflammation [97,98]. Moreover, it has been reported that phytochemicals
can inhibit neuroinflammation via the NF-κB pathway [99]; therefore, development of
NF-κB targeted agents could be a potential therapy for AD [100].

2.6. Other Pathogenic Hypotheses

With increasing age, the accumulation of mitochondrial DNA mutations can lead to
mitochondrial dysfunction [101], disrupting intracellular calcium homeostasis and redox
balance in neurons, activating apoptosis events in cells and ultimately triggering AD [102].
This can interact with Aβ, tau hyperphosphorylation and OS to further promote the de-
velopment of AD [103]. It also provides research ideas for the treatment of AD. Extensive
therapeutic efficacy for AD has been attributed to MH84 (ethyl 2-(4,6-bis(4-(trifluoromethyl)-
phenethoxy)pyrimidin-2-yl-thio)hexanoate), specifically it regulates β-secretase processing
of APP via a PGC-1α-dependent mechanism, improving mitochondrial dysfunction and
impacting AD progression [104]. Moreover, the modulation of mitochondrial dysfunction
represents a viable therapeutic approach employed in herbal medicine to address the treat-
ment of neurodegenerative disorders [101]. For example, ginsenoside Rb1 in AG inhibits
mitochondrial dysfunction by decreasing Bax and Caspase-3 levels while upregulating
Bcl-2 levels [105].

Gasparini et al. have demonstrated that disruptions in brain insulin signaling may
play a contributory role in the pathophysiology of AD [106]. Clinical studies have revealed
that AD patients exhibit reduced insulin levels and expression of the insulin receptor in
the brain, as well as insulin resistance [107], all of which can trigger Aβ accumulation,
tau phosphorylation, neurodegeneration and cerebral glucose metabolism impairment,
and cognitive decline [108]. Hence, the perturbations in the insulin signaling pathway
are increasingly recognized as a shared characteristic of both AD and diabetes, often
referred to as “type 3 diabetes” [109]. Consequently, exploring the potential of anti-diabetic
medications may offer a promising avenue for the development of novel anti-AD drugs.

On the other hand, there are several risk genes that are important in the pathogenesis
of AD, such as presenilin gene [110], apolipoprotein E gene [111] and APP gene [112].
While offering additional potential therapeutic targets for AD treatment, further studies
are warranted to validate these findings.

3. Anti-Alzheimer’s Disease Activity of Ginsenosides in American Ginseng

AG comprises a diverse array of chemical constituents, including ginsenosides, polysac-
charides, and volatile oils [18]. At present, nearly 100 ginsenosides have been isolated from
AG (The extraction rate of total ginsenosides is approximately 40–60 g/kg), of which gin-
senosides Rb1, Rb3, Rc, Rd, Re and Rg1 account for approximately 70%, and Rb1, Rg1 and
Re are the more abundant ginsenosides, with Rb1/Rg1 > 5.0, Rg1/Re < 1.0, Rb2/Rc < 0.4,
and the extraction rate of Pseudoginsenoside F11 was approximately 1.0–2.0 g/kg [113–115].
It has been reported that the content of ginsenosides varies in different ages, cultivation
methods and even in roots, stems and leaves of AG [116]. Ginsenosides Rb1, Rd, Rg3, Rh2,
Re, Rg1, Rg2, CK and F11 have the effect of improving AD [86] (Figures 2 and 3), all of
which are tetracyclic triterpenoid ginsenosides belonging to the protopanaxadiol type, the
protopanaxatriol type (the structural difference between the two lies in the presence or
absence of a hydroxyl substitution at the 6-position carbon), and the ocotillolttype ginseno-
sides. It has been reported that ginsenosides can affect the development of AD by affecting
ACh levels, Aβ levels, calcium ion levels, neuroinflammatory processes and neurofibrillary
tangles formation [86]. For instance, AG extract, in which the major ginsenosides include
Rb1 (5.68%), Re (2.05%), Rc (1.86%) and Rd (1.47%), can increase Ach levels in the brain by
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enhancing the expression of the choline acetyltransferase (ChAT) gene [37]. Similarly, gin-
senoside Rb1 can inhibit Aβ-induced neuronal apoptosis [105]. Additionally, ginsenoside
Rg1 can ameliorate AD symptoms by relieving OS injury, improving neuroinflammation,
and protecting neurons [117]. In light of current research findings on AG’s active compo-
nents in treating AD being concentrated on ginsenosides; thus, the primary focus of this
paper is to provide an overview of the biological activities and molecular mechanisms
(Table 1) of ginsenosides in AD.
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Table 1. Inhibition of ginsenosides on Alzheimer’s disease through inhibiting Aβ accumulation, tau hyperphosphorylation, apoptosis, neurotoxicity and anti-
oxidation, anti-inflammation, etc.

Physiological
Effects

Type of
Ginsenoside Type of Structure In Vivo/In Vitro Cell Lines/Animal

Models
Concentration of

Ginsenosides Used

Association of
Ginsenosides with

BBB
Mechanism References

Inhibit Aβ
accumulation

Ginsenoside Re Protopanaxatriol
type

In vivo and
in vitro N2a/APP695 cell line Effective dose:

100 µM
Ginsenoside Re can

cross the BBB

Regulate amyloid
formation pathway;

Mediate PPARγ activation
and BACE1 inhibition

[118,119]

Ginsenoside Rh2 Protopanaxadiol
type In vivo Tg2576 mice 10 mg/kg body

weight - Decrease cholesterol and
lipid raft concentrations [120]

Ginsenoside Rd Protopanaxadiol
type

In vivo and
in vitro

Sprague Dawley (SD) rats
(280–300 g)/HT22

hippocampal neuronal cell
10 mg/kg/10 µM

Ginsenoside Rd is
lipophilic and
readily passes

through biofilms and
the BBB

Regulation of α-secretase
and β-secretase activities
through estrogen receptor
α-mediated MAPK/ERK
and PI3K/AKT pathways

[121,122]

Ginsenoside Rg1 Protopanaxatriol
type

In vivo and
in vitro

Hippocampal neurons in
2-day-old SD rates;

Establishing an AD model
using healthy male SD rats

(6–7 weeks, 220 ± 10 g);
N2a cell

1 µM; 10 mg/kg;
Effective dose:

2.5 µM

There are different
opinions about

Ginsenoside passing
through BBB, and

Ginsenoside Rg1 can
also improve nerve

damage by reducing
BBB permeability

Inhibit PPARγ
phosphorylation by

downregulating CDK5
expression, thereby

affecting the expression of
PPARγ target genes (IDE

and BACE1)

[119,123–127]

Ginsenoside CK Protopanaxadiol
type

In vivo and
in vitro

HT22 mouse hippocampal
neuron cell; Scopolamine

Hydrobromic acid induced
memory impairment ICR

mouse model

Low dose: 2.5 µM,
medium dose: 5 µM,

high dose: 10 µM;
Low dose: 20 mg/kg,
high dose: 40 mg/kg

Uncertainty that
ginsenoside CK
crosses the BBB

Regulated energy
metabolism signaling

pathway and Nrf2/Keap1
signaling pathway

[128–130]

Ginsenoside Rg3 Protopanaxadiol
type In vitro

Use of Microglia isolated
from the brain of newborn
SD rats; SK-N-SH cell; N2a
murine neuroblastoma and
HMO6 human microglial

cell

25 µg/kg; 50 µM;
5 µg/mL

Ginsenoside Rg3
does not cross the

BBB, but more
bioavailable

ginsenoside Rg3
nanopreparations

can be prepared that
can significantly

treat AD.

Stimulates MSRA
expression as well as

increases PI4KIIα activity;
Enhance NEP gene

expression; Promote acute
activation of microglia

[131–135]

Ginsenoside F11 Ocotillol type In vitro Primary rat microglial cell Effective dose:
100 µM

Ginsenoside F11
reduces BBB damage

Regulate the aberrant
expression and distribution

of APP
[136,137]
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Table 1. Cont.

Physiological
Effects

Type of
Ginsenoside Type of Structure In Vivo/In Vitro Cell Lines/Animal

Models
Concentration of

Ginsenosides Used

Association of
Ginsenosides with

BBB
Mechanism References

Ginsenoside F1 Protopanaxatriol
type

In vivo and
in vitro

APP/PS1 AD model mice;
N2a, SH-SY5Y/APP/PS1

AD model mice

20 mg/kg/d;
2.5 µM/8 mg/kg/d

Present in the brain
and blood, can cross

the BBB

Increased pCREB and
BDNF expression levels;
Upregulation of IDE and

NEP expression

[126,138]

Ginsenoside Rg5

Rare ginsenosid of
the

protopanaxadiol
type

In vivo STZ-induced memory
impaired rats 5, 10 and 20 mg/kg -

Increased BDNF and
insulin-like growth factors

1 (IGF-1) expression
[139]

Inhibit tau hyper-
phosphorylation

Ginsenoside Rd Protopanaxadiol
type

In vivo and
in vitro

APP transgenic mice;
Establishing an in vivo tau
hyperphosphorylation AD

model in rats using
okadaic acid (OA)/Cortical

neurons were cultured
from SD rats

10 mg/kg;
10 mg/kg/Effective

dose: 2.5 and
5 µM

-

Regulate the balance of
GSK-3β and PP2A activity,

as well as the balance of
GSK-3β and CDK5/P25

function in the OB, spinal
cord, and telencephalon

[140,141]

Ginsenoside F11 Ocotillol type In vivo
OA induced AD rat

(Six-week-old male SD rats)
model

2, 4, 8 mg/kg -

Increase PP2A activity,
thereby increase

methylPP2A protein
expression, or directly bind

to and activate PP2A

[142]

Ginsenoside Rg1 Protopanaxatriol
type In vivo

Senescence-Accelerated
Mice Prone-8 (SAMP8)

mice

Fuzheng Quxie
Decoction (FQD) low

dose (0.7 g/kg/d,
extract)/FQD high
dose/Rg1 accounts
for 9.86% of FQD

(3.5 g/kg/d, extract)

-
Regulate the levels of

NMDAR/PP2A-related
proteins

[119]

Inhibit neuronal
apoptosis and

protect neurons

Ginsenoside Rb1 Protopanaxadiol
type In vivo

AD rat (SD) modeling
using Aβ1-40; AD rat (SD)

modeling using Aβ1-40

Low dose:
12.5 mg/kg/d,
medium dose:

25 mg/kg/d, high
dose: 50 mg/kg/d;

10 mg/kg/d

Ginsenoside Rb1 can
protect BBB integrity

Increase the expression of
Nestin, NSE and GFAP;

Downregulate the
expression of Bax and

Caspase-3, increase the
level of Bcl-2

[105,127,143]

Ginsenoside Rd Protopanaxadiol
type In vitro PC12 cells 0.1,1,10,50 and

100 µM -

Upregulate GAP-43
expression through ERK

and ARK-dependent
signaling pathway

[144]

Ginsenoside Rg1 Protopanaxatriol
type In vivo Sixteen-week-old male

SAMP1 and SAMP8 mice
15 mg/kg/d/
7.5 mg/kg/d - Promote the expression of

miR-873-5p in AD [145]
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Table 1. Cont.

Physiological
Effects

Type of
Ginsenoside Type of Structure In Vivo/In Vitro Cell Lines/Animal

Models
Concentration of

Ginsenosides Used

Association of
Ginsenosides with

BBB
Mechanism References

Ginsenoside F11 Ocotillol type In vivo

Ischemic stroke induced by
transient middle cerebral
artery occlusion (tMCAO)

in C57BL/6 mice.

8, 16, 32 mg/kg - Activate the BDNF/TrkB
pathway [146]

Inhibit
neurotoxicity

Ginsenoside Rb1 Protopanaxadiol
type

In vivo and
in vitro

AD mice (ICR) model
using aluminum-induced
tau hyperphosphorylation;

PC12 cell

20 mg/kg/d;
Effective dose:

50 µM
-

Reduce tau
phosphorylation by
reducing the level of

activated p-GSK3 and
increase the level of PP2A;
Reduce the accumulation

of ROS and lipid
peroxidation induced by
the enhanced cholesterol

efflux

[147,148]

Ginsenoside Re Protopanaxatriol
type In vitro SH-SY5Y human

neuroblastoma cells
Effective dose:

25 µM -

Inhibite ROS-dependent
ASK-1/JNK/BAX

apoptosis pathway and
activate Nrf2/HO-1

anti-oxidant pathway

[149]

Ginsenoside Rh2 Protopanaxadiol
type In vitro Type I rat brain astrocytes

(RBA1) cell Effective dose: 1 µM -
Induce the expression of
PACAP further activate

PAC1
[150]

Ginsenoside Rg2 Protopanaxatriol
type

In vivo and
in vitro

PC12 cell; AD rat modeling
using Aβ25-35

5, 10, and 20 mg/mL;
low dose:

25 mg/kg/d,
medium dose:

50 mg/kg/d, high
dose: 100 mg/kg/d;

10 mg/kg/d

Ginsenoside Rg2 can
improve BBB
dysfunction

Activate PI3K/Akt
signaling pathway [151–153]

Anti-oxidant

Ginsenoside Re Protopanaxatriol
type

In vivo and
in vitro SH-SY5Y cells/Drosophila 5 µM/0.4 mM - Activate PI3K/AKT and

ERK pathways [154]

Ginsenoside Rd Protopanaxatriol
type In vivo

Chronic constraint stress
(CRS) induced Cognitive
impairment in adult male

C57BL/6J mice

10, 20, 40 mg/kg -

Upregulate
BDNF-mediated CREB

signaling pathway in the
hippocampus

[155]

Ginsenoside Rh2 Protopanaxadiol
type In vivo Mice (ICR) model of

trimethyltin intoxication 20 mg/kg/d -
Regulate ERK and

PI3K/Akt signaling
pathways

[156]
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Table 1. Cont.

Physiological
Effects

Type of
Ginsenoside Type of Structure In Vivo/In Vitro Cell Lines/Animal

Models
Concentration of

Ginsenosides Used

Association of
Ginsenosides with

BBB
Mechanism References

Ginsenoside Rg1 Protopanaxatriol
type In vitro

Cortical neurons from
C57BL/6 mouse fetuses at

embryonic days 15–16

Effective dose: 2.5, 5,
10 µM -

Regulate the
Wnt/GSK-3β/β-catenin

signaling pathway; Inhibite
intracellular mitochondrial

OS

[117,157]

Ginsenoside Rg3 Protopanaxadiol
type

In vivo and
in vitro

D-galactose
(D-gal)-induced AD rat

Model; Ca2+- and
H2O2-induced swelling of
mitochondria isolated from

rat brains

20 mg/kg/d;
2–16 µM) -

Improve mitochondrial
dysfunction; Inhibit

mitochondrial permeability
transition pore opening

[158,159]

Ginsenoside Rg2 Protopanaxatriol
type In vivo

D-gal induced brain aging
model (800 mg/kg for

8 weeks)

10, 20 mg/kg for
4 weeks -

Maintain mitochondrial
function by increasing

mitophagy flux
[160]

Ginsenoside Rk3

Rare ginsenosid of
the

protopanaxatriol
type

In vivo and
in vitro

PC12 cells/APP/PS1
double transgenic mouse

model
10 µM/10 mg/kg - Regulating the AMPK-Nrf2

signaling pathway [161]

Anti-
inflammatory

Ginsenoside Rb1 Protopanaxadiol
type In vivo AD rat model induced by

Aβ1-40

12.5 mg/kg/d,
25.0 mg/kg/d and

50.0 mg/kg/d
-

Change the amyloidogenic
process of APP to the

non-amyloidogenic process
[162]

Ginsenoside Re Protopanaxatriol
type In vitro

Immortalized BV2 murine
microglial cell line; ICR

mouse primary microglia

0.5, 1 and 2 µg/mL;
2.5, 5.5 and
7.5 µg/mL

-

Inhibite p-p38, iNOS and
COX-2 signaling pathways;

Block
CAMK/ERK/JNK/NF-κB

signaling

[163,164]

Ginsenoside Rh2 Protopanaxadiol
type

In vivo and
in vitro

spared nerve injury
-induced neuropathic pain

mice (ICR) model;
Microglia cell

100 µM; Effective
dose: 20 and 50 µM -

Regulate TGF-β1/Smad
pathway and MAPK
signaling pathway

[165,166]

Ginsenoside Rd Protopanaxadiol
type In vivo

CRS induced Cognitive
impairment in adult male
C57BL/6J mice; APP Tg

mice

10, 20, 40 mg/kg;
low dose:

10 mg/kg/d,
medium dose:

30 mg/kg/d, high
dose: 50 mg/kg/d

-

Upregulate
BDNF-mediated CREB

signaling pathway in the
hippocampus; Inhibite
activation of the NF-κB

pathway

[155,167]
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Table 1. Cont.

Physiological
Effects

Type of
Ginsenoside Type of Structure In Vivo/In Vitro Cell Lines/Animal

Models
Concentration of

Ginsenosides Used

Association of
Ginsenosides with

BBB
Mechanism References

Ginsenoside CK Protopanaxadiol
type In vitro Microglial Cell (BV2) 25, 50, 75 µM

Regulate the expression of
LRP1 to activate the NF-κB

pathway; Inhibite the
activities of ROS, MAPKs,
and NF-κB/AP-1, enhance
the CREB and Nrf2/HO-1

signaling axis

[168,169]

Ginsenoside Rg3 Protopanaxadiol
type

In vivo and
in vitro

SK-N-SH cell; N2a murine
neuroblastoma and HMO6
human micro-glial cell; LPS

induced learning and
memory impairment and

inflammation in rats;
Microglial cell line (BV2)

50 mm; 5 µg/mL;
20,50 and 21 mg/kg;

10 µg/kg
- Inhibite microglial

activation [134,135,170,171]

Ginsenoside Rg1 Protopanaxatriol
type

In vivo and
in vitro

Wild-type (WT) and
APP/PS1 AD mice; HT22

cell line; Primary
hippocampal neurons

10 mg/kg; 1, 5 and
10 µM; 5, 10 µM -

Inhibite the activation of
NOX2-NLRP1

inflammasome and
NOX2-mediated ROS

production

[172–174]

Ginsenoside F11 Ocotillol type In vivo and
in vitro

The murine microglia cell
line N9/Thirty-six male

C57BL/6 mice
100 µM/8 mg/kg

Inhibite TLR4-mediated
TAK1/IKK/NF-κB,

MAPKs and Akt signaling
pathways

[175]

Ginsenoside Rg5

Rare ginsenosid of
the

protopanaxadiol
type

In vivo and
in vitro

The immortalized murine
BV2 microglial cell line;
STZ-induced memory

impaired rats

10–50 µM/5, 10 and
20 mg/kg -

Regulation of MAPK and
PI3K/Akt signaling

pathways, inhibition of
downstream transcription

factors NF-κB and AP-1
exert anti-inflammatory

effects to control microglia
activation and exert

anti-AD effects

[139,176]



Molecules 2023, 28, 5716 13 of 30

Table 1. Cont.

Physiological
Effects

Type of
Ginsenoside Type of Structure In Vivo/In Vitro Cell Lines/Animal

Models
Concentration of

Ginsenosides Used

Association of
Ginsenosides with

BBB
Mechanism References

Ginsenoside Rh4

Rare ginsenosid of
the

protopanaxatriol
type

In vivo and
in vitro

Microglia cell line
BV-2/APP/PS1 double

transgenic mice
50 µM/20 mg/kg

Suppressing the release of
inflammatory factors and

the expression of
apoptosis-associated

speck-like protein and
caspase-1 to inhibit the

formation and aggregation
of NLRP3 and exert

anti-inflammatory effects

[177]

Reduce insulin
resistance Ginsenoside Rb1 Protopanaxadiol

type In vivo
STZ induced high glucose
model in C57BL/6N mice

(150 mg/kg)
30 mg/kg -

Stimulate the expression of
NMDAR1 and IDE by

inhibiting the activity of
CDK5/p35

[178]

Increase
production of

ACh

Ginsenoside Re Protopanaxatriol
type In vitro N2a mouse neuroblastoma

cell
Effective dose:

5 µg/mL - Enhance the expression of
ChAT and VAChT [179]

Ginsenoside Rd Protopanaxadiol
type In vitro N2a mouse neuroblastoma

cell
Effective dose:

5 µg/mL -
ChAT/VAChT

gene-mediated ACh
production

[179]

Ginsenoside Rg1 Protopanaxatriol
type In vivo β Amyloid protein model

rats (adult male SD rats) 40 mg/kg - Penetrate the BBB to reach
the target [180]

Ginsenoside F2 Protopanaxadiol
type In vitro In vitro AChE inhibition

assay 25 µg/mL Inhibition of AChE activity [181]

Ginsenoside Rg5

Rare ginsenosid of
the

protopanaxadiol
type

In vivo STZ-induced memory
impaired rats 5, 10 and 20 mg/kg - Significantly reduce AChE

activity [139]
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3.1. Protopanaxadiol Type
3.1.1. Ginsenoside Rb1

Ginsenoside Rb1 has several pharmacological activities, including improving the
cardiovascular system, alleviating diabetes and its complications, as well as delaying the
progression of neurodegenerative diseases [182]. The neuroprotective effects of ginsenoside
Rb1 may be manifested in several ways, including inhibition of Aβ formation, tau protein
phosphorylation, reduction in OS, and apoptosis [183]. In the progression of AD, neuronal
cell apoptosis and demise manifest within the patient’s brain [184]. Studies have indicated
that ginsenoside Rb1 can enhance the abundance of neural stem cells (NSCs), astrocytes,
and neurons by upregulating the expression of Nestin, nucleotide sugar epimerase (NSE),
and glial fibrillary acidic protein (GFAP) [143]. Additionally, it has the ability to suppress
the expression of Bax and Caspase-3, elevate the levels of Bcl-2, and consequently impede
neuronal apoptosis, thereby alleviating brain injury in AD model mice [105]. In addition,
we speculate that ginsenoside Rb1 may be a key factor in regulating neurotoxicity as well as
oxidative damage in neurons. In detail, ginsenoside Rb1 can reduce tau phosphorylation by
reducing the level of activated p-GSK3 and increasing the level of PP2A, thereby alleviating
Al-induced brain toxicity [147]. Moreover, ginsenoside Rb1 protects neurons from Aβ toxi-
city, most likely through anti-oxidant pathways [185]. In detail, ginsenoside Rb1 may act
as an agonist of peroxisom proliferator-activated receptor-γ (PPARγ), can reduce Aβ25-35-
induced cytotoxicity by reducing the accumulation of reactive oxygen species (ROS) and
lipid peroxidation induced [148]. Furthermore, neuroinflammation in AD may be initiated
by disease-specific pathological structures and the release of molecules associated with the
damage caused by degeneration and cell death [186]. Ginsenoside Rb1 has been found
to have anti-neuroinflammatory effects, it can regulate the expression of inflammatory
factors cyclooxygenase 2 (COX-2) as well as nitric oxide (NO), on the other hand, it exerts a
significant reduction in the levels of hydroxyl radicals and hypochlorous acid, thereby in-
hibiting inflammasome activation and effectively suppressing neuroinflammation [187,188].
Studies have shown that ginsenoside Rb1 exerts its anti-inflammatory function by altering
the amyloidogenic process of APP to a non-amyloidogenic one, thus improving learning
and memory in AD rats [162]. On the other hand, studies have confirmed that ginsenoside
Rb1 can upregulate the expression of NMDAR1 and insulin-degrading enzyme (IDE) by
suppressing CDK5/p35 activity, thereby decreasing streptozotocin (STZ)-induced glucose
intolerance and insulin resistance, and consequently improving memory impairment in
mice [178].

3.1.2. Ginsenoside Rh2

Ginsenoside Rh2 is a rare ginsenoside that exhibits a variety of pharmacological activi-
ties including anti-tumor and anti-inflammatory [189]. Studies have clarified that it could
improve cholinergic transmission, inhibit OS and enhance synaptic plasticity to suppress
memory dysfunction, specifically spatial memory associated with the hippocampus [190].
Moreover, through the regulation of ERK and PI3K/Akt signaling pathways, ginsenoside
Rh2 effectively enhances the activities of superoxide dismutase (SOD) and glutathione
peroxidase (GSH-Px), while simultaneously reducing the level of malondialdehyde (MDA)
in the hippocampus of mice, thereby alleviating OS response [156]. On the other hand,
ginsenoside Rh2 could improve learning and memory function by decreasing cholesterol
and lipid raft concentrations, which in turn reduced amyloid secretion and APP endocy-
tosis [120]. This may be related to elevating 3β-hydroxysterol-∆24 reductase (DHCR24)
expression and then preventing hyperactivation of Ras/MEK/ERK signaling [191]. More-
over, pituitary adenylate cyclase-activating polypeptide (PACAP) is a neurotrophic factor
that promotes cell survival. Ginsenoside Rh2 can induce the expression of PACAP, further
activating PAC1, thereby attenuating Aβ-induced neurotoxicity [150]. It has been reported
that ginsenoside Rh2 can inhibit neurotoxicity by inhibiting the inflammatory response.
Ginsenoside Rh2 is more closely linked to inflammatory cytokines, and can inhibit the
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production of TNF-α, IL-1β, and IL-6, as well as iNOS and COX-2, respectively, through
the regulation of MAPK and the TGF-β1/Smad signaling pathway [165,166].

3.1.3. Ginsenoside Rd

Ginsenoside Rd has been found to possess a wide range of pharmacological effects
and is known to be effective in treating neurological diseases, such as AD [39]. It has
been suggested that ginsenoside Rd mediates inflammatory mechanisms, redox balance
and apoptotic pathways to inhibit Aβ-induced cognitive dysfunction [192,193]. In detail,
ginsenoside Rd ameliorates cognitive impairment by reducing OS and inflammation while
concurrently upregulating the BDNF-mediated CREB signaling pathway in the hippocam-
pus [155]. In addition, in APP Tg mice, ginsenoside Rh2 enhances learning and memory
performance, which is forcefully attributed to its ability to inhibit the activation of NF-κB,
thereby reducing the production of pro-inflammatory cytokines while promoting the syn-
thesis of protective factors [167]. In addition, ginsenoside Rd has been observed to improve
memory deficits in female OVX rats experiencing estrogen deprivation impairment, and
the MAPK/ERK and PI3K/AKT pathways were verified in the experiments, ginsenoside
Rd was able to regulate the α-secretase and β-secretase activities as well as the accelerated
APP processing of non-amyloid cleavage by modulating the above pathways [121]. Further-
more, ginsenoside Rd has been demonstrated to inhibit Aβ-induced tau phosphorylation
by modulating the balance of GSK-3β and PP2A activity [194], as well as the equilibrium
between GSK-3β and CDK5/P25 function in the OB, spinal cord, and telencephalon [140].
Similarly, can inhibit tau phosphorylation both in vivo and in vitro by augmenting the ac-
tivity of PP2A [141]. Moreover, studies have shown that ginsenoside Rd can antagonize the
symptoms and progress of AD, which is associated with ACh production mediated by the
ChAT/VAChT gene [179]. On the other hand, neurites are critical processes associated with
neuronal repair [195]. Ginsenoside Rd can promote growth in PC12 cells by upregulating
GAP-43 expression through ERK and ARK signaling pathways [144]. Besides, it is possible
that the neuronal protective effect of ginsenoside Rd is also caused by its inhibition of Ca2+

influx [196]. Additionally, this is likely to be achieved by targeting Pde6δ-mediated Rap1
intermembrane shuttling, but requires further validation [197].

3.1.4. Ginsenoside Rg3

Ginsenoside Rg3, an important component of AG, has been found to play a crucial
role in improving memory [131]. Ginsenoside Rh2 exhibits a dose-dependent capability in
reducing the concentration of Aβ [198]. In more details, the scavenger macrophage receptor
(MSR) is a cell surface receptor associated with clearance of Aβ, while phosphatidylinos-
itol 4-kinase IIα (PI4KIIα), a key phospholipid-regulating neurons, is closely related to
Aβ [199,200]. Additionally, the effect of ginsenoside Rg3 in reducing Aβ may be related to
its stimulation of MSRA expression as well as increasing the activity of PI4KIIα [132,133].
Moreover, ginsenoside Rg3 enhanced the activity of brain-associated Aβ-degrading rate-
limiting enzyme enzymes, which in turn inhibited Aβ levels [134]. This may be achieved
by reducing intercellular adhesion molecule 1 (ICAM1) [201]. Alternatively, ginsenoside
Rg3 can increases Aβ uptake by promoting acute activation of microglia [135]. On the
other hand, it has been demonstrated to prevent and slow AD by inhibiting the expression
of pro-inflammatory mediators in the rat brain, which in turn improved cognitive and
memory function [170]. Additionally, it can inhibit chronic inflammation by inhibiting
microglial activation, thereby reducing neurotoxicity [171]. Furthermore, some studies have
shown that ginsenoside Rg3 can prevent cognitive dysfunction of AD rats by improving
mitochondrial dysfunction [158]. In detail, ginsenoside Rg3 has been found to inhibit
mitochondrial permeability transition pore opening by scavenging free radicals in the brain
and thus plays a neuroprotective role [159].
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3.1.5. Ginsenoside CK

Ginsenoside CK is a rare ginsenoside of the protopanaxadiol type derived from the
biotransformation of ginsenosides Rb1, Rb2 and Rc [128]. It appears to have stronger
physiological activity when compared to natural ginsenosides [128]. It is useful in the treat-
ment of neuroinflammatory disorders. In detail, ginsenoside CK exerts anti-inflammatory
effects by regulating the expression of LRP1 to activate the NF-κB pathway [168]. More-
over, microglia are innate immune cells of the central nervous system (CNS) and are a
major source of pro-inflammatory mediators [202]. Studies indicates that ginsenoside CK
possesses the ability to suppress microglial activation by inhibiting ROS, MAPKs, and
NF-κB/AP-1 activities, further enhancing the CREB and nuclear Nrf2/HO-1 signaling axis,
leading to notable anti-inflammatory effects [169]. On the other hand, ginsenoside CK has
been found to inhibit Aβ-induced neuronal injury [129]. In detail, it improves Aβ intake
and accumulation through the energy metabolism signaling pathway, thereby improving
energy metabolism disorders, cell survival, growth, apoptosis, all of which in turn impacts
the progression of AD [129]. Therefore, activating the PI3K-Akt/PKB signaling, which
in turn affects the insulin signaling pathway, and finally can improve cognitive function
due to disorders of energy metabolism, may be a potential pathway for ginsenoside CK to
inhibit AD [203]. Moreover, ginsenoside CK may improve memory function by regulating
Aβ aggregation and promoting the transduction of the Nrf2/Keap1 signaling pathway,
thereby reducing oxidative damage to neurons and inhibiting neuronal apoptosis [130].

3.2. Protopanaxatriol Type
3.2.1. Ginsenoside Re

Ginsenoside Re is one of the most important active components of ginsenoside, may
ease AD progression [204]. Studies have confirmed that ginsenoside Re can regulate amy-
loid formation pathway indicated targets to inhibit Aβ accumulation [118]. For instance, it
mediates PPARγ activation and β-amyloid cleavage enzyme 1 (BACE1) inhibition, thereby
attenuates Aβ production in N2a/APP695 cells [118]. Moreover, ginsenoside Re has
protective effect against Aβ25-35-induced neurotoxicity by inhibiting ROS-dependent ASK-
1/JNK/BAX apoptosis pathway and activating Nrf2/HO-1 anti-oxidant pathway [149].
Furthermore, anti-oxidant and anti-inflammatory effects act on neuroprotection [205].
Ginsenoside Re protects neurons from mitochondrial dysfunction as well as oxidative
damage by activating PI3K/AKT as well as ERK pathways [154]. Glutathione peroxidase
4 (GPx4) is an anti-oxidant enzyme which plays a role in neurodegenerative diseases by
removing the function of lipid hydrogen peroxide [206]. Ginsenoside Re may decrease OS
by upregulating the expression of GPx4 [207]. Moreover, it can induce neuroprotection
by inhibiting phospho-p38, inducible nitric oxide synthase (iNOS) and COX-2 signaling
pathways in BV2 cells to treat neuroinflammation [163]. Similarly, ginsenoside Re blocks
CAMK/ERK/JNK/NF-κB signaling in BV2 cells to inhibit pro-inflammatory mediator
production to protect hippocampal cells [164]. Therefore, ginsenoside Re may be a poten-
tial therapeutic agent for neuroinflammatory diseases and has potential for the treatment
of AD. On the other hand, ginsenoside Re effectively enhanced the expression of ChAT
and vesicular acetylcholine transporter (VAChT) in N2a cells, which in turn increased the
production of ACh, thereby affecting the AD development process [179]. Additionally,
Min Soo Kim et al. [179] suggested that ginsenoside Re may be associated with promoting
neuronal differentiation.

3.2.2. Ginsenoside Rg1

Extensive research has been conducted on the diverse biological activities of ginseno-
side Rg1, making it a promising candidate for potential therapeutic interventions in AD. Its
possible mechanisms of action include: improving Aβ and tau pathology, providing synap-
tic protection, modulating gut microbiota, decreasing inflammation, OS, and upregulating
neural cells through multiple signaling pathways [208,209]. Ginsenoside Rg1 can reduce
the production of Aβ and tau phosphorylation [198,210]. In detail, it may inhibit PPARγ
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phosphorylation by downregulating CDK5 expression, thereby affecting the expression of
PPARγ target genes (IDE and BACE1) to decrease Aβ levels [123–125]. Additionally, it is
possible that ginsenoside Rg1 may inhibit tau phosphorylation by modulating the levels
of NMDAR/PP2A-related proteins [119]. Moreover, ginsenoside Rg1 exhibits robust anti-
oxidant and anti-inflammatory properties [211]. Studies have suggested that ginsenoside
Rg1 may ameliorate OS injury, reduce neuroinflammation, protect neurons, and ultimately
enhance cognitive function impaired by AD; this may be attributed to its influence on
the Wnt/GSK-3β/β-catenin signaling pathway [117]. Additionally, it may attenuate Aβ-
induced neuronal death by suppressing intracellular mitochondrial OS and could rescue
neurons in AD [157]. Furthermore, it exhibits the ability to inhibit neuronal damage by
blocking the activation of NOX2-NLRP1 inflammasome and reducing NOX2-mediated
production of ROS [172–174]. Moreover, ginsenoside Rg1 has been observed to attenuate
neuronal apoptosis by increasing the expression of miR-873-5p in AD [145]. We speculate
that microRNAs involved in inducing apoptosis and attenuating neuronal damage, such as
miR-466i-5p and miR-363-3p, may be potential targets for ginsenoside Rg1 in the treatment
of AD; however, this requires further experimental validation [212,213]. On the other hand,
ginsenoside Rg1 has been reported to increase ACh levels in a rat model of AD, which may
be associated with its potential ability to penetrate the blood–brain barrier (BBB) and reach
its target [180]. Alternatively, ginsenoside Rg1 can alter the abundance of gut microbiota to
improve AD symptoms, especially proteobacteria, verrucomicrobia and lactobacillus salivarius
are considered as key microbiota, which have been shown to improve learning and memory
as well as cognitive dysfunction, modulate inflammation, block Aβ aggregation, protect
the nerves and slow down the deterioration of AD [210,214].

3.2.3. Ginsenoside Rg2

Ginsenoside Rg2 has a wide range of biological activities, including neuroprotective,
anti-inflammatory and anti-diabetic effects [215]. It has been reported to partially restore
some metabolic processes such as hypoxanthine, lysophosphatidylcholines (LPCs), and
sphingolipids in the brains of AD mice, thereby alleviating the AD process [216]. Moreover,
ginsenoside Rg2 can ameliorate Aβ25-35-induced neurotoxicity and cognitive dysfunction
by activating PI3K/Akt signaling pathway [151,152]. Furthermore, ginsenoside Rg2 can
inhibit glutamate-induced neurotoxicity through anti-oxidant- and anti-apoptosis-related
mechanisms, or block excessive calcium influx into neuronal cells, eliminate free radicals,
and increase the activity of anti-oxidant enzymes to reduce neuronal injury [217,218].
Similarly, ginsenoside Rg2 can delay brain aging by maintaining mitochondrial function
by increasing mitophagy flux, which suggests its potential for the treatment of AD [160].
On the other hand, according to Zhenhong Liu et al. [219], we speculate that ginsenoside
Rg2 could influence the development of AD by protecting cholinergic neurons as well as
reducing OS damage.

3.3. Ocotillol Type
Pseudoginsenoside F11

Pseudoginsenoside F11 is the signature ginsenoside of AG, has been found to play
a protective role in central nervous system diseases [220]. It can inhibit APP and Aβ

production, as well as modulate OS and apoptosis in cortex and hippocampus, respectively,
and regulate the expression of tau phosphorylation and protects synaptic structures. Mean-
while, it has been demonstrated to significantly reduce cognitive impairment by regulating
the insulin signaling pathway and calpain I/CDK5 signaling pathway in the hippocam-
pus [8,221]. In addition, pseudoginsenoside F11 may improve nerve injury and promote
neurogenesis by activating the BDNF/TrkB pathway [146]. Moreover, it may be regulating
the aberrant expression and distribution of APP to attenuate Aβ deposition [222]. It directly
binds to and activates PP2A, thereby significantly reversing tau hyperphosphorylation,
reducing neuroinflammation, and rescuing neuronal death and synaptic damage [142].
TLR4 is a pattern recognition receptor that mediates the inflammatory cascade of microglia
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after binding to lipopolysaccharide (LPS) and is a potential neuroprotective target [223].
Studies have shown that pseudoginsenoside F11 significantly attenuated LPS-induced
microglial activation and proinflammatory factor expression in mouse cortex and hip-
pocampus by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs, and Akt signaling
pathways [175]. On the other hand, autophagy and endocytosis provide nutrients and
macromolecules for the cell from internal and external resources, respectively, and im-
paired endosomal-autophagy-lysosome system may be another AD pathogenesis [136].
The potential therapeutic efficacy of pseudoginsenoside F11 lies in its ability to enhance
lysosomal function and facilitate endosome maturation, thereby promoting the elimina-
tion of Aβ [136]. Therefore, we hypothesized that the related adapter-associated protein
complex 2 subunit sigma 1 (AP2S1) could serve as a potential therapeutic target [224].

3.4. Other Ginsenosides
Ginsenosides F1, F2, Rg5, Rh4 and Rk3

Ginsenoside F1, a metabolite of ginsenoside Rg1, is a potential anti-AD drug [225]. In
the current study, the anti-AD of ginsenoside F1 was mainly focused on the attenuation of
Aβ level. It has been reported that ginsenoside F1 was able to alter spatial memory deficits
and inhibit or even reduce Aβ plaques in the cortex of APP/PS1 AD model mice, which
may be related to its ability to increase the expression levels of pCREB and BDNF [138].
In both in vivo and in vitro experiments, ginsenoside F1 has been proven to effectively
reduce Aβ levels and counteract Aβ-induced cytotoxicity in neuronal cells [126]. These
effects are achieved through the upregulation of IDE and NEP expression [126]. In addition,
ginsenoside F2, a metabolite of ginsenoside Rb1, can treat AD in terms of inhibiting
acetylcholinesterase (AChE) activity [181]. On the other hand, ginsenoside Rg5 is a minor
ginsenoside produced during autoclave treatment, and the anti-AD effect may be related to
its anti-inflammatory effect [226]. Ginsenoside Rg5 can inhibit LPS-induced NO production
and iNOS expression, and inhibit the secretion of pro-inflammatory factors. Mechanistic
studies have shown that it can control microglia activation by regulating the MAPK and
PI3K/Akt signaling pathways, and inhibiting the downstream transcription factors NF-κB
and AP-1 to play an anti-inflammatory role, thus exerting an anti-AD effect [176]. Similarly,
ginsenoside Rg5 attenuated the neuroinflammatory response in STZ -induced learning
memory impairment rats, and additionally, ginsenoside Rg5 reduced Aβ deposition and
AChE activity [139], which was the same as ginsenoside F2. Ginsenosides Rh4 and Rk3 also
play an anti-inflammatory role, of which ginsenoside Rk3 also has a powerful anti-oxidant
effect [177]. In vitro experiments have shown that ginsenoside Rk3 modulates the AMPK
signaling pathway and thus inhibits Aβ-induced apoptosis and ROS production, and
in vivo experiments showed that ginsenoside Rk3 improved spatial learning and reduces
AD pathology in APP/PS1 mice [161].

4. Conclusions

In recent years, the prevalence of AD has been on the rise with a limited number
of available therapeutic agents. The active components of AG in the treatment of AD
are mainly concentrated on ginsenosides, as shown in Table 1. A variety of ginsenosides
including ginsenosides Rb1, Re, Rh2, Rg2, Rd, Rg3, Rg1, CK and pseudoginsenoside F11
have been demonstrated to inhibit Aβ accumulation, tau hyperphosphorylation, apoptosis,
neurotoxicity, anti-oxidation and anti-inflammation by activating or inhibiting a variety
of signaling pathways, thus producing an anti-AD effect. Moreover, we find that many
studies focus on the treatment of AD through anti-oxidant and anti-inflammatory effects.
Similarly, NF-κB as well as PI3K/Akt signaling pathways are deeply associated with AG
treatment of AD. Such as, ginsenoside Rd, Rg2, Re and Rh2 promote neurite outgrowth
and repair neurons while protecting neurons from mitochondrial dysfunction and oxida-
tive damage by activating ERK and PI3K/Akt pathways, respectively [121,151,154,156].
Additionally, ginsenoside Re, Rd, CK and pseudoginsenoside F11 can reduce the pro-
duction of anti-inflammatory factors by regulating NF-κB pathway thus displaying anti-
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neuroinflammatory effects [164,168,175,193]. Therefore, we speculate that these three
signaling pathways play critical roles in treating AD. Moreover, there are some rare gin-
senosides, most of which are generated by the conversion of natural ginsenosides of the
protopanaxadiol type or protopanaxatriol type, and which are themselves found in low
amounts in AG, such as ginsenosides F1, F2, Rh4, Rk3, and Rg5 [227]. These rare ginseno-
sides also have anti-AD properties and they are more readily absorbed and can easy to cross
the BBB compared to natural ginsenosides, such as ginsenoside F1 [126,227]. Additionally,
it has been shown that the bioavailability of rare ginsenosides against AD is superior to that
of natural ginsenosides and has greater potential for treating the disease [126]. However,
there are few studies on rare ginsenosides against AD, and the reason for this phenomenon
may be due to the limitation of economic benefits. Therefore, obtaining more stable, efficient
and high-yield methods for in vitro biotransformation of rare ginsenosides is a direction
that needs to be worked on. Secondly, in Table 1, ginsenoside anti-AD effects have been
extensively demonstrated in vivo and in vitro experiments, and we summarize the animal
models as well as cellular models used to validate the anti-AD efficacy of ginsenosides,
and most of the animals used were different breeds of rats, mice, but some studies have
used drosophila [154]. This model has the advantage, to some extent, of reducing the use
of drugs, which in turn reduces the stress of the experiment and increases the selectivity of
ginsenosides, but in this study, the drosophila was modeled as Parkinson’s disease [154].
Of course, there have been studies using drosophila models to study pharmacological treat-
ments for AD [228], and there have even been studies on the establishment of a drosophila
model for AD [229,230], but there have been few studies on the use of ginsenosides to treat
AD using a drosophila model, which is a new and innovative direction.

On the other hand, different types of ginsenosides possess the same biological activity
and even the same mechanism of action in the treatment of AD. On the contrary, the same
type of ginsenosides may not necessarily have the same biological activity. Therefore, based
on the present study, we cannot conclude that the anti-AD effect is related to the structural
type of ginsenosides. For example, ginsenosides Rd and Re significantly increased the
levels of cholinergic markers, but ginsenosides Rg1, Rb1 and Rg3 did not, which may be
due to the differences in the therapeutic efficacy of the groups on the 3-, 6- or 20-position
carbons. In addition, the current study lacks comparative results of different types of
ginsenosides in the treatment of AD, so under this limitation, it is not possible to derive
the type of ginsenoside that is most effective in the treatment of AD, which provides a
direction for future research. However, the passage of different ginsenoside types through
the BBB seems to be determinable, and we summarize some of the ginsenosides passing
through the BBB in Table 1, and found that some protopanaxadiol-type ginsenosides
can pass through the BBB along with the protopanaxatriol-type ginsenosides, and these
depend on their molecular weight size as well as their physical properties. Of course,
not all ginsenosides have definitive studies showing that they pass the BBB; for example,
ginsenoside Rg1, for which the claim of whether it enters the BBB is controversial and
requires further study [126,127]. Moreover, although some ginsenosides are not accessible
to the BBB due to their high molecular weight, some studies have provided interesting
ideas, such as preparation of ginsenoside Rg3 into nanoformulations, provided better
efficacy by increasing its translocation to the BBB, thereby enhancing delivery to the brain
and promoting neuroprotection while limiting Aβ plaque accumulation and subsequent
neurodegeneration [131]. This provides an experimental basis for the preparation of other
ginsenoside nanoformulations, which is expected to lead to the development of new
AG-based therapeutic approaches. Furthermore, to summarize, some rare ginsenosides
converted from natural ginsenosides such as F1. They seem to have a stronger BBB
penetration ability; however, there is uncertainty about the ability of ginsenoside CK to
penetrate the BBB [128]. Most of the ginsenosides are intercepted outside the BBB and
do not reach the lesion directly, but all indirectly exert beneficial effects on the BBB, e.g.,
ginsenoside Rb1 protects its integrity [127]. Therefore, it is essential to explore more
ginsenosides in connection with the BBB. Similarly, although ginsenosides contained in
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AG have been shown to be biologically active in the treatment of AD, most of the studies
have focused on individual ginsenosides, and few studies have been conducted on the
combination of two or more ginsenosides against AD, which is a potential research direction.
Comparing with individual ginsenosides, studying the efficacy of multiple ginsenosides
against AD can reduce the use of individual ginsenosides and utilize the multi-target,
multi-pathway nature of individual ginsenosides to produce synergistic effects and even
reduce the underlying disease, which in turn will increase the chances of curing AD, as
well as shorten the duration of medication and delay the development of drug resistance.

AG extract and ginsenosides have shown some clinical results. A total of 61 healthy
young adults, after repeated administration of AG extract, improved short-term memory
and attention span, and calmed mental fatigue and mood by modulating neurotransmitters
and gut microbes, which had a positive effect on cognition in AD patients. The extract was
later applied to middle-aged adults to enhance working memory [231–233]. Moreover, a
new ginsenoside complex called SG-153 has the ability to improve cognitive function in
patients with moderate-to-severe AD, and contains a major component, ginsenoside Rg3
(23.8%), which is believed to be the most potent of them all, pointing to the direction of
subsequent studies [234]. Similarly, some studies have shown that Korean red ginseng
can be used as an adjunctive treatment for AD with significant anti-AD effects, containing
11 ginsenosides as the main active substances, accounting for approximately 8.54% of the
herb, including f Rb1 (1.96%), Rb2 (2.18%), and Rc (1.47%) [235]. In summary, there are
fewer products and clinical trials based on AG or ginsenosides, and more research is needed
to support the efficacy, safety, and tolerability of AG and ginsenoside for AD.

Various natural substances have been shown to hold promise for the treatment of AD
in some clinical and preclinical studies [236]. It has been reported that the anti-AD effect of
polysaccharides is mainly focused on immunomodulation, anti-oxidation, etc. [237]. AG
polysaccharides may bind to receptors such as complement receptor 3 (CR3), scavenger
receptors (SRs), and nuclear oligomerization domain-2 (NOD-2), inducing immunostim-
ulatory responses, which in turn display immunomodulatory effects [3]. Therefore, we
speculate that AG polysaccharides may ameliorate AD symptoms. Moreover, flavonoids
can be divided into flavonoids, flavanones, isoflavones, flavonols, etc., which can play
an anti-AD role by inhibiting Aβ production and aggregation, as well as displaying anti-
inflammatory, anti-oxidant, anti-bacterial and anti-viral properties [238]. Therefore, we
believe that the flavonoid components in AG have research value for their potential use in
anti-AD treatments. Furthermore, vitamins as neurotrophins, including vitamins A, D, E,
B2, and B6, are known to inhibit neuroinflammation and weaken OS [239–241]. We believe
that the vitamin component in AG is also an important factor when it comes to treating AD.
In conclusion, most of the chemical components present in AG possess potential for use
against AD; however, compared with ginsenosides, there are few studies on the related
processes of these chemical components’ effects against AD. The reason for this may be that
in comparison with ginsenosides, the anti-AD effect of these chemicals is not significant
enough to achieve the goal of treating AD. It may also be due to the complex composition
of these compounds, such as AG polysaccharides, AG flavonoids. AG polysaccharides are
mixtures with complex structures, more impurities and complicated purification opera-
tions, as are flavonoids, and although all have anti-AD effects and specific mechanisms of
action can be pointed out, it is not possible to determine which of these mixtures produces
the therapeutic effect and the specific pathways to which they correspond. Consequently,
components of AG other than ginsenosides have been less studied, but they can be used as
adjunctive therapeutic agents against AD.

In summary, this article reviews several major pathogenesis of AD. It further sum-
marizes the biological activities and molecular mechanisms of ginsenosides against AD,
including inhibition of Aβ production and deposition, tau phosphorylation, apoptosis,
cytotoxicity, anti-oxidant and anti-inflammatory effects. Similarly, the potential of AG in
anti-AD was clarified in order to develop new drugs. According to the current evidence,
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future research should focus on how ginsenosides in AG can exert a more powerful anti-AD
effect in vivo.
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