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Abstract: Variable (wavelength) selection is essential in the multivariate analysis of near-infrared
spectra to improve model performance and provide a more straightforward interpretation. This
paper proposed a new variable selection method named binning-normalized mutual information
(B-NMI) based on information entropy theory. “Data binning” was applied to reduce the effects of
minor measurement errors and increase the features of near-infrared spectra. “Normalized mutual
information” was employed to calculate the correlation between each wavelength and the reference
values. The performance of B-NMI was evaluated by two experimental datasets (ideal ternary solvent
mixture dataset, fluidized bed granulation dataset) and two public datasets (gasoline octane dataset,
corn protein dataset). Compared with classic methods of backward and interval PLS (BIPLS), variable
importance projection (VIP), correlation coefficient (CC), uninformative variables elimination (UVE),
and competitive adaptive reweighted sampling (CARS), B-NMI not only selected the most featured
wavelengths from the spectra of complex real-world samples but also improved the stability and
robustness of variable selection results.

Keywords: variable selection; near-infrared spectroscopy; data binning; normalized mutual information

1. Introduction

In recent years, near-infrared (NIR) spectroscopy has been widely used in agricul-
ture [1,2], petrochemical engineering [3,4], pharmaceutical [5–7], food [8,9], forestry [10],
traditional Chinese medicine [11–13], environmental [1,14], and biomedical fields [15–18]
due to its rapid, non-invasive, and no-sample-preparation characteristics. And infrared
(IR) spectroscopy is often used as a representative example of coordination chemistry
analysis [19–23]. Unlike IR spectroscopy, however, NIR spectroscopy is used in conjunction
with chemometrics for qualitative or quantitative analysis because the spectral bands are
susceptible to complex external factors, making the spectra hard to interpret.

The combination of chemometrics [24–26] and spectroscopy regroups several related
topics, such as preprocessing methods, variable selection methods, qualitative and quan-
titative modeling, and experimental design. Generally, the large amount of spectral data
leads to the appearance of some noise and irrelevant variables, which makes the predicted
properties of the target compounds unreliable. Therefore, some suitable projection or
selection techniques have been developed to address these problems.
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Projection methods, like partial least squares (PLS) [27] and principal component
regression (PCR) [28], typically substitute the original high-dimensional variable space
with the low-dimensional space to reduce the impact of collinearity and overlapping bands.
However, even with such complex chemometric methods as PLS, the effect of extraneous
variables in the spectra cannot be completely eliminated. The influence of data that contain
noise or other redundant information may severely corrupt calibration models [29].

In contrast, variable selection methods use algorithms to choose leaner variables that
carry information related to the attributes of interest. The variable selection can improve the
model stability and interpretability if variables carrying pertinent information are correctly
selected [30]. The relevant variables are typically selected using filter-based, extreme value,
sequential, exhaustive, and model population analysis search methods [31]. Common
variable selection methods include VIP, CC, UVE, CARS, etc.

The variable importance projection is mainly used for variable screening, and the VIP
based on partial least squares regression (PLSR) can be used in the case of a small sample
size and strong correlation between several independent variables [31]. The variable is
considered significant when the mean VIP value and one standard deviation of its bootstrap
are greater than 1.0 [32]. The application of the VIP algorithm is pivotal in the creation of
the PLS model.

The BIPLS algorithm is similar to the interval PLS model and has been shown to be
more precise and reliable than conventional PLS [33]. The basic principle of BIPLS is to
divide all variables into a large number of intervals of equal width, assuming that the
number of intervals is n. And then the PLS models are calculated with each interval left
out in a sequence. Among these developed PLS models, the combination with the smallest
RMSECV value is selected [33,34].

The CC method is a test correlation calculation of the absorbance vector in the spectral
matrix corresponding to each wavelength and the concentration vector under the density
matrix component in order to obtain a wavelength correlation coefficient map [35]. And the
model with a wavelength correlation coefficient greater than a certain threshold is selected.
CC is a common approach for performing band selection and is more frequently used in
building NIR prediction models [36–38].

The UVE method is an algorithm based on the analysis of the PLS regression coef-
ficients β for eliminating those variables that do not provide information. Based on the
criterion judgment of β coefficients, the experimental variables with lower importance are
eliminated, and then the model is built. Finally, the method has been proven to improve
prediction ability [39].

The CARS method utilizes a combination of Monte Carlo sampling and regression
coefficients from the PLS model to select feature variables [40]. In the CARS algorithm, the
points in the PLS model with larger absolute weights of regression coefficients are kept as a
new subset using adaptive reweighted sampling (ARS). The PLS model is developed with
the new subset, which removes the points with smaller weights. The wavelength in the
subset with the smallest root mean square error of the cross-validation (RMSECV) of the
PLS model is selected as the feature wavelength after multiple calculations.

Conventional variable selection methods are mainly based on the theory of projection
or regression coefficients. A major drawback of all these methods is that they are not
invariant under the transformation of variables, which may modify the results due to small
changes in the variables. And they are sensitive to noise or outlier data in training data and
it is hard to detect redundant features. However, the information measures investigate the
amount of information or the uncertainty of a feature for variable selection [41]. The central
idea of information theory is that the “information value” of a communication message
depends on the degree of surprise of the message content, which is widely used in feature
selection [42–44]. Mutual information is a well-known concept in information theory,
reflecting the degree of linear or nonlinear dependence between the variables [45,46].

In this study, a variable selection method based on the information entropy of “binning-
normalized mutual information” was proposed for the first time for multi-component
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spectral calibration. The combination of the two methods enables the maximum calculation
of the relationship between the spectral variables and the reference value, including linear
and non-linear relations [47]. The irrelevant background information in the spectra was
effectively removed, which was particularly prominent in complex real-world samples. The
feasibility and accuracy of the B-NMI approach were shown by the statistical parameters of
the prediction model on four different datasets, including the ideal ternary solvent mixture
dataset, fluidized bed granulation dataset, gasoline octane dataset (public data), and corn
protein dataset (public data). Furthermore, to illustrate its superiority, the B-NMI method
was compared with five classical variable selection methods (BIPLS, VIP, CC, UVE, CARS).

2. Results and Discussion
2.1. Model Analysis of Ideal Ternary Solvent Mixture Dataset

The BIPLS, VIP, CC, UVE, and CARS were compared in this study to evaluate the
performance of the B-NMI method. It is crucial to select the appropriate number of LVs
in the PLSR model, as too many or too few LVs may cause overfitting or underfitting
problems in the predicted model. In this study, the number of LVs in the model was
determined by the leave-one-out cross-validation method. The smallest RMSECV point (or
inflection point) was considered to be the optimal number of LVs. In the solvent mixture
dataset, the three replicate spectra were averaged before data processing. The by-default
pretreatment technique, mean centering, was used as the default pre-processing method
for PLSR analysis to preprocess spectral data. Other preprocessing techniques, such as the
first derivative or standard normal variate, mainly used to eliminate the baseline caused by
solid scattering, were not tested in this liquid dataset.

Figure 1A shows the distribution of the NMI values at different wavelengths under the
optimal modeling results after calculating with a different number of binned box iterations.
The left y-axis represents the absorbance (red line) and the right y-axis represents the NMI
value between each variable and water content (blue bar). Figure 1A intuitively displays
significant differences in the NMI values at different wavelengths. The NMI value mainly
reflects the relevance between two variables, which can be considered as a basis for judging
the importance of variables to the PLSR model. Figure 1B shows the change in the RMSEP
of the water content PLS model developed by a sequential accumulation of wavelengths
in the order of NMI values from largest to smallest. The RMSEP decreased rapidly in the
first stage as the variables with larger NMI values were added to the model, and then
increased in the second stage. The RMSEP reached its minimum value when 95 variables
were selected for modeling.

The B-NMI was compared with five widely used variable selection strategies. The
selected important wavelengths for water content are shown in Figure 2. As each variable
selection algorithm works differently, the water content variable selected varies greatly. In
general, water bands in the near-infrared region around 1450 and 1940 nm were used
to determine water content [48]. The dominant spectral region for all methods was
1300–1600 nm or 1900–2200 nm, which can be attributed to the first tone of the O-H
stretching mode and the combination of the O-H bond [40], respectively. The bands se-
lected for B-NMI, UVE, and CC were highly correlated with water absorption. In contrast,
the BIPLS, CARS, and VIP selected many bands that are not relevant to water.
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Figure 2. Visual comparison of selected variables for moisture content using different algorithms in
the solvent mixture dataset.

Table 1 summarizes the predicted results of the PLSR models developed using different
selection methods for water content. All variable selection methods outperformed the
full-spectral PLS. Moreover, the performances of B-NMI, UVE, and CC were better than
those of BIPLS, VIP, and CARS due to their highly correlated bands with water, which
proved the feasibility of B-NMI in selecting correlation bands with water. However, the
performance of UVE was better than that of B-NMI in the simple ternary solvent mixture. In
a simple system with low background interference noise, complex processing methods like
B-NMI may not be necessary to effectively extract feature bands. As a result, the superiority
of B-NMI may not be reflected in such a simple solution system.



Molecules 2023, 28, 5672 5 of 17

Table 1. The results of PLSR model in different variable selection methods for the solvent mixture
dataset.

Models R2
C R2

P RMSEC RMSECV RMSEP RPD Bias Number of
Variables LVs

FULL-PLSR 0.986 0.965 0.00401 0.00470 0.00430 5.499 −0.003 1557 3
VIP-PLSR 0.985 0.970 0.00414 0.00454 0.00399 5.927 −0.003 164 3
CC-PLSR 0.985 0.971 0.00412 0.00456 0.00387 6.107 −0.003 116 3

UVE-PLSR 0.985 0.978 0.00424 0.00457 0.00340 6.950 −0.002 18 2
CARS-PLSR 0.986 0.966 0.00403 0.00459 0.00419 5.642 −0.003 866 3

BIPLS 0.985 0.966 0.00420 0.00435 0.00420 5.572 −0.004 259 2
B-NMI-PLSR 0.985 0.976 0.00412 0.00476 0.00354 6.679 −0.002 95 3

Bold indicated the optimal variable selection method.

2.2. Model Analysis of Fluidized Bed Granulation Dataset

During fluidized bed granulation, moisture as a critical quality attribute affects the
subsequent processing and drug stability [49]. Too much moisture may lead to tablet adhe-
sion and aggregation, while too little moisture may lead to delamination or fragility of the
tablets [50,51]. Figure 3 shows the procedure of the B-NMI method. The high NMI values
were mainly distributed in the range of 1300–1500 nm (Figure 3A), which corresponds to
water absorption. Figure 3B shows that the optimal PLS model was developed using nine
wavelengths with high NMI values.
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The visual plot and predicted results of all variable selection methods for water
content in fluidized bed granulation are shown in Figure 4 and Table 2, respectively. During
the granulation process, the material was in a dynamic flow state. Moreover, external
conditions such as temperature, humidity, and pressure were constantly fluctuating, leading
to a complex background of disturbances in the NIR spectra. The B-NMI method can
effectively remove the noise and select the bands around 1450 nm, which corresponds to
the first overtone of the O-H stretching mode and reflects the change in the water. Other
selection methods, such as VIP and CC, selected uncorrelated wavelengths of water around
1500–1600 nm, which represents the characteristic band of the adhesive HPMC, presenting
a worse performance. In summary, the B-NMI method was effective in selecting the most
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informative bands in a complex background, leading to a better performance compared to
other selection methods. It enabled the accurate identification of changes in water during
the granulation process, even in the presence of external disturbances.
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Table 2. The results of PLSR model in different variable selection methods for the fluidized bed
granulation dataset.

Models R2
C R2

P RMSEC RMSECV RMSEP RPD Bias Number of
Variables LVs

FULL-PLSR 0.976 0.966 0.312 0.322 0.380 5.438 −0.040 125 5
VIP-PLSR 0.974 0.965 0.325 0.333 0.387 5.345 −0.061 40 4
CC- PLSR 0.977 0.968 0.308 0.321 0.367 5.626 −0.025 41 5
UVE-PLSR 0.975 0.970 0.318 0.326 0.356 5.813 −0.017 18 5

CARS-PLSR 0.978 0.968 0.303 0.312 0.370 5.581 −0.036 26 5
BIPLS 0.978 0.969 0.303 0.296 0.362 5.709 −0.097 19 5

B-NMI-PLSR 0.977 0.972 0.308 0.316 0.343 6.027 0.021 9 5

Bold indicated the optimal variable selection method.

Moreover, the model performance of all selection methods after SNV preprocessing
was also compared to prove the robustness of the B-NMI method (Table S1, Supplementary
Materials). The SNV was mainly chosen to remove the baseline offset and slope caused by
a variety of physical factors, such as particle size and optical patches. The SNV method did
not improve the predictive capability of the model compared to the raw spectra. However,
B-NMI still presented the best prediction results compared to other band selection methods.

2.3. Model Analysis of Gasoline Octane Dataset

One of the most vital indicators of gasoline is the octane number (ON), which is
an empirical indicator for evaluating the strength of gasoline against striking [52]. The
composition of gasoline is complex. The main components of gasoline are C5~C12 aliphatic
hydrocarbons and naphthene, with some aromatics. It can also be seen from the NMI
distribution plot in Figure 5A that the high NMI values were distributed throughout the
band. Figure 5B shows that 71 wavelengths with high NMI values needed to be used to
build the best PLS prediction model.
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distribution in different wavelengths (A), variation in RMSEP by developing model with cumulative
wavelengths in the order of NMI values (B).

The visual plot (Figure 6) of variable selection displays the selected wavelengths of
octane mainly located at the following sub-ranges: 1550–1600 nm range involving the
first harmonic (2ν) and a combination (ν + 2δ) of the –CH’s stretching and deformation
vibration; 1200–1400 nm, including the (2ν + δ) bands; and 1000–1200 nm, including the
(3ν) and [2(ν + δ)] bands [53]. Table 3 summarizes the predicted results of the PLSR models
developed using different selection methods for octane. The performance of B-NMI was
significantly better than other methods, which proved the superiority of B-NMI in selecting
correlation bands in complex samples. Other methods either selected too many irrelevant
variables (UVE) or selected few relevant variables (VIP, CC), all showing a poor predictive
performance. In addition, there was a significant improvement in B-NMI predictions
compared to the octane values predicted by other researchers [54].
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Table 3. The results of PLSR model in different variable selection methods for the gasoline octane
dataset.

Models R2
C R2

P RMSEC RMSECV RMSEP RPD Bias Number of
Variables LVs

FULL-PLSR 0.990 0.987 0.150 0.252 0.180 9.013 0.000 401 6
VIP-PLSR 0.988 0.986 0.165 0.260 0.184 8.808 −0.001 82 6
CC-PLSR 0.987 0.989 0.171 0.288 0.165 9.873 0.005 20 7

UVE-PLSR 0.987 0.987 0.171 0.216 0.180 9.015 0.001 217 4
CARS-PLSR 0.989 0.978 0.159 0.187 0.240 6.950 0.041 7 4

BIPLS 0.978 0.992 0.218 0.221 0.144 11.313 0.053 162 3
B-NMI-PLSR 0.981 0.994 0.205 0.255 0.126 12.905 0.016 71 5

Bold indicated the optimal variable selection method.

2.4. Model Analysis of Corn Protein Dataset

Corn is a popular staple food in many countries around the world, and protein content
is one of the vital indicators in determining the nutritional value of corn. Moreover, there
have been many research methods that have tested public corn data [55,56], while corn
protein data seem to be more difficult to predict. The signal of protein may be masked
by other major components of corn, such as carbohydrates, fat, water, and crude fiber.
Therefore, the superiority of the B-NMI method was further tested with a complex corn
dataset. Figure 7A shows that there were two distributions of high NMI values in the ranges
of 1500–1600 nm and 2100–2300 nm, which correspond to the absorption of protein [17].
Figure 7B shows that the optimal PLS model was developed using 64 wavelengths with
high NMI values.

Figure 7. The procedure of the B-NMI method for protein content in corn dataset: NMI values
distribution in different wavelengths (A), variation in RMSEP by developing model with cumulative
wavelengths in the order of NMI values (B).

Figure 8 displays the selected wavelengths of the corn protein dataset, mainly located
in the range of 2100–2200 nm, which were assigned as the amide A-amide II combination
and the amide B-amide II combination bands [57]. And the 2000–2500 nm region was
reported to be useful for protein structural characterization and quantification [58,59],
which proved the accuracy of the B-NMI method in selecting variables. The B-NMI
method not only effectively identifies and eliminates irrelevant variables but also removes
redundant variables to extract the most prominent variables.
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Table 4 summarizes the predicted results of different selection methods, which show
that the B-NMI prediction performance was significantly superior to other methods. Fur-
thermore, a comparison with the corn protein predictions made by other researchers [60]
demonstrates a significant enhancement in B-NMI. The SNV was also chosen to eliminate
the effect of scattering in solid samples (Table S2, Supplementary Materials). The SNV
method enhances the predictive capability of the full PLSR model compared to the original
raw spectra. However, the preprocessing methods combined with variable selection meth-
ods reduced the model performance. The main reason may be that the SNV removes the
baseline while also eliminating some spectral information.

Table 4. The results of PLSR model in different variable selection methods for the corn protein dataset.

Models R2
C R2

P RMSEC RMSECV RMSEP RPD Bias Number of
Variables LVs

FULL-PLSR 0.958 0.879 0.106 0.151 0.146 2.951 0.028 700 8
VIP-PLSR 0.925 0.903 0.142 0.179 0.131 3.293 0.025 221 7
CC- PLSR 0.952 0.967 0.113 0.144 0.076 5.635 −0.014 191 8
UVE-PLSR 0.971 0.985 0.088 0.117 0.051 8.411 −0.005 114 7

CARS-PLSR 0.979 0.951 0.074 0.097 0.092 4.651 0.003 51 8
BIPLS 0.986 0.992 0.062 0.147 0.038 11.284 0.028 280 6

B-NMI-PLSR 0.987 0.993 0.059 0.077 0.035 12.446 −0.003 64 7

Bold indicated the optimal variable selection method.

At last, an F-test was performed to compare the statistical significance of the RMSEP
values of the B-NMI method with other variable selection methods, where a confidence
level of 95% was adopted [61]. The results are displayed in Table 5. For the simple solvent
mixture dataset, the F-test showed that the prediction results of the B-NMI method were
equivalent to those of the selection methods, and the enhancement effect was not obvious.
However, it can be seen that p-values for granulation, gasoline octane, and corn protein
were obviously less than 0.05, which means that the B-NMI method was significantly
different from those selection methods in modeling prediction. The above results show
that the effectiveness of the B-NMI method in selecting characteristic bands may not be
as apparent in simpler systems, but it becomes increasingly prominent in more complex
systems. This suggests that the B-NMI method could be particularly useful for tasks
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that involve the analysis of complex data, such as real-world sample processing, where
identifying relevant features is crucial for accurate analysis.

Table 5. Comparisons of the predictive ability of three methods using F-test for a confidence level of 95%.

Methods
Datasets

Solvent
Mixture Granulation Gasoline

Octane Corn Protein

B-NMI vs. VIP p-values 0.494 0.000 0.038 0.000
B-NMI vs. CC p-values 0.732 0.000 0.915 0.000

B-NMI vs. UVE p-values 0.947 0.028 0.042 0.000
B-NMI vs. CARS p-values 0.324 0.000 0.002 0.000
B-NMI vs. BIPLS p-values 0.026 0.000 0.002 0.000

3. Theory and Algorithms

Matlab 2018a (Mathworks, Natick, MA, USA) and Pycharm 2021 (JetBrains, Prague,
Czech Republic) were adopted for data processing. The flowchart of the B-NMI procedure
is illustrated in Figure 9. It can be summarized in the following steps:

A spectra dataset matrix X(m × n) contains m samples in rows and n variables in
columns. A reference dataset matrix Y(m × 1) contains m samples in rows.

Pre-processing the original data (spectra and reference) with the data binning (equal
intervals) method (see Section 3.1).

Calculating the normalized mutual information (NMI) between spectra data for each
variable and reference data (see Section 3.3).

Sorting the NMI values in descending order.
Developing the PLS model by sequentially adding variables in the order of

NMI values.
Selecting the variables with the smallest root mean square error of prediction

(RMSEP) value.
In this paper, this is the first time that information extropy theory is applied to the

processing of spectra, which will be an alternative method with an excellent performance.
The novelty of this paper lies in several key areas. Firstly, the use of data binning helps to
reduce noise and improve accuracy in the estimation of NMI, which leads to more precise
band selection. This is particularly relevant in the context of near-infrared band selection,
where the noise level can be high in complex real-world samples. Secondly, the use of NMI
as a measure of the relationship between variables allows for the identification of both
strong and weak relationships, leading to the selection of more informative and relevant
bands. NMI is a more robust and flexible measure than traditional methods, such as
correlation coefficient, as it does not assume linear relationships between variables and can
detect non-linear correlations. Thirdly, the sequential addition of variables based on NMI
values allows for a more efficient and targeted selection process. This approach ensures that
the most relevant bands are selected early in the process, leading to an improved model
performance. Finally, the use of NMI also allows for the selection of bands that are more
independent and less redundant, which can further improve the performance of the model.
By selecting the most informative and independent bands, the model can better capture the
underlying relationships between the variables.
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3.1. Data Binning

Data binning is a data preprocessing technique used to reduce the effects of observation
errors. In statistical analysis, data binning is used to convert or partition continuous
variables into discretized or nominal variables to enhance the characteristics of variables.
Typically, the data are discretized into partitions of B equal lengths/width (equal intervals)
or B% of the total data (equal frequencies) [62]. In this paper, the spectra and reference data
are processed using the data binning (equal intervals) method. This consists of four stages:



Molecules 2023, 28, 5672 12 of 17

Determining the number of the box (Bnumber), which is generally twice the number of
samples; note that the Bnumber here is not the number of bins for subsequent modeling, but
the number of bins for the maximum iteration.

Calculating the width of the box,

Bwid =
(D max − Dmin)

Bnumber
(1)

where Dmax and Dmin represent the maximum and minimum values in the data column,
respectively. The interval boundary values are Dmin + Bwid, Dmin + 2Bwid, . . ., Dmin +
(Bnumber − 1)Bwid.

Replacing the original data with nominal data that fall into a given small interval
based on the value Bwid.

Calculating the results of all data bins by exhaustive enumeration.

3.2. Mutual Information (MI)

MI is a good method for analyzing the correlation between two variables (spectra data
and reference data). For two variables Xi and Yj, MI is the measure of the interdependence
between these two variables (absorbance values for each wavelength and reference data
after processing by binning method). It is defined as

MI
(
Xi, Yj

)
= H(Xi)− H

(
Xi | Yj

)
(2)

where H(Xi) is the marginal entropy of absorbance variable Xi, defined as

H(Xi) = −∑ i p(xi) log p(xi) (3)

and H
(
Xi | Yj

)
is the conditional entropy:

H
(
Xi | Yj

)
= −∑ j p

(
yj
)

∑ i p
(
xi | yj

)
log p

(
xi | yj

)
(4)

where p
(
yj
)

is the probability of reference yj and p
(
xi | yj

)
is the posterior probability of

absorbance xi given reference yj.
However, mutual information tends to increase its value with an increase in the

number of values of Xi and/or Yj, which means that MI is biased to the cardinality features.
Therefore, MI has to be normalized with the entropies of the features to eliminate such
bias [63]:

MI(X, Y) = ∑X
i=1 ∑Y

j=1 pi,j log

(
Pi,j

Pi × Pj

)
(5)

3.3. Normalized Mutual Information (NMI)

This information-based nonlinear measure, known as symmetrical uncertainty, is the
normalized version of MI. It rescales the MI score into a numerical value between 0 and 1.

Now, notice that, if Xi and Yj are independent, then NMI
(
Xi, Yj

)
= 0; and (ii) if

Xi and Yj are fully correlated, then NMI
(
Xi, Yj

)
= 1. Therefore, NMI values are in the

range [0, 1]. NMI can measure the correlation between two variables and is often used
in variable selection methods [64]. This equation has two variables, Xi and Yj, and is
determined as follows:

NMI
(
Xi, Yj

)
=

2×MI
(
Xi, Yj

)
H(Xi) + H

(
Yj
) = 2×

H(Xi)− H
(
Xi | Yj

)
H(Xi) + H

(
Yj
) (6)

3.4. Evaluation Criteria

The criteria used to evaluate the performance of the model include determination
coefficient R2, root mean square error of validation (RMSEP), and ratio of performance
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deviation (RPD). The closer R2 is to 1, the better the regression or prediction will be. Lower
values of RMSEP indicate greater accuracy in predicting the target component. RPD is
calculated as the ratio of the standard deviation of the reference values to the RMSEP.
Higher values of RPD indicate a greater precision and reliability of the model.

The calculation formulas are as follows:

R2 = 1−
∑n

i=1

(
yi, actual − yi, predicted

)2

∑m
i=1

(
yi, actual − yi, actual

)2 (7)

RMSEP =

√√√√∑n
i=1

(
yi, actual − yi, predicted

)2

m− 1
(8)

PD =
SDactual
RMSEP

(9)

where yi, actual is the reference value of the ith sample, yi, predicted is the predicted value of
the ith sample, yi, actual is the mean of the reference values, and m is the number of samples.
Typically, a satisfactory model will have a high R2 and RPD and low RMSEP.

4. Datasets
4.1. Ideal Ternary Solvent Mixture Dataset

The ideal ternary solvent mixtures consisting of water, ethanol, and acetic acid were
prepared. The NIR spectra were collected from 10,000 to 4000 cm−1 with a resolution
of 8 cm−1 (1557 points) in transmission mode using the Antaris II Fourier transform
near-infrared spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). A total
of 156 spectra (52 mixtures and 3 replicate measurements) were collected for the model
development. The calibration set included six concentrations of water (2%, 4%, 6%, 8%,
10%, and 12%), and the corresponding six concentrations of acetic acid range (1%, 3%,
5%, 7%, 9%, and 11%), for a total of thirty-six samples. The validation set included eight
concentrations of water (3%, 4%, 5%, 6%, 7%, 8%, 9%, and 10%). Each concentration was
measured twice in duplicate for a total of 16 samples. The corresponding concentrations
of acetic acid and ethanol were randomly distributed to challenge the robustness of the
calibration model. The total volume of all solutions was kept constant. The proportion of
water was considered as a reference value.

4.2. Fluidized Bed Granulation Dataset

The granulation dataset was created using a portable NIR spectrometer (Micro NIR
PAT-U) combined with a fiber optic probe (VIAVI, Chandler, AZ, USA), which used a nomi-
nal wavelength range of 908.1–1676.2 nm with a wavelength separation of approximately
6 nm (125 points). The spectra were gathered every 6 s in real time during fluidized bed
granulation. In the model development stage, 15 samples (approximately 10 g per sample)
were thieved from each batch, yielding 135 samples in 9 batches. Batches 1–5 were calibra-
tion sets, and batches 6–9 were validation sets. The moisture content of thieved samples was
determined by the drying to constant weight method using a halogen moisture analyzer
(XY-102MW, Xinyun, Shanghai, China).

4.3. Gasoline Octane Dataset

The gasoline data were from the appendix of the published article [65]. This dataset
contained 60 gasoline samples with specified octane values that were measured using
diffuse reflectance from 900 to 1700 nm at 2 nm intervals (401 points). These 60 samples
were split into a calibration set (45 samples) and a validation set (15 samples) by the
KS algorithm.
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4.4. Corn Protein Dataset

The corn dataset is publicly available and can be downloaded from a website (https:
//eigenvector.com/resources/data-sets/#corn-sec, accessed on 1 December 2022). This
dataset contained 80 samples measured by three different NIR spectrometers (m5, mp5,
and mp6) in the spectral range of 1100–2498 nm at 2 nm intervals (700 points). The corre-
sponding reference values (moisture, oil, protein, and starch) of these samples obtained
using laboratory analysis are also available. In the present study, only the protein content
of the dataset measured by an m5 spectrometer was considered. These 80 samples were
split into a calibration set (60 samples) and a validation set (20 samples) by the KS algo-
rithm. Kennard–Stone (KS) is a technique designed to achieve uniform coverage across a
multidimensional space by maximizing the Euclidean distances between the instrumental
response vectors (x) of the selected samples [66]. Table 6 shows the descriptive statistics for
the solvent mixture, granulation, gasoline octane, and corn protein data.

Table 6. Descriptive statistics of the four datasets.

Data N
Calibration Set

N
Validation Set

Mean ± SD Range Mean ± SD Range

Solvent mixture 36 0.07 ± 0.04 0.02–0.12 16 0.07 ± 0.02 0.03–0.10
Granulation 75 5.62 ± 2.03 3.27–11.83 60 5.88 ± 2.07 3.02–10.94

Gasoline octane 45 87.28 ± 1.50 83.40–89.60 15 86.87 ± 1.63 84.50–88.90
Corn protein 60 8.67 ± 0.52 7.65–9.71 20 8.68 ± 0.43 7.79–9.44

5. Conclusions

This paper proposed a novel variable selection method based on information entropy
theory that combined the “Data binning” algorithm and the “Normalized mutual infor-
mation” method, named B-NMI. Four datasets, including two experimental datasets and
two public datasets, were used to demonstrate the performance of the novel proposed
B-NMI method. And the B-NMI method was also compared with five different wave-
length selection methods (BIPLS, VIP, CC, UVE, CARS) to demonstrate its superiority. The
B-NMI method showed a better predictive ability in these datasets due to effective fea-
ture extraction and highly relevant model development, especially in processing complex
real-world samples. The B-NMI methods can not only identify and eliminate irrelevant
variables effectively but also remove the redundant ones by evaluating all probability
results calculated by an exhaustive search. The present study demonstrates the feasibility
and effectiveness of the B-NMI method, which will be an effective and prospective tool for
determining target components in complex samples in practice. Furthermore, there exist
captivating opportunities for leveraging information entropy in various domains, such as
preprocessing method screening, outlier determination, cluster analysis, and data fusion.
The inherent capability of information entropy to effectively extract valuable information
makes it an indispensable tool in these applications. Additionally, the integration of in-
formation entropy with deep learning methods holds immense promise, opening up new
avenues for advanced data analysis and decision making.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28155672/s1, Table S1: The results of PLSR model after
SNV preprocessing in different variable selection methods for the fluidized bed granulation dataset.
Table S2: The results of PLSR model after SNV preprocessing in different variable selection methods
for the corn protein dataset.
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