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Abstract: An efficient and low-cost oxygen catalyst for the oxygen reduction reaction (ORR) was
developed by in situ growth of Mn-Mo oxide nanoparticles on nitrogen-doped carbon nanotubes
(NCNTs). Doped nitrogen effectively increases the electron conductivity of the MnMoO4@NCNT
complex and the binding energy between the Mn-Mo oxide nanoparticles and carbon nanotubes
(CNTs), leading to fast charge transfer and more catalytically active sites. Combining Mn and
Mo with NCNTs improves the catalytic activity and promotes both electron and mass transfers,
greatly enhancing the catalytic ability for ORR. As a result, MnMoO4@NCNT exhibited a comparable
half-wave potential to commercial Pt/C and superior durability, demonstrating great potential for
application in renewable energy conversion systems.

Keywords: MnMoO4/NCNT composites; nitrogen doping; oxygen reduction reaction; platinum
group metal (PGM)-free catalyst; electrocatalysis

1. Introduction

Fuel cells have gained increasing interest as a clean and efficient source of energy due
to their high electrical energy conversion efficiency and environmental friendliness [1–3].
In many devices, the oxygen reduction reaction (ORR) is a vital process in the oxygen
electrode [4–6]. Although platinum-based catalysts are considered the best ORR cata-
lysts [7], they have limited reserves, high cost, and are intolerant to methanol. Moreover,
these Pt electrocatalysts have poor long-term stability due to the migration and coalescence
of Pt nanoparticles [8,9], which hinders their large-scale commercialization. Therefore, it is
essential to explore new electrocatalysts with a reasonable price and excellent performance
for ORR in alkaline media. Alternative electrocatalysts, including metal-free carbon mate-
rial catalysts and transition metal-based catalysts, have been investigated [10–12]. Among
the studied transition metals, Fe or Co with N-doped carbon form the M-N-C catalysts,
which are considered as the most promising PGM-free catalysts. They exhibit encouraging
ORR activity and stability even in harsh acidic media [13]. However, the inferior durability
of Fe-N-C catalysts in membrane electrode assemblies (MEAs) is still a substantial technical
barrier for fuel cell transportation applications. Even worse, hydrogen peroxide produced
during the ORR will react with Fe3+/Fe2+ to form harmful hydroxyl and hydroperoxyl
radicals by Fenton and attack organic ionomers, membranes, and catalysts. Although
Co-N-C catalysts can alleviate the Fenton reactions to a certain degree, their relatively low
intrinsic activity and high cost remain grand challenges. Mn-N-C catalysts, which are
low-cost and have negligible activity toward the Fenton reactions, are highly desirable
PGM-free catalysts [14]. Although single-atom catalysts have certain performance for ORR,
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according to the latest research, due to the improvement in the structural stability of the
active center and the modulation of the electron cloud, bimetallic particles show higher
activity and stability when compared with monometallic atomic particles [15]. To date,
various nanocomposites with transition metals (Co, Fe, etc.) and heteroatom-doped carbons
have demonstrated promising catalytic performance for the ORR.

Multi-transition metal oxides (MTMOs) are gaining attention as promising electrocat-
alysts due to their lower cost, higher electronic conductivity, and better electrochemical
performance compared to single metal oxides [16]. MTMOs, such as FexMn3-xO4 and
CoxNi2-xO3, are combinations of two or more transition metal oxides. Mn, in particular,
is an intriguing series in spinel due to its earth abundance, low price, minimum envi-
ronmental impact, and multiple valences, which exhibit high intrinsic activity for either
the oxygen evolution reaction OER [17] or the ORR [18–20]. On the other hand, Mo, as
an elementary ferromagnetic transition metal, is known for its outstanding electrical and
magnetic characteristics, making it beneficial for electrochemical energy storage [21–23].
Therefore, integrating MnMo alloys or their oxides as a bi-metal electrocatalyst could
provide additional synergistic properties during electrocatalysis. The dissimilarity in lattice
strain between Mn and Mo would create more active defects and varied redox potentials,
improving the electrochemical performance of the catalyst.

The combination of transition metal oxide particles with conductive matrices, such
as graphene, CNTs, or carbon fibers, can improve their electrochemical performance [24].
Some N-containing precursors are adopted during the combination process for the fol-
lowing reasons: (1) they act as surfactants to enhance the compatibility and interaction
between the carbon support and inorganic particles due to their high polarity, and (2) they
improve conductivity and catalytic activities for the ORR due to increased active sites
during N-doping [25,26]. To optimize ORR catalysts, suitable nitrogen/transition-metal
precursors and carbon supports should be precisely selected and controlled. In particu-
lar, nitrogen-doped CNTs have received increasing attention as ORR catalysts in the past
decade due to their excellent conductivity and strong mechanical/chemical stability [27,28].

In this paper, we present a facile approach for synthesizing MnMoO4@NCNT compos-
ites to catalyze the ORR. Firstly, CNTs were acid-treated and then coated with transition
metal (Mn, Mo) nanoparticles through a solvothermal process. Dicyanogen was adopted
as a “junctor” during the coating process, which resulted in smaller and more uniform
Mn-Mo nanoparticles being co-deposited with metal oxide on the CNTs. The resulting
MnMoO4@NCNT composites, after calcination at 500 ◦C, possessed highly active catalytic
sites, an interpenetrated hierarchical conductive matrix, and a large specific surface area,
leading to enhanced ORR activity.

2. Results and Discussion

To provide further evidence of the structure of MnMoO4@NCNT, high-resolution
transmission electron microscopy (HRTEM) images were obtained. As depicted in Figure 1a,
the nanocrystals of Mn-Mo were well dispersed on the surface of CNTs, with an average
size of approximately 10 nm. No obvious congestion of nanoparticles was observed
in MnMoO4@NCNT nanohybrids, indicating that the binding energy between Mn-Mo
and pre-treated CNTs was stronger than that between MnMoO4 particles themselves.
In Figure 1b, the HRTEM image of MnMoO4@NCNT nanohybrids clearly showed the
lattice fringes of MnMoO4, with an interplanar spacing of 0.25 nm corresponding to the
d-spacing of the (111) plane of tetragonal MnMoO4 crystals. The thickness of CNTs in the
MnMoO4@NCNT catalyst was estimated to be approximately 3.0~4.0 nm. The EDS (Energy
Dispersive Spectroscopy) elemental mapping of a single MnMoO4@NCNT nanohybrid
was presented in Figure 1d, confirming the uniform distribution of Mn and Mo elements
in the MnMoO4 nanoparticles. Moreover, the N atoms were consistently dispersed on the
surface of CNTs, even in domains that bound with MnMoO4 nanocrystals. This indicated
that the N source possessed higher reactivity or stronger interaction with pre-treated CNTs
and Mn-Mo nanocrystals. The small size of MnMoO4 oxide nanoparticles combined with
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their dispersion in CNTs facilitates fast electron transport between the carbon matrix and
MnMoO4 oxide nanoparticles, leading to efficient electrical conductivity and enhancing
the ORR activity.
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Figure 1. TEM images of (a,b) MnMoO4@NCNT pyrolyze at 500 ◦C; (c,d) Color EDS mapping images
of a single MnMoO4@NCNT nanohybrids.

Figure 2a displays the powder X-ray diffraction (XRD) pattern of the MnMoO4@NCNT
catalyst. The sharp diffraction peak at 2θ = 26.3◦ corresponds to the (111) plane of graphite
structure, which is consistent with the crystalline planes of carbon in Joint Committee
on Powder Diffraction Standards (JCPDS) card 75-1621. The well-defined peaks ob-
served around 2θ = 13.1◦, 22.7◦, 25.7◦, 31.2◦, 32.1◦, 35.6◦, 40.3◦, 43.9◦, and 54.1◦ match
well with JCPDS card 50-1287, indicating the presence of Manganese molybdate on the
MnMoO4@NCNT. Furthermore, Raman spectra (Figure 2b) were used to examine the
degree of disorder in the carbon material. The D band located at 1350 cm−1 and G band
near 1588 cm−1 are related to the disordered and ordered structure of the carbon material,
respectively. The peak area ratio of a (ID/IG) was 1.05, and b (ID/IG) was 1.01, indicating a
higher degree of disorder. This finding correlates highly with the doping of N and pres-
ence of defects on CNTs. However, the presence of MnMoO4 leads to a higher degree of
graphitization, which is consistent with the XRD results.

X-ray photoelectron spectroscopy (XPS) was used to determine the chemical compo-
sitions of MnMoO4@NCNT. The wide scan spectra of the three samples showed photo-
electron lines at binding energies of 285, 400, 645, and 232 eV, which corresponded to C
1s, N 1s, O 1s, Mn 2p, and Mo 3d, respectively (Figure 3a) [29]. The N 1s spectrum was
deconvoluted into three components centered at 398.6 eV (pyridinic N), 399.8 eV (pyrrolic
N), and 401.4 eV (graphitic N), which indicated the presence of the nucleophile substitution
of dicyandiamide and pre-treated CNT matrix [30]. The N content of MnMoO4@NCNT
nanohybrids was calculated to be ~2.0 at%. The high N-containing rate could increase
conductivity and afford more electrochemically active sites during the oxygen reduction
reaction. Additionally, the N-containing groups could enhance the binding energy between
Mn-Mo and CNTs, acting as a “bridge”, and thus be beneficial for enhancing electrochemi-
cal performances of materials. The Mn 2p spectrum featured two main peaks of Mn 2p3/2
and Mn 2p1/2 entered at 642.5 eV and 652.5 eV, respectively, with a spin energy separation
of 10.5 eV that was in good agreement with reported data of Mn 2p3/2 and Mn 2p1/2 in
MnMoO4. After refined fitting, the spectrum could be deconvolved into four peaks at
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binding energies of 642.5 eV (Mn2+), 643.9 eV (Mn3+), 653.1 eV (Mn2+), and 653.7 eV (Mn3+).
The Mo 3d XPS spectra of MnMoO4@NCNT nanohybrids exhibited two characteristic
peaks (232.0 eV and 235.0 eV), corresponding to the Mo 3d3/2 and Mo 3d5/2 spin-orbit
peaks of Mo4+. It was reasonable to conclude that the solid-state redox couples of MnMoO4
in MnMoO4@NCNT samples exhibited higher electrical conductivity and electrochemical
activity due to the synergetic effects of multiple valences of the cations [31].
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To gain insight into the electrocatalytic ORR activities of the prepared samples, linear
sweep voltammetry (LSV) measurements were performed in O2-saturated 0.1 M KOH
solution. As shown in Figure 4a, all the onset potentials of MnMoO4@CNT were comparable
to that of Pt/C, and MnMoO4@NCNT outperformed other samples in terms of disk current
density and half-wave potential (E1/2). At 1600 rpm, E1/2 of MnMoO4@NCNT was 0.83 V,
close to that of the Pt/C catalyst. Moreover, MnMoO4@NCNT had the highest current
density of 5.6 mA cm−2 at 1600 rpm, while Mn@NCNT, Mo@NCNT, and Pt/C had current
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densities of 5.1, 5.0, and 5.9 mA cm−2 with the same loading and rotating speed, respectively.
The mixed oxidation states of Mn2+ and Mo4+ increased the electronic conductivity of 3D
conductive networks and more electrochemically active surface sites [32–35], leading
to the formation of M-OH or M-OOH species on the catalytic surface to absorb more
oxygen [36]. Therefore, the ORR activity of MnMoO4@NCNT was better than that of
other catalysts (Mn/NCNT, Mo/NCNT). The combination of MnMoO4 with N-doped
CNTs could achieve high catalytic activity due to the increased conductivity through the
reduction during N-doping at high temperature, the accelerated charge and mass transfer
capability, and more catalytic active sites resulting from the combination of MnMoO4
nanoparticle nanocrystals on CNTs. To investigate the primary electron reduction pathway
of different catalysts, we conducted LSV measurements at various rotating speeds as shown
in Figure 4b. Figure 4c illustrates the K-L plot of MnMoO4@NCNT. The in situ-grown
MnMoO4 on CNTs, bound by carbon nitride, provides continuous and multiple pathways
for electron transfer. Moreover, the voids among the nanocomposites ensure smooth mass
transfer to active sites, improving the ORR diffusion kinetics. The electron transfer number
for MnMoO4@NCNT was approximately 4.0, as shown in the Figure 4c inset, indicating an
exclusive four-electron pathway, consistent with the ORR catalyzed by a Pt/C catalyst.
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10 mV s−1, rotating speed 1600 rpm; (b) LSV curves of MnMoO4@NCNT in O2-saturated 0.1 mol L−1

KOH with different rotating speed at a scan rate of 10 mV s−1; (c) the K-L plot and the electron transfer
number of MnMoO4@NCNT; (d) durability test of MnMoO4@NCNT and Pt/C in O2-saturated
0.1 mol L−1 KOH.

The stability of MnMoO4@NCNT was evaluated in O2-saturated 0.1 M KOH solution
through chronoamperometry. Results in Figure 4d suggest that MnMoO4@NCNT may be a
viable substitute for commercial Pt/C. After continuous ORR testing at 0.5 V (vs. RHE) for
about 24 h, the current of the commercial Pt/C electrode exhibited a 35% loss. In contrast,
the current of MnMoO4@NCNT decreased only about 10%. This improved stability can be
attributed to the unique structure of the nanohybrid, in which polymerized dicyandiamide
effectively “bridges” the inorganic particles and CNTs together, enhancing the catalyst’s
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stability. Comparison of the ORR performance of different PGM-free catalysts is shown in
Table 1.

Table 1. Comparison of the ORR performance.

Electrocatalyst Electrolyte
Onset

Potential (V
vs. RHE)

Half-Wave
Potential (V vs.

RHE)

Electron
Transfer
Number

Ref.

MnMoO4@NCNT 0.1 M KOH 0.9 0.83 4 This work
Mn-N-C 0.5 M H2SO4 0.9 0.69 4 [14]

Fe-Mn/N-C 0.1M HClO4 0.95 0.80 2 [15]
Mn-N-C 0.5 M H2SO4 0.9 0.8 4 [13]
Co-N-C 0.1 M H2SO4 0.82 0.78 4 [37]

Fe-N-C@MXene 0.1 M KOH 0.9 0.887 4 [38]
N-Fe2MoC-GC 0.1 M KOH 0.95 0.887 4 [39]

FeCo/NC-Mo2TiC2 0.1 M KOH 1.017 0.887 2 [40]
Fe-Mn/NC 0.1 M KOH 1.015 0.904 4 [41]

3. Experimental Section
3.1. Reagents and Chemicals

Nafion (5 wt%) MWCNTs were obtained from Sigma-Aldrich. Pt/C (20 wt%) was
obtained from Johnson-Matthey. Ultrapure water (Millipore, 18.4 MΩ cm−1) was used
throughout the whole experiment. All other chemicals in the experiment were of analytical
grade, purchased from Aladdin Industrial Corporation (Shanghai, China), and used as
received without further purification.

3.2. Preparation of MnMoO4@NCNT Composites

The synthesis of MnMoO4@NCNT composites is illustrated in Figure 5, using a
straightforward hydrothermal method. First, H8MoN2O4 (196.0 mg), dicyandiamide
(250 mg), potassium permanganate (158.03 mg), and ultrapure water (40 mL) were stirred
at room temperature. The resulting mixture was then transferred and sealed into an 80 mL
Teflon-lined stainless-steel autoclave, which was heated to 120 ◦C for 4 h and subsequently
allowed to cool to room temperature. The black product was then washed with deionized
water and ethanol five times each, and the resulting mixture was dried via freeze drying
for 10 h. The dried precursor was placed into a crucible and heated to 500 ◦C at a rate
of 2.5 ◦C/min for 2 h in a nitrogen atmosphere. Once cooled to room temperature, the
MnMoO4@NCNT was obtained. Mn@CNT and Mo@CNT were prepared using a similar
procedure, without the addition of H8MoN2O4 and dicyandiamide, respectively.
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3.3. Materials Characterization

The synthesized samples were characterized using various analytical techniques. XRD
was carried out using a X’Pert PRO MPD instrument from Holland with Cu Ka radiation.
Transmission electron microscopy (TEM) and field emission scanning electron microscopy
(FE-SEM) were used to investigate the structure and morphology of the samples, using
a JEM-2100UHR and S4800 microscope from Japan, respectively. The crystallinity of
the samples was determined by Raman analysis using a Jobin-Yvon Labram-010 Raman
spectrometer. XPS results were obtained using an ESCALab MKII instrument.

3.4. Electrochemical Measurement

Electrochemical experiments were conducted at room temperature in a three-electrode
cell connected to a CHI-760E electrochemical analyzer. A platinum plate served as the
counter electrode and Ag/AgCl as the reference electrode. The ORR tests were performed
in O2-saturated 0.1 M KOH solution at room temperature. In rotating disk electrode (RDE)
measurements, the working electrode was a 4 mm diameter glassy carbon (GC) disk. For
each sample, including the commercial 20% Pt/C, 2.0 mg of the sample was dispersed in
an 800.0 µL ethanol solution with 5.0 µL of Nafion solution and sonicated for 30 min. A
total of 10.0 µL of well-dispersed catalyst suspension was dropped onto the glassy carbon
electrode surface (4.0 mm in diameter, Pine Research Instrumentation) and allowed to dry
at room temperature for 2.0 min (catalyst loading: ~0.20 mg cm−2).

To investigate the electrocatalytic performance of the as-prepared catalysts, LSV was per-
formed in 0.1 M KOH solution. Prior to each test, the KOH solution was saturated with ultrahigh
pure O2 for 30 min. All potentials reported herein were calibrated with respect to the reversible
hydrogen electrode (RHE) using the equation ERHE = EAg/AgCl + 0.0591pH + Eθ

Ag/AgCl. LSV
was tested to evaluate the electron transfer number per O2 for the ORR, at a rotation rate
ranging from 400 to 2500 rpm. The electron transfer number for ORR can be calculated
through Koutecky–Levich plots at different electrode potentials. Rotating ring disk elec-
trode (RRDE) measurements were used to monitor the yield of peroxide species (HO2

−)
and evaluate the electron transfer number per oxygen molecule during the process of the
ORR [42]. For comparison, commercial Pt/C (20 wt %), Mn@NCNT, and Mo@NCNT were
also tested using the same procedure.

4. Conclusions

In summary, we have developed an efficient and low-cost oxygen catalyst for ORR by
the in situ growth of MnMoO4 oxide nanoparticles on nitrogen-doped carbon nanotubes
(N-CNTs). The introduction of nitrogen brought about several advantages, including
increased conductivity of the complex through high-temperature reduction and assistance
in the combination of MnMoO4 oxide nanoparticles with CNTs. This led to an accelerated
charge and mass transfer capability and more catalytically active sites. The resulting
product showed greatly improved catalytic ability for ORR, with a half-wave potential
of 0.83 V (vs. RHE), which is close to that of Pt/C catalysts. Doping nitrogen into the
nanoparticles improved catalytic activity and promoted both electron and mass transfer
during ORR. MnMoO4@NCNT exhibited a current density of 5.6 mA cm−2 and the 4e−

electron transfer process, making it a promising candidate for developing renewable energy
conversion systems.
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