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Abstract: Triplet-triplet annihilation upconversion (TTA-UC) has considerable potential for emerg-
ing applications in bioimaging, optogenetics, photoredox catalysis, solar energy harvesting, etc.
Fluoroboron dipyrrole (Bodipy) dyes are an essential type of annihilator in TTA-UC. However, con-
ventional Bodipy dyes generally have large molar extinction coefficients and small Stokes shifts
(<20 nm), subjecting them to severe internal filtration effects at high concentrations, and resulting
in low upconversion quantum efficiency of TTA-UC systems using Bodipy dyes as annihilators.
In this study, a Bodipy dimer (B-2) with large Stokes shifts was synthesized using the strategy of
dimerization of an already reported Bodipy annihilator (B-1). Photophysical characterization and
theoretical chemical analysis showed that both B-1 and B-2 can couple with the red light-activated
photosensitizer PdTPBP to fulfill TTA-UC; however, the higher fluorescence quantum yield of B-2
resulted in a higher upconversion efficiency (ηUC) for PdTPBP/B-2 (10.7%) than for PdTPBP/B-1
(4.0%). This study proposes a new strategy to expand Bodipy Stokes shifts and improve TTA-UC
performance, which can facilitate the application of TTA-UC in photonics and biophotonics.

Keywords: triplet-triplet annihilation upconversion; upconversion quantum efficiency;
boron-dipyrromethene; Stokes shift; fluorescence quantum yield

1. Introduction

The photophysical process of photon upconversion converts low-energy photons
(long-wavelength light) into high-energy photons (short-wavelength light) [1–5]. Currently,
the technology of upconversion luminescence has been extensively utilized in various
fields, such as biological imaging [6], 3D printing [7], photocatalysis [8], and solar energy
harvesting [9,10]. In particular, triplet-triplet annihilation upconversion (TTA-UC), as
the next-generation upconversion material, possesses several distinctive characteristics,
such as low excited light power density (~10 mW/cm2, sunlight illumination), finely
tunable excitation and emission wavelengths, and high upconversion quantum efficiency
(ηUC) [11–13]. TTA-UC generally consists of two components: photosensitizer (Sen) and
annihilator (An). As shown in Figure 1a, in a typical TTA-UC process, the Sen absorbs low-
energy incident photons and transits to its singlet excited state (1Sen*), and subsequently
undergoes an intersystem crossing (ISC) to reach its triplet excited state (3Sen*). Then,
the energy is transferred from the 3Sen* to the annihilator (An) through the triplet-triplet
energy transfer (TTET) process. Finally, two triplet excited states of annihilators (3An*)
collision to operate the triplet-triplet annihilation (TTA) process. One annihilator molecule
loses energy and returns to its ground state, while the other annihilator molecule transits to
its singlet excited state (1An*) and radiates high-energy upconverted photons [14,15].
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Figure 1. (a) Schematic illustration of triplet-triplet annihilation upconversion mechanism; (b) Mo-
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eral, which relies on the manipulation of the physiochemical properties of photosensitiz-
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long-lived triplet states, have been developed in prior investigations to significantly im-
prove ηUC [19–22]. In addition, adjusting the triplet state (T1) of the annihilator can consid-
erably increase the ηUC via efficiency improvements in the TTET between the photosensi-
tizer and the annihilator. Pioneering studies have been successful in tuning the T1 of anni-
hilators for superior ηUC, such as diketopyrrolopyrrole (DPP) and tetracene derivatives 
[23,24]. However, annihilators are often pure organic dyes with no phosphorescence at 
even low temperatures, making it difficult to determine their T1 state, so it is difficult to 
systematically regulate the T1 energy level of annihilators via a molecular evolution strat-
egy [25]. Boron-dipyrromethene (Bodipy) dyes have been used as model annihilators in 
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ipy derivatives) successfully creates a ratio-metric nanothermometer with high thermal 
sensitivity (7.1% K−1) and resolution (0.1 K) that can precisely monitor temperature 
changes in vivo. This is facilitated by the steric hindrance of the 1,7-dimethyl substituents 
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[32]. However, the small Stokes shift and large molar extinction coefficient of the Bodipy 
annihilator cause a serious inner-filter effect, which significantly decrease the Φf at high 
concentrations. Furthermore, modulation of the excited state energy level of Bodipy using 
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Figure 1. (a) Schematic illustration of triplet-triplet annihilation upconversion mechanism; (b) Molec-
ular structures of the photosensitizer (PdTPBP) and annihilators (B-1, B-2) in this study.

Developing an efficient TTA-UC system with excellent ηUC is essential [16,17], in gen-
eral, which relies on the manipulation of the physiochemical properties of photosensitizers
and annihilators [18]. Various types of photosensitizers with intense absorbance and long-
lived triplet states, have been developed in prior investigations to significantly improve
ηUC [19–22]. In addition, adjusting the triplet state (T1) of the annihilator can considerably
increase the ηUC via efficiency improvements in the TTET between the photosensitizer and
the annihilator. Pioneering studies have been successful in tuning the T1 of annihilators
for superior ηUC, such as diketopyrrolopyrrole (DPP) and tetracene derivatives [23,24].
However, annihilators are often pure organic dyes with no phosphorescence at even low
temperatures, making it difficult to determine their T1 state, so it is difficult to systemati-
cally regulate the T1 energy level of annihilators via a molecular evolution strategy [25].
Boron-dipyrromethene (Bodipy) dyes have been used as model annihilators in TTA-UC
because of their high fluorescence quantum yield (Φf), robust photostability, and simplicity
of chemical functionalization of the molecular structure [26–29]. For instance, it has been
confirmed that the pair of PtTPBP and Bodipy could perform red-to-green or red-to-yellow
multicolor photon upconversion [30]. Additionally, perylene and Bodipy moieties were
incorporated into the dyad annihilator to widen the ∆E2T1-S1 and greatly boost ηUC by
driving the TTA process [31]. In addition, the pair of TTA-UC (PtTPBP/Bodipy deriva-
tives) successfully creates a ratio-metric nanothermometer with high thermal sensitivity
(7.1% K−1) and resolution (0.1 K) that can precisely monitor temperature changes in vivo.
This is facilitated by the steric hindrance of the 1,7-dimethyl substituents of Bodipy, which
restricts the free rotation of the phenyl moiety at eight sites in Bodipy [32]. However, the
small Stokes shift and large molar extinction coefficient of the Bodipy annihilator cause
a serious inner-filter effect, which significantly decrease the Φf at high concentrations.
Furthermore, modulation of the excited state energy level of Bodipy using the π-extension
approach could obtain a negative ∆E2T1-S1 value, such as in 3,5-distyryl Bodipy [26–29],
resulting in a lack of driving force for the TTA process and subsequent decreased upconver-
sion luminescence. The relationship between the T1 of the Bodipy annihilator and the size
of its π-conjugated molecular surface is so poorly understood that it is difficult to regulate
their triplet excited states. Therefore, establishing an effective molecular design strategy
to regulate the excited states of Bodipy annihilators, specifically the triplet state, remains
challenging but intriguing [33,34].

Herein, we describe a dimerization approach at the 2,6-sites of Bodipy to increase
the Stokes shift and enhance the performance of the TTA-UC (Figure 1). Compared to
the parent Bodipy (B-1), the S1 of B-2 decreased from 2.43 eV to 2.21 eV, while its T1 was
not reduced significantly after dimerization (1.53 eV vs. 1.52 eV). Calculations based on
time-dependent density functional theory (TD-DFT) revealed that the molecular geometry
of B-2 tends toward a flat structure in S1, resulting in a dramatic decrease in S1 energy level
due to an extended π-conjugated surface. In contrast, the two Bodipy moieties tend to
have an orthogonal structure in T1 of B-2, so that the dimerization effect on the T1 energy
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level is negligible. Consequently, the double T1 energy levels of the B-2 are considerably
greater than its S1 (∆E2T1-S1 = 0.83 eV), establishing a thermodynamically supported TTA
process. Moreover, combining with the red light-absorbing photosensitizer palladium (II)
meso-tetraphenyl-tetrabenzoporphyrin (PdTPBP) (Figure 1b), we found that the ηUC of
B-2/PdTPBP (10.7%) was significantly higher than that of B-1/PdTPBP (4.0%).

2. Results and Discussion
2.1. Characterization of Photophysical Properties of Annihilators

B-2 was synthesized by a palladium-catalyzed cross-coupling reaction (Scheme 1) [35].
The reaction yield increased from 14% to 61% when compared to a previously reported
Bodipy dimerization catalyzed by FeCl3 (supporting information). B-2 is soluble in common
organic solvents, such as toluene, DCM, and EtOAc. Nuclear magnetic resonance (NMR),
as well as mass spectrometry (MS), were used to identify the molecular structure.
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Scheme 1. The preparation process of B-2.

As shown in Figure 2a, compared to that of B-1, the UV–vis absorption spectrum of
B-2 was red-shifted from 503 to 536 nm, and the molar extinction coefficient was as high
as 1.39 × 105 M−1 cm−1 (in toluene). The solvent-dependent absorption spectra revealed
no change in the absorption profile of B-2, demonstrating that the ground state of B-2 did
not undergo charge transfer with the solvent (Figure S1) [36]. The viscosity-dependent
absorption spectra of B-1 and B-2 did not exhibit a notable difference (Figure S2).

Molecules 2023, 28, x FOR PEER REVIEW 3 of 11 
 

 

B-2 tends toward a flat structure in S1, resulting in a dramatic decrease in S1 energy level 
due to an extended π-conjugated surface. In contrast, the two Bodipy moieties tend to 
have an orthogonal structure in T1 of B-2, so that the dimerization effect on the T1 energy 
level is negligible. Consequently, the double T1 energy levels of the B-2 are considerably 
greater than its S1 (∆E2T1-S1 = 0.83 eV), establishing a thermodynamically supported TTA 
process. Moreover, combining with the red light-absorbing photosensitizer palladium (II) 
meso-tetraphenyl-tetrabenzoporphyrin (PdTPBP) (Figure 1b), we found that the ηUC of B-
2/PdTPBP (10.7%) was significantly higher than that of B-1/PdTPBP (4.0%). 

2. Results and Discussion 
2.1. Characterization of Photophysical Properties of Annihilators 

B-2 was synthesized by a palladium-catalyzed cross-coupling reaction (Scheme 1) 
[35]. The reaction yield increased from 14% to 61% when compared to a previously re-
ported Bodipy dimerization catalyzed by FeCl3 (supporting information). B-2 is soluble in 
common organic solvents, such as toluene, DCM, and EtOAc. Nuclear magnetic resonance 
(NMR), as well as mass spectrometry (MS), were used to identify the molecular structure. 

 
Scheme 1. The preparation process of B-2. 

As shown in Figure 2a, compared to that of B-1, the UV–vis absorption spectrum of 
B-2 was red-shifted from 503 to 536 nm, and the molar extinction coefficient was as high 
as 1.39 × 105 M−1 cm−1 (in toluene). The solvent-dependent absorption spectra revealed no 
change in the absorption profile of B-2, demonstrating that the ground state of B-2 did not 
undergo charge transfer with the solvent (Figure S1) [36]. The viscosity-dependent ab-
sorption spectra of B-1 and B-2 did not exhibit a notable difference (Figure S2). 

 
Figure 2. (a) UV–vis absorption and fluorescence spectra of B-1 and B-2, λex = 470 nm, 10 µM; (b) 
UV–vis absorption and phosphorescence spectra of PdTPBP, λex = 635 nm, 10 µM. 

The fluorescence emission peak of B-2 is 577 nm, which is longer than that of B-1 at 
517 nm (Figure 2a). The intersection of the absorption and fluorescence emission spectra 
shows that the S1 of B-1 and B-2 are 2.43 and 2.21 eV, respectively, indicating that the S1 of 
Bodipy was effectively reduced after dimerization (Table 1). The absolute Φf of B-1 and B-
2 at low and high concentrations were then evaluated. The Φf of B-1 was 0.72 at a low 
concentration (10 µM) but 0.42 at a high concentration (1000 µM). However, B-2 retains 

Figure 2. (a) UV–vis absorption and fluorescence spectra of B-1 and B-2, λex = 470 nm, 10 µM;
(b) UV–vis absorption and phosphorescence spectra of PdTPBP, λex = 635 nm, 10 µM.

The fluorescence emission peak of B-2 is 577 nm, which is longer than that of B-1 at
517 nm (Figure 2a). The intersection of the absorption and fluorescence emission spectra
shows that the S1 of B-1 and B-2 are 2.43 and 2.21 eV, respectively, indicating that the S1
of Bodipy was effectively reduced after dimerization (Table 1). The absolute Φf of B-1
and B-2 at low and high concentrations were then evaluated. The Φf of B-1 was 0.72 at
a low concentration (10 µM) but 0.42 at a high concentration (1000 µM). However, B-2
retains its Φf even at high concentrations (Φf = 0.86, 1000 µM) due to its substantial Stokes
shift (B-1 vs. B-2, 539 cm−1 vs. 1326 cm−1), which suppresses the inner-filter effect at
high concentrations. As demonstrated by the polarity-dependent fluorescence emission
spectroscopy, the position and width at half maxima of the emission peak of B-1 changed
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insignificantly, and the fluorescence intensity was not markedly quenched, indicating that
intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) had minor
effects on the fluorescent properties of B-1 (Figure S3a) [37]. However, the fluorescence
emission of B-2 was significantly repressed in acetonitrile, which is presumably due to the
low solubility of B-2 in acetonitrile (Figure S3b) [38]. The viscosity-dependent fluorescence
spectroscopy of B-2 demonstrated that the fluorescence emission is not viscosity-dependent
(Figure S4). To confirm this, we determined the fluorescence lifetime of B-2 at various
viscosities (Figure S5). We did not find that the fluorescence lifetime of B-2 got longer as
the viscosity went up. This means that the rotation between the two Bodipy moieties or the
8-site phenyl substitutes does not cause excited-state cone crossings, which would quench
fluorescence emission [39].

Table 1. The photophysical parameters of B-1 and B-2 in toluene.

Compound λabs
a (nm) ε b λem

c (nm) Φf1
d (%) Φf2

e (%) τf
f(ns) S1

g (eV) ∆E2T1-S1
h

(eV)

B-1 503 0.81 517 72 42 3.52 2.43 0.63
B-2 536 1.39 577 92 86 3.25 2.21 0.83

a absorption peak; b molar extinction coefficient, 105 M−1 cm−1; c fluorescence emission peak; d fluorescence
quantum yield, 10 µM; e fluorescence quantum yield, 1000 µM; f fluorescence lifetime; g single excited energy
level was determined as the crossing point of the absorption and fluorescence emission spectra; h thermodynamic
driving force for TTA, T1 state energy level was calculated with TD-DFT.

In addition, we further investigated the redox properties of B-1 and B-2 by cyclic
voltammetry versus the Ag/Ag+ electrode. The oxidation/reduction potentials of B-1 and
B-2 were +0.90/−1.59 V and +0.84/−1.51 V, respectively (Figure S6), demonstrating that
Bodipy dimerization does not change the redox potential of the annihilator and, thus, does
not result in intramolecular charge separation, which causes fluorescence quenching [40].

Next, the triplet-excited state of B-2 was investigated. Due to the high Φf and extremely
low triplet state quantum yield of B-2, we were unable to directly observe its phosphores-
cence emission to determine the T1 energy level. The T1 of B-2 was approximated using the
triplet sensitization bracketing technique. PdTPBP (T1 = 1.55 eV) and PtTNP (T1 = 1.36 eV)
are two metalloporphyrins with high phosphorescence quantum yield that have been
chosen as triplet energy donors. In the presence of 1000 µM B-1 or B-2, we measured the
steady and transient photoluminescence spectra of the triplet energy donor. In the presence
of B-2, the phosphorescence of PdTPBP at 800 nm decreased by 50.9% (Figure S7), whereas
the phosphorescence intensity of PtTNP remained unchanged at 913 nm (Figure S8a). In
addition, the phosphorescence intensity of PdTPBP decreased by 33.1% in the presence of
B-1, while that of PtTNP was unaffected. The aforementioned experimental results indicate
that the T1 state energy levels of B-1 and B-2 are between 1.36 eV and 1.55 eV.

To gain a deeper understanding of the excited state of B-2, we calculated its properties
using time-dependent density functional theory (TD-DFT). Optimization of the ground state
(S0) configuration of B-2 revealed that the dihedral angle between the two Bodipy moieties
is 71◦ (Figure 3a), suggesting that the steric hindrance of the four methyl substituents in B-2
prevents free rotation between the two Bodipy moieties. The scanning of potential energy
surface confirms that the energy of B-2 rises rapidly with the increased co-planarization
degree between the two Bodipy moieties (Figure S9). The vertical excitation energy of B-2
corresponds well to its UV–vis absorption spectrum (Table S1), showing that the theoretical
model used in the DFT-calculations is valid [41]. In contrast to the optimal conformation of
the S0, the S1 conformation of B-2 discloses that the dihedral angle between the two Bodipy
moieties tends to decrease from 71◦ to 54◦ (Figure 3a), indicating that the red-shift of the
fluorescence emission of B-2 is associated to the extensive π-conjugated surface between
the two Bodipy moieties. Furthermore, the significant differences between S1 and S0 in the
geometrical configuration result in a large Stokes shift of B-2 [42]. Both Bodipy moieties
of B-2 have a frontier orbital electron density population, as calculated by the HOMO
and LUMO orbitals of B-2 (Figure 3b). This conclusion is attributable to the enhancement
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of the π-conjugated surface between the Bodipy moieties resulting from the lowering of
the dihedral angle, which is directly associated with the prolonged fluorescence emission
wavelength of B-2 [43]. The triplet state of B-2 is then investigated using TD-DFT. As shown
in Figure 3a, the dihedral angle between the two Bodipy moieties is 69◦ in the optimized
T1 conformation of B-2, which is no change in the molecular geometry configuration as
compared to S0. Calculation of the triplet state energy levels of B-2 shows that its T1 and T2
states are 1.52 eV and 1.53 eV, respectively. The T1 and T2 energy levels are close together
due to a lack of π-conjugated electron delocalization between the two Bodipy moieties of
B-2, resulting in a degenerate T1 state [42]. The triplet spin density of B-2 is calculated to be
populated in both Bodipy moieties, which further confirmed the abovementioned results
(Figure 3c) [41]. In this way, B-1 and B-2 exhibit similar T1 state energy levels (Table S1).
The results of the preceding experimental experiments are consistent with the outcomes of
the theoretical chemical calculations.
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Figure 3. Theoretical chemical calculation results. (a) Calculated S0, S1, and T1 configurations of B-2
in toluene, highlighting the dihedral angles between two Bodipy moieties, top panel is the top view,
bottom panel is the side view. (b) Selected frontier molecular orbitals of B-2 including HOMO, LUMO,
HOMO−1, and LUMO+1. (c) Triplet state spin density surfaces of B-1 and B-2, respectively, in toluene
at the optimized triplet state molecular geometric configurations. Calculated with Gaussian 09 based
on the DFT-B3LYP/6-31G.level.

In the case of Bodipy dyes, both S1 and T1 decrease as the π-conjugation surface
increases, but T1 decreases more significantly [26–29]. This led to a negative ∆E2T1-S1 value
for most Bodipy derivatives, limiting their utilization in TTA-UC [15]. Despite the fact that
a dyad annihilator composed of perylene and Bodipy was developed to address this issue,
intramolecular charge transfer causes fluorescence quenching and, as a result, reduced
TTA-UC efficiency in highly polar solvents [43]. By regulating the molecular geometric
configuration of S1 and T1, our proposed Bodipy dimerization strategy raises the Stokes
shift of the annihilator to prevent dose-mediated upconversion quenching [24].
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2.2. TTA-UC Properties of Annihilators

Following that, we chose the red light-absorbing PdTPBP (T1 energy level = 1.55 eV [44]) as
the photosensitizer to investigate the TTA-UC in relation to B-2. Since PdTPBP has a long triplet
state lifetime, its own TTA is not conducive to TTET with the annihilator; thus, a low dose of
PdTPBP (10 µM) is used. Because of the close dependence of the TTET and TTA processes on the
annihilator concentration, we first optimized the B-2 concentration in TTA-UC (Figure S10) [17].
When the concentration of B-2 exceeded 1000 µM, the TTA-UC intensity stopped increasing
and even decreased in the concentration interval 1000–1500 µM. This might be because of the
self-absorption and fluorescence quenching with the high dose of B-2 [24]. As a result, we
measured the ηUC of B-1 and B-2 at 1000 µM, which were determined to be 10.7% and 4.0%,
respectively (excited by a 635 nm laser, power intensity = 1267.5 mW/cm2).

As demonstrated in Figure 4a, the TTA-UC peak of B-2 was redshifted to 600 nm
compared to B-1. In particular, the TTA-UC spectrum of B-2 exhibits significantly lower
intensity at 630 nm compared to the fluorescence spectrum of B-2. This is due to the strong
absorption of PdTPBP at this position (Figure S11), indicating the “emission–reabsorption”
effect and that the TTA-UC efficiency of PdTPBP/B-2 should be greater than 10.7%. We
further evaluated the color of TTA-UC using Commission Internationale de l’Eclairage
(CIE) coordinates (Figure 4b). The CIE coordinates of B-1 and B-2 are (0.35, 0.64) and (0.64,
0.36), respectively, indicating that the molecular structure of the annihilator can be finely
tuned to produce multicolor TTA-UC. Simultaneously, we observed the TTA-UC colors of
B-1 and B-2 in green and yellow, respectively, with the naked eye under low-power red
illumination (Figure 4c). The threshold power intensity (Ith) is a critical TTA-UC parameter.
The integrated TTA-UC intensity (IUC) has a linear relationship with the incident light
power intensity (Iex) when Iex is greater than Ith and a nonlinear quadratic relationship
when Iex is less than Ith. The power-dependent TTA-UC spectra of PdTPBP/B-2 are shown
in Figure S12, with a significant increase in IUC with increasing Iex. We found a quadratic
relationship between the IUC and the Iex in the low-power intensity region by logarithmic
plotting (Figure 4d). This further demonstrates that the B-2 acts as an annihilator to achieve
the red-to-yellow TTA-UC. The Ith of B-2 (53.7 mW cm−2) is lower than B-1 (76.9 mW cm−2),
suggesting that expanding the ∆E2T1-S1 contributes to the development of TTA-UC pairs
with lower Ith, which are desirable for solar energy harvesting, photoredox catalysis, and
upconversion bioimaging [6]. In addition, the TTA-UC delayed fluorescence lifetime
(τDF) of B-1 and B-2 were measured. The τDF of B-1 and B-2 were 445.5 µs and 101.4 µs,
respectively, which were three orders of magnitude longer than their own τf, confirming
that this long-lived luminescence was derived from the TTA-UC process [45].

We further measured the TTET efficiency (ΦTTET) of PdTPBP (10 µM) with B-1 (1000 µM)
or B-2 (1000 µM) to gain a better understanding of the TTA-UC procedure. The ΦTTET of
PdTPBP/B-2 (66.9%) is higher than that of PdTPBP/B-1 (49.1%) (Table 2). In addition, we
calculated the triplet state molecular collision cross-section areas of B-1 and B-2 based on
DFT theory [46]. The triplet state collision cross-sections of B-1 and B-2 are 1205.0 Bohr2 and
2206.1 Bohr2, respectively. The calculation results show that although B-2 has T1 energy levels
similar to B-1, the collision surface of B-2 is greatly extended, which facilitates the Dexter-type
triplet energy transfer. Therefore, there is a higher TTET efficiency between PdTPBP and B-2.
To further validate our hypothesis, we measured the Stern–Volmer quenching constants (ksv)
of B-1 and B-2 for PdTPBP phosphorescence and then calculated their bimolecular quenching
constants (kq). As shown in Table 2, the ksv of B-2 is 9.0 times higher than those of B-1, and the
kq is as high as 2.1 × 107 M−1 s−1. The large ksv of B-2 suggests that the dimerization strategy
of Bodipy can promote TTET between photosensitizer and annihilator.

Finally, we measured the normalized triplet annihilation efficiencies (ηTTA) of B-1 and
B-2 using a well-established protocol [47]. The ηTTA of PdTPBP/B-1 and PdTPBP/B-2 are
88.0% (39,570 mW/cm2) and 82.0% (39,570 mW/cm2), respectively (Figure S13).



Molecules 2023, 28, 5474 7 of 11Molecules 2023, 28, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. Upconversion properties of the annihilators. (a) Upconversion emission spectra of B-1 and 
B-2 in toluene, λex = 635 nm (1267.5 mW/cm2); (b) CIE diagram showing the adjustable upconversion 
emission colors; (c) Upconversion pictures of B-1 and B-2 with PdTPBP; (d) Power-dependence of 
TTA-UC for PdTPBP/B-2, a slope of 1.83 (black, quadratic) and a slope of 1.09 (red, linear), Ith is 53.7 
mW/cm2; (e) Upconversion lifetime decay trace of PdTPBP/B-2 at 600 nm, in deaerated toluene, 
PdTPBP (10 µM); (f) Stern-Volmer plots of PdTPBP in response to B-2 addition in toluene. 

We further measured the TTET efficiency (ΦTTET) of PdTPBP (10 µM) with B-1 (1000 
µM) or B-2 (1000 µM) to gain a better understanding of the TTA-UC procedure. The ΦTTET 
of PdTPBP/B-2 (66.9%) is higher than that of PdTPBP/B-1 (49.1%) (Table 2). In addition, 
we calculated the triplet state molecular collision cross-section areas of B-1 and B-2 based 
on DFT theory [46]. The triplet state collision cross-sections of B-1 and B-2 are 1205.0 Bohr2 
and 2206.1 Bohr2, respectively. The calculation results show that although B-2 has T1 en-
ergy levels similar to B-1, the collision surface of B-2 is greatly extended, which facilitates 
the Dexter-type triplet energy transfer. Therefore, there is a higher TTET efficiency be-
tween PdTPBP and B-2. To further validate our hypothesis, we measured the Stern–
Volmer quenching constants (ksv) of B-1 and B-2 for PdTPBP phosphorescence and then 
calculated their bimolecular quenching constants (kq). As shown in Table 2, the ksv of B-2 
is 9.0 times higher than those of B-1, and the kq is as high as 2.1 × 107 M−1 s−1. The large ksv 

of B-2 suggests that the dimerization strategy of Bodipy can promote TTET between pho-
tosensitizer and annihilator. 

Finally, we measured the normalized triplet annihilation efficiencies (ηTTA) of B-1 and 
B-2 using a well-established protocol [47]. The ηTTA of PdTPBP/B-1 and PdTPBP/B-2 are 
88.0% (39,570 mW/cm2) and 82.0% (39,570 mW/cm2), respectively (Figure S13). 

Table 2. The TTA-UC parameters of PdTPBP/B-1 and PdTPBP/B-2 in deaerated toluene. 

Compound ηUC a ΦTTET b (%) ηTTA c (%) Φf d (%) Ith e ksv f kq g τDF h (µs) T1 i (eV) 
B-1 4.0 49.1 88.0 34.3 76.9 0.57 0.23 445.5 1.53 
B-2 10.7 66.9 82.0 60.3 53.7 5.11 2.10 101.4 1.52 

a TTA-UC efficiency at 635 nm CW excitation; b triplet-triplet energy transfer efficiency; c normalized 
triplet-triplet annihilation efficiency, 39,570 mW/cm2; d absolute fluorescence quantum yields of an-
nihilators (1000 µM) in the presence of PdTPBP (10 µM); e threshold power intensity, mW/cm2; f 

Stern–Volmer quenching constant, in 103 M−1; g bimolecular quenching constants, in 107 M−1 s−1; h up-
conversion fluorescence lifetime. i T1 state energy levels were calculated with TD-DFT. 
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B-2 in toluene, λex = 635 nm (1267.5 mW/cm2); (b) CIE diagram showing the adjustable upconversion
emission colors; (c) Upconversion pictures of B-1 and B-2 with PdTPBP; (d) Power-dependence of
TTA-UC for PdTPBP/B-2, a slope of 1.83 (black, quadratic) and a slope of 1.09 (red, linear), Ith is
53.7 mW/cm2; (e) Upconversion lifetime decay trace of PdTPBP/B-2 at 600 nm, in deaerated toluene,
PdTPBP (10 µM); (f) Stern-Volmer plots of PdTPBP in response to B-2 addition in toluene.

Table 2. The TTA-UC parameters of PdTPBP/B-1 and PdTPBP/B-2 in deaerated toluene.

Compound ηUC
a ΦTTET

b

(%)
ηTTA

c

(%) Φf
d (%) Ith

e ksv
f kq

g τDF
h

(µs)
T1

i (eV)

B-1 4.0 49.1 88.0 34.3 76.9 0.57 0.23 445.5 1.53
B-2 10.7 66.9 82.0 60.3 53.7 5.11 2.10 101.4 1.52

a TTA-UC efficiency at 635 nm CW excitation; b triplet-triplet energy transfer efficiency; c normalized triplet-triplet
annihilation efficiency, 39,570 mW/cm2; d absolute fluorescence quantum yields of annihilators (1000 µM) in
the presence of PdTPBP (10 µM); e threshold power intensity, mW/cm2; f Stern–Volmer quenching constant, in
103 M−1; g bimolecular quenching constants, in 107 M−1 s−1; h upconversion fluorescence lifetime. i T1 state
energy levels were calculated with TD-DFT.

3. Materials and Methods
3.1. Preparation Process for B-2 [35]

A 25 mL three-necked flask was filled with 2-bromo-Bodipy (compound 1) (16.2 mg,
0.05 mmol), X-phos (19.0 mg, 40 mol), bis(pinacolato) diboron (B2pin2) (5.1 mg, 0.02 mmol),
Cs2CO3 (65 mg) 1,4-dioxane (5 mL), and H2O (200 µL). Then, the mixture was degassed
with argon for 10 min, followed by the addition of Pd2(dba)3·CHCl3 (5.2 mg, 5.0 µmol)
and another argon degassing for 5 min. After 10 h of reaction at 70 ◦C, the solvent was
evaporated, and the residue was purified using column chromatography on silica with
Vhexane/VDCM = 1:1 to yield 9.5 mg (yield: 61%). 1H NMR (400 MHz, CDCl3) (ppm):
7.53–7.43 (m, 6H), 7.34–7.22 (m, 4H), 5.99 (s, 2H), 2.56 (s, 6H), 2.35 (s, 6H), 1.37 (s, 6H),
1.12 (s, 6H). 13C NMR (100 MHz, CDCl3) (ppm): 156.06, 154.71, 143.67, 141.74, 141.25,
135.09, 131.80, 131.28, 129.31, 129.18, 129.07, 128.01, 127.89, 124.78, 121.52, 14.70, 14.44, 13.37,
12.90; MS (MALDI) for B-2 (C38H36B2F4N4) m/z = 646.31 (calculated), 646.31 (observed).

3.2. Measurement of the Fluorescence Quantum Yields (Φf) of B-1 and B-2

The literature has previously reported the fluorescence quantum yields of B-1 and B-2
using the relative method with fluorescein as the reference [48]. We utilized the absolute
method based on the integrating sphere to determine the fluorescence quantum yields



Molecules 2023, 28, 5474 8 of 11

of B-1 and B-2 with greater precision. The absolute method was used to measure the Φf
in an FLS1000 photoluminescence spectrometer with an integrating sphere and a xenon
lamp as the light source. Φf is the total number of emitted photons divided by the total
number of absorbed photons. We determined the Φf of the annihilators at concentration of
10 µM, 1000 µM as well as the annihilators (1000 µM) in the presence of PdTPBP (10 µM).
Since the fluorescence emission spectra of B-2 overlaps with the ultraviolet–visible (UV–vis)
absorption spectrum of PdTPBP, the Φf of the mixture solution B-2/PdTPBP is lower than
that of B-2 alone.

3.3. Measurement of Upconversion Efficiency (ηUC)

The ηUC was calculated with the reference Ru(bpy)3Cl2·6H2O, which has a photolumines-
cence quantum yield (Φp) of 0.028 in water [49]. The TTA-UC pairs and Ru(bpy)3Cl2·6H2O were
excited using a 635 nm diode laser (39.8 mW) and a 450 nm diode laser (39.8 mW), respectively.
We have uniformed the sensitivity of the fluorometer at different wavelengths. The ηUC was
calculated using the following equation: eq 1, where ηUC, Φf, Astd, Asam, Istd, Isam, ηstd, and
ηsam represent the upconversion efficiency, fluorescence quantum yield of reference, reference
absorbance (450 nm), PdTPBP absorbance (635 nm), reference integrated photoluminescence
intensity, the integral area of the upconversion spectrum, and the refractive index of H2O (1.333).
Note that the theoretical maximum of ηUC is standardized to be 1 (100%).

ηUC = 2 × Φ f × Astd
Asam

× Isam

Istd
×

(
ηsam

ηstd

)2
(1)

3.4. Theoretical Chemical Calculation [50]

All theoretical calculations were performed using the Gaussian 09 program. The
ground state geometries of the B-1 and B-2 were optimized using density functional theory
(DFT) based on B3LYP/6-31G(d) level. Based on the optimized ground state geometry,
the energies of the lowest singlet and triplet excited states were calculated using the
TD-DFT method.

4. Conclusions

In conclusion, the new annihilator B-2 was synthesized using the Bodipy dimerization
strategy at the 2,6 sites. The ηUC was elevated from 4.0% to 10.7% in comparison to the
conventional B-1 annihilator. Through theoretical chemical calculations and spectroscopic
characterization, it was confirmed that B-2 not only increases the fluorescence quantum
yield but also increases the triplet collisional surface to improve the ΦTTET. These above
features are extremely important for enhancing the ηUC. Thus, this research provides not
only a new molecular design strategy for finely regulating the excited state properties of
Bodipy-based annihilators but also a new approach for the development of efficient TTA-
UC, which will surely promote the use of TTA-UC in photonics and biophotonics fields.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28145474/s1, Figure S1: absorption spectra of anni-
hilators in different solvents; Figure S2: absorption spectra of annihilators in solutions of different
viscosities; Figure S3: Fluorescence spectra of annihilators different solvents; Figure S4: Fluorescence
spectra of annihilators with different viscosities; Figure S5: Fluorescence lifetime of annihilators with
different viscosities; Figure S6: Cyclic voltammograms of B-1 and B-2; Figure S7: Phosphorescence
emission spectra of PdTPBP without annihilators and in the presence of annihilators (determination
of TTET efficiency); Figure S8: Phosphorescence emission spectra and phosphorescence lifetime of
PtTNP without annihilators and in the presence of annihilators; Figure S9: Ground state potential
energy curves of B-2, as a function of the dihedral angle between two moieties B-2 (step: 10◦);
Figure S10: (a) The upconversion emission spectra of PdTPBP (10 µM) and different concentrations
of B-1 in degassed toluene, (b) quantitative analysis of the relationship between upconversion in-
tensity and concentration of B-1. λex = 635 nm, (c) The upconversion emission spectra of PdTPBP
(10 µM) and different concentrations of B-2 in degassed toluene, (d) quantitative analysis of the
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relationship between upconversion intensity and concentration of B-2. λex = 635 nm; Figure S11:
Fluorescence spectra of B-2 (1 mM) with or without photosensitizer; Figure S12: (a) Incident light
power dependence study of TTA-upconversion analysis; Figure S13: ηTTA determination of anni-
hilator compounds; Figure S14: The excitation spectrum of B-2 in toluene, λem = 600 nm; Figure
S15: 1H-NMR (400 MHz, CDCl3) of B-1; Figure S16; 1H-NMR (400 MHz, CDCl3) of B-2; Figure
S17: 13C-NMR (100 MHz, CDCl3) of B-2; Figure S18: HRMS (MALDI) of B-2; Table S1: Density
functional theory (DFT) calculation for the annihilators. Table S2: S1 and T1 energy levels of B-1,
B-2, obtained by experiments, CAM-B3LYP, and B3LYP calculations. The reference [51–57] is in the
Supplementary Material.
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